200
Views
3
CrossRef citations to date
0
Altmetric
Articles

Carbon-based nanostructured composites for tissue engineering and drug delivery

&
Pages 1167-1188 | Received 17 Mar 2020, Accepted 17 Jun 2020, Published online: 03 Jul 2020

References

  • Asadi, N.; Alizadeh, E.; Rahmani Del Bakhshayesh, A.; Mostafavi, E.; Akbarzadeh, A.; Davaran, S. Fabrication and In-Vitro Evaluation of Nanocomposite Hydrogel Scaffolds Based on Gelatin/PCL–PEG–PCL for Cartilage Tissue Engineering. ACS Omega 2019, 4, 449–457. DOI: 10.1021/acsomega.8b02593.
  • Das, D.; Cho, H.; Kim, N.; Pham, T. T. H.; Kim, I. G.; Chung, E. J.; Noh, I. A Terpolymeric Hydrogel of Hyaluronate-Hydroxyethyl Acrylate-Gelatin Methacryloyl with Tunable Properties as Biomaterial. Carbohydr. Polym. 2019, 207, 628–639. DOI: 10.1016/j.carbpol.2018.12.020.
  • Zhang, Q.; Huang, X.; Pu, Y.; Yi, Y.; Zhang, T.; Wang, B. pH-Sensitive and Biocompatible Quercetin-Loaded GO-PEA-HA Carrier Improved Antitumour Efficiency and Specificity. Artif. Cells. Nanomed. Biotechnol. 2018, 46, S28–S37. DOI: 10.1080/21691401.2018.1489261.
  • Yang, J.; Guo, J. L.; Mikos, A. G.; He, C.; Cheng, G. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Ann. Biomed. Eng. 2018, 46, 1229–1240. DOI: 10.1007/s10439-018-2058-y.
  • Okamoto, M.; John, B. Synthetic Biopolymer Nanocomposites for Tissue Engineering Scaffolds. Prog. Polym. Sci. 2013, 38, 1487–1503. DOI: 10.1016/j.progpolymsci.2013.06.001.
  • Janmohammadi, M.; Nourbakhsh, M. S. Recent Advances on 3D Printing in Hard and Soft Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 449–466. DOI: 10.1080/00914037.2019.1581196.
  • Wen, X.; Tresco, P. A. Fabrication and Characterization of Permeable Degradable Poly(DL-Lactide-Co-Glycolide) (PLGA) Hollow Fiber Phase Inversion Membranes for use as Nerve Tract Guidance Channels. Biomaterials 2006, 27, 3800–3809. DOI: 10.1016/j.biomaterials.2006.02.036.
  • Meena, L. K.; Rather, H.; Kedaria, D.; Vasit, R. Polymeric Microgels for Bone Tissue Engineering Applications – A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 381–397. DOI: 10.1080/00914037.2019.1570512.
  • Slepicka, P.; Slepickova Kasalkova, N.; Siegel, J.; Kolska, Z.; Bacakova, L.; Svorcik, V. Nano-Structured and Functionalized Surfaces for Cytocompatibility Improvement and Bactericidal Action. Biotechnol. Adv. 2015, 33, 1120–1129. DOI: 10.1016/j.biotechadv.2015.01.001.
  • Oh, W. K.; Yoon, H.; Jang, J. Size Control of Magnetic Carbon Nanoparticles for Drug Delivery. Biomaterials 2010, 31, 1342–1348. DOI: 10.1016/j.biomaterials.2009.10.018.
  • Chakrabarti, M.; Kiseleva, R.; Vertegel, A.; Ray, S. K. Carbon Nanomaterials for Drug Delivery and Cancer Therapy. J. Nanosci. Nanotechnol. 2015, 15, 5501–5511. DOI: 10.1166/jnn.2015.10614.
  • Cha, C.; Shin, S. R.; Annabi, N.; Dokmeci, M. R.; Khademhosseini, A. Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano. 2013, 7, 2891–2897. DOI: 10.1021/nn401196a.
  • Jawaid, M.; Ahmad, A.; Lokhat, D. Graphene_Based Nanotechnologies for Energy and Environmental Applications, 1st Edition; Elsevier: Amsterdam, 2019.
  • Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical Applications of Carbon Nanomaterials: Drug and Gene Delivery Potentials. J. Cell. Physiol. 2018, 234, 298–319. DOI: 10.1002/jcp.26899.
  • Perkins, B. L.; Naderi, N. Carbon Nanostructures in Bone Tissue Engineering. Open Orthop. J. 2016, 10, 877–899. DOI: 10.2174/1874325001610010877.
  • Crisan, L.; Crisan, B. V.; Bran, S.; Onisor, F.; Armencea, G.; Vacaras, S.; Lucaciu, O. P.; Mitre, I.; Baciut, M.; Baciut, G.; et al. Carbon-Based Nanomaterials as Scaffolds in Bone Regeneration. Particul. Sci. Technol. 2020. DOI: 10.1080/02726351.2019.1637382.
  • Eivazzadeh-Keihan, R.; Maleki, A.; Guardia, M.; Salimi Bani, M.; Khanmohammadi Chenab, K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M. R. Carbon Based Nanomaterials for Tissue Engineering of Bone: Building New Bone on Small Black Scaffolds: A Review. J. Adv. Res. 2019, 18, 185–201. DOI: 10.1016/j.jare.2019.03.011.
  • Pei, B.; Wang, W.; Dunne, N.; Li, X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials 2019, 9, 1501–1540. DOI: 10.3390/nano9101501.
  • Li, Z.; Barros, A. L.; Soares, D. C. F.; Moss, S. N.; Alisaraie, L. Functionalized Single-Walled Carbon Nanotubes: Cellular Uptake, Biodistribution and Applications in Drug Delivery. Int. J. Pharm. 2017, 524, 41–54. DOI: 10.1016/j.ijpharm.2017.03.017.
  • Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Advances and Challenges of Nanotechnology-Based Drug Delivery Systems. Expert Opin. Drug Deliv. 2007, 4, 621–633. DOI: 10.1517/17425247.4.6.621.
  • Power, A. C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon Nanomaterials and Their Application to Electrochemical Sensors: A Review. Nanotechnol. Rev. 2018, 7, 19–41. DOI: 10.1515/ntrev-2017-0160.
  • Liu, H.; Zhang, L.; Yan, M.; Yu, J. Carbon Nanostructures in Biology and Medicine. J. Mater. Chem. B. 2017, 5, 6437–6450. DOI: 10.1039/c7tb00891k.
  • Sinha, N.; Yeow, J. T. Carbon Nanotubes for Biomedical Applications. IEEE Trans. Nanobiosci. 2005, 4, 180–195. DOI: 10.1109/TNB.2005.850478.
  • Alshehri, R.; Ilyas, A. M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J. Med. Chem. 2016, 59, 8149–8167. DOI: 10.1021/acs.jmedchem.5b01770.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483–487. DOI: 10.1126/science.273.5274.483.
  • Sahithi, K.; Swetha, M.; Ramasamy, K.; Srinivasan, N.; Selvamurugan, N. Polymeric Composites Containing Carbon Nanotubes for Bone Tissue Engineering. Inter. J. Biolog. Macromol. 2010, 46, 281–283. DOI: 10.1016/j.ijbiomac.2010.01.006.
  • Artiles, M. S.; Rout, C. S.; Fisher, T. S. Graphene-Based Hybrid Materials and Devices for Biosensing. Adv. Drug Deliv. Rev. 2011, 63, 1352–1360. DOI: 10.1016/j.addr.2011.07.005.
  • Vadym, N.; Mochalin, O.; Shenderova, D.; Ho, Y. G. The Properties and Applications of Nanodiamonds. Nature Nanotech. 2012, 7, 11–23. DOI: 10.1038/nnano.2011.209.
  • Boudou, J. P.; Curmi, P. A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High Yield Fabrication of Fluorescent Nanodiamonds. Nanotechnology 2009, 20, 235602. DOI: 10.1088/0957-4484/20/23/235602.
  • Welz, S.; Gogotsi, Y.; McNallan, M. J. Nucleation, Growth, and Graphitization of Diamond Nanocrystals during Chlorination of Carbides. J. Appl. Phys. 2003, 93, 4207–4214. DOI: 10.1063/1.1558227.
  • Galimov, É. M.; Kudin, A. M.; Skorobogatskii, V. N.; Plotnichenko, V. G.; Bondarev, O. L.; Zarubin, B. G.; Strazdovskii, V. V.; Aronin, A. S.; Fisenko, A. V.; Bykov, I. V.; et al. Experimental Corroboration of the Synthesis of Diamond in the Cavitation Process. Dokl. Phys. 2004, 49, 150–153. DOI: 10.1134/1.1710678.
  • Fang, L.; Ohfuji, H.; Shinmei, T.; Irifune, T. Experimental Study on the Stability of Graphitic C3N4 under High Pressure and High Temperature. Diam. Relat. Mater. 2011, 20, 819–825. DOI: 10.1016/j.diamond.2011.03.034.
  • Salaam, A. D.; Mishra, M.; Nyairo, E.; Dean, D. Electrospun Polyvinyl Alcohol/Nanodiamond Composite Scaffolds: Morphological, Structural, and Biological Analysis. J. Biomater. Tissue Eng. 2014, 4, 173–178. DOI: 10.1166/jbt.2014.1152.
  • Vega-Figueroa, K.; Santillán, J.; García, C.; Gonzalez-Feliciano, J. A.; Bello, S. A.; Rodríguez, Y. G.; Ortiz-Quiles, E. O.; Nicolau, E. Assessing the Suitability of Cellulose-Nanodiamond Composite as a Multifunctional Biointerface Material for Bone Tissue Regeneration. ACS Biomater. Sci. Eng. 2017, 3, 960–968. DOI: 10.1021/acsbiomaterials.7b00026.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Kakran, M.; Li, L. Carbon Nanomaterials for Drug Delivery. Key Eng. Mater. 2012, 508, 76–80. DOI: 10.4028/www.scientific.net/KEM.508.76.
  • Liu, J.; Cui, L.; Losic, D. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomater. 2013, 9, 9243–9257. DOI: 10.1016/j.actbio.2013.08.016.
  • Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical Functionalization of Graphene and its Applications. Prog. Mater. Sci. 2012, 57, 1061–1105. DOI: 10.1016/j.pmatsci.2012.03.002.
  • Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of Graphene and its Applications: A Review. Crit. Rev. Sol. State Mater. Sci. 2010, 35, 52–71. DOI: 10.1080/10408430903505036.
  • Santos, C. M.; Mangadlao, J.; Ahmed, F.; Leon, A.; Advincula, R. C.; Rodrigues, D. F. Graphene Nanocomposite for Biomedical Applications: Fabrication, Antimicrobial and Cytotoxic Investigations. Nanotechnology 2012, 23, 395101. DOI: 10.1088/0957-4484/23/39/395101.
  • Yan, L.; Chang, Y. N.; Zhao, L.; Gu, Z.; Liu, X.; Tian, G.; Zhou, L.; Ren, W.; Jin, S.; Yin, W.; et al. The use of Polyethylenimine-Modified Graphene Oxide as a Nanocarrier for Transferring Hydrophobic Nanocrystals into Water to Produce Water-Dispersible Hybrids for use in Drug Delivery. Carbon 2013, 57, 120–129. DOI: 10.1016/j.carbon.2013.01.042.
  • Lay, C. L.; Liu, H. Q.; Tan, H. R.; Liu, Y. Delivery of Paclitaxel by Physically Loading onto Poly(Ethylene Glycol) (PEG)-Graft Carbon Nanotubes for Potent Cancer Therapeutics. Nanotechnology 2010, 21, 065101. DOI: 10.1088/0957-4484/21/6/065101.
  • Xu, Z.; Wang, S.; Li, Y.; Wang, M.; Shi, P.; Huang, X. Covalent Functionalization of Graphene Oxide with Biocompatible Poly(Ethylene Glycol) for Delivery of Paclitaxel. ACS Appl. Mater. Interf. 2014, 6, 17268–17276. DOI: 10.1021/am505308f.
  • Nayak, T. R.; Jian, L.; Phua, L. C.; Ho, H. K.; Ren, Y.; Pastorin, G. Thin Films of Functionalized Multi-Walled Carbon Nanotubes as Suitable Scaffold Materials for Stem Cells Proliferation and Bone Formation. ACS Nano. 2010, 4, 7717–7725. DOI: 10.1021/nn102738c.
  • Lu, M.; Wang, Y. K.; Zhao, J.; Lu, H.; Stenzel, M. H.; Xiao, P. PEG Grafted-Nanodiamonds for the Delivery of Gemcitabine. Macromol. Rapid Commun. 2016, 37, 2023–2029. DOI: 10.1002/marc.201600344.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Salaam, A. D.; Dean, D.; Electrospun Polycaprolactone-Nanodiamond Composite Scaffolds for Bone Tissue Engineering. Proceedings of ASME 2010 first global congress on nano engineering for medicine and biology, N. 2010, Houston, TX, USA. DOI: 10.1115/NEMB2010-13298.
  • Cao, L.; Hou, Y.; Lafdi, K.; Urmey, K. Fluorescent Composite Scaffolds Made Of Nanodiamonds/Polycaprolactone. Chem. Phys. Lett. 2015, 641, 123–128. DOI: 10.1016/j.cplett.2015.10.037.
  • Kim, S. Y.; Hwang, J. Y.; Seo, J. W.; Shin, U. S. Production of CNT-Taxol-Embedded PCL Microspheres using an Ammonium Based Room Temperature Ionic Liquid: As a Sustained Drug Delivery System. J. Coll. Interf. Sci. 2015, 442, 147–153. DOI: 10.1016/j.jcis.2014.11.044.
  • Pan, L.; Pei, X.; He, R.; Wan, Q.; Wang, J. Multiwall Carbon Nanotubes/Polycaprolactone Composites for Bone Tissue Engineering Application. Coll. Surf. B Biointerf. 2012, 93, 226–234. DOI: 10.1016/j.colsurfb.2012.01.011.
  • Pourjavadi, A.; Mazaheri-Tehrani, Z.; Jokar, S. Functionalized Mesoporous Silica-Coated Magnetic Graphene Oxide By Polyglycerol-g-Polycaprolactone with pH-Responsive Behavior: Designed for Targeted and Controlled Doxorubicin Delivery. J. Indus Eng. Chem. 2015, 28, 45–53. DOI: 10.1016/j.jiec.2015.01.021.
  • Ceretti, E.; Ginestra, P. S.; Ghazinejad, M.; Fiorentino, A.; Madou, M. Electrospinning and Characterization of Polymer–Graphene Powder Scaffolds. CIRP Annals – Manufac. Technol. 2017, 66, 233–236. DOI: 10.1016/j.cirp.2017.04.122.
  • Sayyar, S.; Murray, E.; Thompson, B. C.; Gambhir, S.; Officer, D. L.; Wallace, G. G. Covalently Linked Biocompatible Graphene/Polycaprolactone Composites for Tissue Engineering. Carbon 2013, 52, 296–304. DOI: 10.1016/j.carbon.2012.09.031.
  • Alishiri, M.; Shojaei, A.; Abdekhodaie, M. J. Biodegradable Polyurethane Acrylate/HEMA-Grafted Nanodiamond Composites with Bone Regenerative Potential Applications: Structure, Mechanical Properties and Biocompatibility. RSC Adv. 2016, 6, 8743–8755. DOI: 10.1039/C5RA19669H.
  • Das, B.; Chattopadhyay, P.; Mishra, D.; Maiti, T. K.; Maji, S.; Narayan, R.; Karak, N. Nanocomposites of Bio-Based Hyperbranched Polyurethane/Funtionalized MWCNT as Nonimmunogenic, Osteoconductive, Biodegradable and Biocompatible Scaffolds in Bone Tissue Engineering. J. Mater. Chem. B 2013, 1, 4115–4126. DOI: 10.1039/c3tb20693a.
  • Patel, D. K.; Rana, D.; Aswal, V. K.; Srivastava, S.; Roy, P.; Maiti, P. Influence of Graphene on Self-Assembly of Polyurethane and Evaluation of its Biomedical Properties. Polymer 2015, 65, 183–192. DOI: 10.1016/j.polymer.2015.03.076.
  • Shrestha, B. K.; Shrestha, S.; Tiwari, A. P.; Kim, J. I.; Ko, S. W.; Kim, H. J.; Park, C. H. C.; Kim, S. Bio-Inspired Hybrid Scaffold of Zinc Oxide-Functionalized Multi-Wall Carbon Nanotubes Reinforced Polyurethane Nanofibers for Bone Tissue Engineering. Mater. Des. 2017, 133, 69–81. DOI: 10.1016/j.matdes.2017.07.049.
  • Jing, X.; Mi, H. Y.; Salick, M. R.; Peng, X. F.; Turng, L. S. Preparation of Thermoplastic Polyurethane/Graphene Oxide Composite Scaffolds by Thermally Induced Phase Separation. Polym. Compos. 2014, 35, 1408–1417. DOI: 10.1002/pc.22793.
  • Mi, H. Y.; Jing, X.; Salick, M. R.; Cordie, T. M.; Turng, L. S. Carbon Nanotube (CNT) and Nanofibrillated Cellulose (NFC) Reinforcement Effect On Thermoplastic Polyurethane (TPU) Scaffolds Fabricated via Phase Separation using Dimethyl Sulfoxide (DMSO) as Solvent. J. Mech. Behav. Biomed. Mater. 2016, 62, 417–427. DOI: 10.1016/j.jmbbm.2016.05.026.
  • Jing, X.; Mi, H.-Y.; Salick, M. R.; Cordie, T. M.; Peng, X.-F.; Turng, L.-S. Electrospinning Thermoplastic Polyurethane/Graphene Oxide Scaffolds for Small Diameter Vascular Graft Applications. Mater. Sci. Eng. C 2015, 49, 40–50. DOI: 10.1016/j.msec.2014.12.060.
  • Xu, T. O.; Kim, H. S.; Stahl, T.; Nukavarapu, S. P. Self-Neutralizing PLGA/Magnesium Composites as Novel Biomaterials for Tissue Engineering. Biomed. Mater. 2018, 13, 035013. DOI: 10.1088/1748-605X/aaaa29.
  • Hu, Y.; Wu, X.; JinRui, X. Self-Assembled Supramolecular Hydrogels Formed by Biodegradable PLA/CS Diblock Copolymers and β-Cyclodextrin for Controlled Dual Drug Delivery. Inter. J. Biolog. Macromol. 2018, 108, 18–23. DOI: 10.1016/j.ijbiomac.2017.11.104.
  • Zhang, Q.; Mochalin, V. N.; Neitzel, I.; Knoke, I. Y.; Han, J.; Klug, C. A.; Zhou, J. G.; Lelkes, P. I.; Gogotsi, Y. Fluorescent PLLA-Nanodiamond Composites for Bone Tissue Engineering. Biomaterials 2011, 32, 87–94. DOI: 10.1016/j.biomaterials.2010.08.090.
  • Zhang, F.; Song, Q.; Huang, X.; Li, F.; Wang, K.; Tang, Y.; Hou, C.; Shen, H. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering. ACS Appl. Mater. Interf. 2016, 8, 1087–1097. DOI: 10.1021/acsami.5b09394.
  • Zhang, H. Electrospun Poly(Lactic-Co-Glycolic Acid)/Multiwalled Carbon Nanotubes Composite Scaffolds for Guided Bone Tissue Regeneration. J. Bioact. Compat. Polym. 2011, 26, 347–362. DOI: 10.1177/0883911511413450.
  • Angelopoulou, A.; Voulgari, E.; Diamanti, E. K.; Gournis, D.; Avgoustakis, K. Graphene Oxide Stabilized by PLA–PEG Copolymers for the Controlled Delivery of Paclitaxel. Euro. J. Pharma. Biopharma. 2015, 93, 18–26. DOI: 10.1016/j.ejpb.2015.03.022.
  • Zhang, C.; Wang, L.; Zhai, T.; Wang, X.; Dan, Y.; Turng, L. S. The Surface Grafting of Graphene Oxide with Poly(Ethylene Glycol) as a Reinforcement for Poly(Lactic Acid) Nanocomposite Scaffolds for Potential Tissue Engineering Applications. J. Mech. Behav. Biomed. Mater. 2016, 53, 403–413. DOI: 10.1016/j.jmbbm.2015.08.043.
  • Luo, Y.; Shen, H.; Fang, Y.; Cao, Y.; Huang, J.; Zhang, M.; Dai, J.; Shi, X.; Zhang, Z. Enhanced Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells on Graphene Oxide-Incorporated Electrospun Poly (Lactic-Co-Glycolic Acid) Nanofibrous Mats. ACS Appl. Mater. Interf. 2015, 7, 6331–6339. DOI: 10.1021/acsami.5b00862.
  • Wu, H.; Shi, H.; Zhang, H.; Wang, X.; Yang, Y.; Yu, C.; Hao, C.; Du, J.; Hu, H.; Yang, S. Prostate Stem Cell Antigen Antibody-Conjugated Multiwalled Carbon Nanotubes for Targeted Ultrasound Imaging and Drug Delivery. Biomaterials 2014, 35, 5369–5380. DOI: 10.1016/j.biomaterials.2014.03.038.
  • Hu, H.; Ni, Y.; Mandal, S. K.; Montana, V.; Zhao, B.; Haddon, R. C.; Parpura, V. Polyethyleneimine Functionalized Single-Walled Carbon Nanotubes as a Substrate for Neuronal Growth. J. Phys. Chem. B 2005, 109, 4285–4289. DOI: 10.1021/jp0441137.
  • Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs using PEI-Grafted Graphene Oxide. Small 2011, 7, 460–464. DOI: 10.1002/smll.201001522.
  • Weng, Y.; Jiang, B.; Yang, K.; Sui, Z.; Zhang, L.; Zhang, Y. Polyethyleneimine-Modified Graphene Oxide Nanocomposites for Effective Protein Functionalization. Nanoscale 2015, 7, 14284–14291. DOI: 10.1039/C5NR03370E.
  • Zhang, X. Q.; Chen, M.; Lam, R.; Xu, X.; Osawa, E.; Ho, D. Polymer-Functionalized Nanodiamond Platforms as Vehicles for Gene Delivery. ACS Nano. 2009, 3, 2609–2616. DOI: 10.1021/nn900865g.
  • Chen, M.; Zhang, X. Q.; Man, H. B.; Lam, R.; Chow, E. K.; Ho, D. Nanodiamond Vectors Functionalized with Polyethylenimine for siRNA Delivery. J. Phys. Chem. Lett. 2010, 1, 3167–3171. DOI: 10.1021/jz1013278.
  • Shuai, C.; Feng, P.; Gao, C.; Shuai, X.; Xiao, T.; Peng, S. Graphene Oxide Reinforced Poly(Vinyl Alcohol): Nanocomposite Scaffolds for Tissue Engineering Applications. RSC Adv. 2015, 5, 25416–25423. DOI: 10.1039/C4RA16702C.
  • Liu, H. W.; Hu, S. H.; Chen, Y. W.; Chen, S. Y. Characterization and Drug Release Behavior of Highly Responsive Chip-Like Electrically Modulated Reduced Graphene Oxide–Poly(Vinyl Alcohol) Membranes. J. Mater. Chem. 2012, 22, 17311–17320. DOI: 10.1039/c2jm32772d.
  • Salaam, A. D.; Dean, D. Electrospun Polycaprolactone-Nanodiamond Composite Scaffolds for Bone Tissue Engineering. Presented at the ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology, Houston, TX, February 07, 2010.
  • Liao, H.; Qi, R.; Shen, M.; Cao, X.; Guo, R.; Zhang, Y.; Shi, X. Improved Cellular Response on Multiwalled Carbon Nanotube-Incorporated Electrospun Polyvinyl Alcohol/Chitosan Nanofibrous Scaffolds. Coll. Surf. B Biointerf. 2011, 84, 528–535. DOI: 10.1016/j.colsurfb.2011.02.010.
  • Shokrgozar, M. A.; Mottaghitalab, F.; Mottaghitalab, V.; Farokhi, M. Fabrication of Porous Chitosan/Poly(Vinyl Alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering. J. Biomed. Nanotech. 2011, 7, 1–9.
  • Yun, J.; Im, J. S.; Lee, Y. S.; Kim, H. I. Electro-Responsive Transdermal Drug Delivery Behavior of PVA/PAA/MWCNT Nanofibers. Euro. Polym. J. 2011, 47, 1893–1902. DOI: 10.1016/j.eurpolymj.2011.07.024.
  • Zhu, W.; Li, W.; He, Y.; Duan, T. In-Situ Biopreparation of Biocompatible Bacterial Cellulose/Graphene Oxide Composites Pellets. Appl. Surf. Sci. 2015, 338, 22–26. DOI: 10.1016/j.apsusc.2015.02.030.
  • Ramani, D.; Sastry, T. P. Bacterial Cellulose-Reinforced Hydroxyapatite Functionalized Graphene Oxide: A Potential Osteoinductive Composite. Cellulose 2014, 21, 3585–3595. DOI: 10.1007/s10570-014-0313-4.
  • Rajesh, R.; Ravichandran, Y. D. Development of a New Carbon Nanotube–Alginate–Hydroxyapatite Tricomponent Composite Scaffold for Application in Bone Tissue Engineering. Inter. J. Nanomed. 2015, 10, 7–15.
  • Joddar, B.; Garcia, E.; Casas, A.; Stewart, C. M. Development of Functionalized Multi-Walled Carbon-Nanotube Based Alginate Hydrogels for Enabling Biomimetic Technologies. Sci. Rep. 2016, 6, 32456. DOI: 10.1038/srep32456.
  • Kawaguchi, M.; Fukushima, T.; Hayakawa, T.; Nakashima, N.; Inoue, Y.; Takeda, S.; Okamura, K.; Taniguchi, K. Preparation of Carbon Nanotube-Alginate Nanocomposite Gel for Tissue Engineering. Dent. Mater. J. 2006, 25, 719–725. DOI: 10.4012/dmj.25.719.
  • Xiong, G.; Luo, H.; Zuo, G.; Ren, K.; Wan, Y. Novel Porous Graphene Oxide and Hydroxyapatite Nanosheets-Reinforced Sodium Alginate Hybrid Nanocomposites for Medical Applications. Mater. Charac. 2015, 107, 419–425. DOI: 10.1016/j.matchar.2015.07.016.
  • Fan, L.; Ge, H.; Zou, S.; Xiao, Y.; Wen, H.; Li, Y.; Feng, H.; Nie, M. Sodium Alginate Conjugated Graphene Oxide as a New Carrier for Drug Delivery System. Inter. J. Biolog. Macromol. 2016, 93, 582–590. DOI: 10.1016/j.ijbiomac.2016.09.026.
  • Mansoorianfar, M.; Shokrgozar, M. A.; Mehrjoo, M.; Tamjid, E.; Simchi, A. Nanodiamonds for Surface Engineering of Orthopedic Implants: Enhanced Biocompatibility in Human Osteosarcoma Cell Culture. Diam. Related Mater. 2013, 40, 107–114. DOI: 10.1016/j.diamond.2013.10.012.
  • Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small 2011, 7, 1569–1578. DOI: 10.1002/smll.201100191.
  • Sun, Y.; Yang, Q.; Wang, H. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering. J. Funct. Biomater. 2016, 7, 27. DOI: 10.3390/jfb7030027.
  • Dinescu, S.; Ionita, M.; Pandele, A. M.; Galateanu, B.; Iovu, H.; Ardelean, A.; Costache, M.; Hermenean, A. In-Vitro Cytocompatibility Evaluation of Chitosan/Graphene Oxide 3D Scaffold Composites Designed for Bone Tissue Engineering. Bio-Med. Mater. Eng. 2014, 24, 2249–2256. DOI: 10.3233/BME-141037.
  • Nivethaa, E. A. K.; Dhanavel, S.; Narayanan, V.; Stephen, A. Fabrication of Chitosan/MWCNT Nanocomposite as a Carrier for 5-Fluorouracil and a Study of the Cytotoxicity of 5-Fluorouracil Encapsulated Nanocomposite towards MCF-7. Polym. Bull. 2016, 73, 3221–3236. DOI: 10.1007/s00289-016-1651-1.
  • Qin, Y.; Chen, J.; Bi, Y.; Xu, X.; Zhou, H.; Gao, J.; Hu, Y.; Zhao, Y.; Chai, Z. Near-Infrared Light Remote-Controlled Intracellular Anti-Cancer Drug Delivery using Thermo/pH Sensitive Nanovehicle. Acta Biomater. 2015, 17, 201–209. DOI: 10.1016/j.actbio.2015.01.026.
  • Díez-Pascual, A. M.; Díez-Vicente, A. L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interf. 2016, 8, 17902–17914. DOI: 10.1021/acsami.6b05635.
  • Liu, C.; Chan, K. W.; Shen, J.; Liao, C. Z.; Wai, K.; Yeung, K.; Tjong, S. C. Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers. Polymers 2016, 8, 425–439. DOI: 10.3390/polym8120425.
  • Pramanik, N.; De, J.; Basu, R. K.; Rath, T.; Kundu, P. P. Fabrication of Magnetite Nanoparticle Doped Reduced Graphene Oxide Grafted Polyhydroxyalkanoate Nanocomposites for Tissue Engineering Application. RSC Adv. 2016, 6, 46116–46133. DOI: 10.1039/C6RA03233H.
  • Misra, S. K.; Ohashi, F.; Valappil, S. P.; Knowles, J. C.; Roy, I.; Ravi, S.; Silva, P.; Salih, V.; Boccaccini, A. R. Characterization of Carbon Nanotube (MWCNT) Containing P(3HB)/Bioactive Glass Composites for Tissue Engineering Applications. Acta Biomater. 2010, 6, 735–742. DOI: 10.1016/j.actbio.2009.09.023.
  • Barcelos, M. V.; Rodrigues de Almeida Neto, G.; Moreira Almeida, F.; Jesus Sánchez Rodríguez, R.; Gregório Cabrera Gomez, J. Thermo-Mechanical Properties of P(HB-HV) Nanocomposites Reinforced by Nanodiamonds. Mater. Res. 2017, 20, 1–14. DOI: 10.1590/1980-5373-MR-2017-0077.
  • Pan, B.; Cui, D.; Xu, P.; Ozkan, C.; Feng, G.; Ozkan, M.; Huang, T.; Chu, B.; Li, Q.; He, R.; et al. Synthesis and Characterization of Polyamidoamine Dendrimer-Coated Multi-Walled Carbon Nanotubes and Their Application in Gene Delivery Systems. Nanotechnology 2009, 20, 125101. DOI: 10.1088/0957-4484/20/12/125101.
  • Cao, X.; Tao, L.; Wen, S.; Hou, W.; Shi, X. Hyaluronic Acid-Modified Multiwalled Carbon Nanotubes for Targeted Delivery of Doxorubicin into Cancer Cells. Carbohyd. Res. 2015, 405, 70–77. DOI: 10.1016/j.carres.2014.06.030.
  • Lee, E. J.; Lee, J. H.; Shin, Y. C.; Hwang, D. G.; Kim, J. S.; Jin, O. S.; Jin, L.; Hong, S. W.; Han, D. W. Graphene Oxide-Decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds. Biomater. Res. 2014, 18, 18–24.
  • Dolatabadi, J.; Omidi, Y.; Losic, D. Carbon Nanotubes as an Advanced Drug and Gene Delivery Nanosystem. Curr. Nanosci. 2011, 7, 297–314. DOI: 10.2174/157341311795542444.
  • Pattnaik, S.; Swain, K.; Lin, Z. Graphene and Graphene-Based Nanocomposites: Biomedical Applications and Biosafety. J. Mater. Chem. B 2016, 4, 7813–7832. DOI: 10.1039/C6TB02086K.
  • Goenka, S.; Sant, V.; Sant, S. Graphene-Based Nanomaterials for Drug Delivery and Tissue Engineering. J. Contr. Rel. 2014, 173, 75–88. DOI: 10.1016/j.jconrel.2013.10.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.