262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Encapsulation of hemoglobin within mPEG-b-PCL micelle for development of artificial oxygen carrier

, , ORCID Icon, , & ORCID Icon
Pages 816-830 | Received 15 Sep 2020, Accepted 06 Apr 2021, Published online: 13 May 2021

References

  • Williamson, L. M.; Devine, D. V. Blood Transfusion 3 Challenges in the Management of the Blood Supply. Lancet 2013, 381, 1866–1875. DOI: 10.1016/S0140-6736(13)60631-5.
  • Osaro, E.; Charles, A. T. The Challenges of Meeting the Blood Transfusion Requirements in Sub-Saharan Africa: The Need for the Development of Alternatives to Allogenic Blood. J. Blood Med. 2011, 2, 7–21. DOI: 10.2147/JBM.S17194.
  • Scott, M. G.; Kucik, D. F.; Goodnough, L. T.; Monk, T. G. Blood Substitutes: Evolution and Future Applications. Clin. Chem. 1997, 43, 1724–1731. DOI: 10.1093/clinchem/43.9.1724.
  • Moradi, S.; Jahanian-Najafabadi, A.; Roudkenar, M. H. Artificial Blood Substitutes: First Steps on the Long Route to Clinical Utility. Clin. Med. Insights Blood Disord. 2016, 9, 33–41. DOI: 10.4137/CMBD.S38461.
  • Sarkar, S. Artificial Blood. Indian J. Crit. Care Med. 2008, 12, 140–144. DOI: 10.4103/0972-5229.43685.
  • Henkel-Hanke, T.; Oleck, M. Artificial Oxygen Carriers: A Current Review. AANA J. 2007, 75, 205–211. https://www.aana.com/docs/default-source/aana-journal-web-documents-1/henkelhanke205-211f0d337731dff6ddbb37cff0000940c19.pdf?sfvrsn=82c5ab1_6
  • Shah, S. N.; Gelderman, M. P.; Lewis, E. M. A.; Farrel, J.; Wood, F.; Strader, M. B.; Alayash, A. I.; Vostal, J. G. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model. PLoS One 2016, 11, 1–16. DOI: 10.1371/journal.pone.0166657.
  • Hiromi, S.; Shinji, T.; Hiroaki, Y.; Yuriko, S.; Hiroyuki, N.; Eishun, T. Purification of HB Using Organic Solvent and Heat Treatment (Printed). Protein Expr. Purif. 1993, 4, 563–569. https://doi.org/10.1006/prep.1993.1074
  • Chang, T. M. S. From Artificial Red Blood Cells, Oxygen Carriers, and Oxygen Therapeutics to Artificial Cells, Nanomedicine, and beyond. Artif. Cells Blood Substitut. Biotechnol. 2012, 40, 197–199. DOI: 10.3109/10731199.2012.662408.
  • Tsuchida, E.; Sou, K.; Nakagawa, A.; Sakai, H.; Komatsu, T.; Kobayashi, K. Artificial Oxygen Carriers, Hemoglobin Vesicles and Albumin - Hemes, Based on Bioconjugate Chemistry. Bioconjug. Chem. 2009, 20, 1419–1440. DOI: 10.1021/bc800431d.
  • Chen, J.; Scerbo, M.; Kramer, G. A Review of Blood Substitutes: Examining the History, Clinical Trial Results, and Ethics of Hemoglobin-Based Oxygen Carriers. Clinics 2009, 64, 803–814. DOI: 10.1590/S1807-59322009000800016.
  • Toby, S. A: ‘Hemoglobin-Based Oxygen Carriers. Anesthesiology 2009, 111, 946–963. DOI: 10.1097/ALN.0b013e3181ba3c2c.
  • Ness, P. M.; Cushing, M. M. Oxygen Therapeutics: Pursuit of an Alternative to the Donor Red Blood Cell. Arch. Pathol. Lab. Med. 2007, 131, 734–741. DOI: 10.5858/2007-131-734-OTPOAA.
  • Baron, J. Blood Substitutes Haemoglobin Therapeutics in Clinical Practice. Crit. Care 1999, 3, 99–102. DOI: 10.1186/cc365.
  • Taguchi, K.; Yamasaki, K.; Maruyama, T.; Otagiri, M. Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers. J. Funct. Biomater. 2017, 8, 1–18. DOI: 10.3390/jfb8010011.
  • Rameez, S.; Guzman, N.; Banerjee, U.; Fontes, J.; Paulaitis, M. E.; Palmer, A. F.; Patel, R. P.; Honavar, J. Encapsulation of Hemoglobin inside Liposomes Surface Conjugated with Poly(Ethylene Glycol) Attenuates Their Reactions with Gaseous Ligands and Regulates Nitric Oxide Dependent Vasodilation. Biotechnol. Prog. 2012, 28, 636–645. DOI: 10.1002/btpr.1532.
  • Pedro, C.; Rameez, S.; Andre, P. Hemoglobin Encapsulated Poly (Ethylene) Glycol Surface Conjugated Vesicles Attenuates Vasoactivity of Cell-Free Hemoglobin. Curr. Drug Discov. Technol. 2012, 9, 224–234. DOI: 10.2174/157016312802650760.
  • Arifin, D. R.; Palmer, A. F. Polymersome Encapsulated Hemoglobin: A Novel Type of Oxygen Carrier. Biomacromolecules 2005, 6, 2172–2181. DOI: 10.1021/bm0501454.
  • Bu, H.; Xu, X.; Chen, J.; Wang, L. Synthesis of Hemoglobin-Conjugated Triblock Copolymer for Oxygen Carrying and Specific Recognition of Cancer Cells. RSC Adv. 2017, 7, 48166–48175. DOI: 10.1039/c7ra09747f.
  • Qi, Y.; Li, T.; Wang, Y.; Wei, X.; Li, B.; Chen, X.; Xie, Z.; Jing, X.; Huang, Y. Synthesis of the Hemoglobin-Conjugated Polymer Micelles by Thiol Michael Addition Reactions. Macromol. Biosci 2016, 16, 906–913. DOI: 10.1002/mabi.201500460.
  • Li, B.; Li, T.; Chen, G.; Li, X.; Yan, L.; Xie, Z.; Jing, X.; Huang, Y. Regulation of Conjugated Hemoglobin on Micelles through Copolymer Chain Sequences and the Protein’s Isoelectric Aggregation. Macromol. Biosci. 2013, 13, 893–902. DOI: 10.1002/mabi.201300012.
  • Taguchi, K.; Urata, Y.; Anraku, M.; Watanabe, H.; Kadowaki, D.; Sakai, H.; Horinouchi, H.; Kobayashi, K.; Tsuchida, E.; Maruyama, T.; Otagiri, M. Hemoglobin Vesicles, Polyethylene Glycol (PEG)Ylated Liposomes Developed as a Red Blood Cell Substitute, Do Not Induce the Accelerated Blood Clearance Phenomenon in Mice. Drug Metab. Dispos. 2009, 37, 2197–2203. DOI: 10.1124/dmd.109.028852.
  • Shi, Q.; Huang, Y.; Chen, X.; Wu, M.; Sun, J.; Jing, X. Hemoglobin Conjugated Micelles Based on Triblock Biodegradable Polymers as Artificial Oxygen Carriers. Biomaterials 2009, 30, 5077–5085. DOI: 10.1016/j.biomaterials.2009.05.082.
  • Makino, A.; Hara, E.; Hara, I.; Ozeki, E.; Kimura, S. Size Control of Core − Shell-Type Polymeric Micelle with a Nanometer Precision. Langmuir 2013, 30, 669–674. DOI: 10.1021/la404488n..
  • Salmaso, S.; Caliceti, P. Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. J. Drug Deliv. 2013, 2013, 374252. DOI: 10.1155/2013/374252.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; En, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2015, 99, 28–51. DOI: 10.1016/j.addr.2015.09.012.
  • Miller, I. F. Synthetic Red Blood Cells from Lipid Encapsulated Hemoglobin. Chem. Eng. Comm. 1981, 9:1-6, 363 - 370. https://doi.org/10.1080/009864481089110
  • Phillips, W. T.; Klipper, R. W.; Awasthi, V. D.; Rudolph, A. S.; Cliff, R.; Kwasiborski, V.; Goins, B. A. Polyethylene Glycol-Modified Liposome-Encapsulated Hemoglobin: A Long Circulating Red Cell Substitute. Pharmacol. Exp. Ther. 1999, 288, 665–670. DOI: 10.1103/PhysRevB.77.212403.
  • Svergun, D. I.; Ekström, F.; Vandegriff, K. D.; Malavalli, A.; Baker, D. A.; Nilsson, C.; Winslow, R. M. Solution Structure of Poly(Ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle x-Ray Scattering: Implications for a New Oxygen Therapeutic. Biophys. J. 2008, 94, 173–181. DOI: 10.1529/biophysj.107.114314.
  • Allen, C.; Han, J.; Yu, Y.; Maysinger, D.; Eisenberg, A. Polycaprolactone – b-Poly (Ethylene Oxide) Copolymer Micelles as a Delivery Vehicle for Dihydrotestosterone. J. Control. Release 2000, 63, 275–286. DOI: 10.1016/S0168-3659(99)00200-X.
  • Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Salehi, R.; Jelvehgari, M. Preparation and Evaluation of PCL-PEG-PCL Micelles as Potential Nanocarriers for Ocular Delivery of Dexamethasone. Iran. J. Basic Med. Sci. 2018, 21, 153–164. DOI: 10.22038/ijbms.2017.26590.6513.
  • R, B. K. C.; Raj, S.; Aryal, S.; Seob, M.; Dharmaraj, N.; Yong, H. Novel Amphiphilic Triblock Copolymer Based on PPDO, PCL, and PEG: Synthesis, Characterization, and Aqueous Dispersion. Colloid. Surf. 2007, 292, 69–78. DOI: 10.1016/j.colsurfa.2006.06.009.
  • Malikmammadov, E.; Tanir, T. E.; Kiziltay, A.; Hasirci, V. PCL and PCL-Based Materials in Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2017, 29, 863–893. DOI: 10.1080/09205063.2017.1394711.
  • Abedalwafa, M.; Wang, F.; Wang, L.; Li, C. Biodegradable Poly-Epsilon-Caprolactone (PCL) for Tissue Engineering Applications: A Review Biodegradable Poly-Epsilon-Caprolactone (Pcl) for Tissue Engineering Applications: A Review. Rev. Adv. Mater. 2013, 34, 123–140. https://www.ipme.ru/e-journals/RAMS/no_23413/02_23413_abedalwafa.pdf
  • Chen, Y.; Zhang, Y. X.; Wu, Z. F.; Peng, X. Y.; Su, T.; Cao, J.; He, B.; Li, S. Biodegradable Poly(Ethylene Glycol)-Poly(ϵ-Carprolactone) Polymeric Micelles with Different Tailored Topological Amphiphilies for Doxorubicin (DOX) Drug Delivery. RSC Adv. 2016, 6, 58160–58172. DOI: 10.1039/c6ra06040d.
  • Yoon, K.; Kang, H. C.; Li, L.; Cho, H.; Park, M. K.; Lee, E.; Bae, Y. H.; Huh, K. M. Amphiphilic Poly(Ethylene Glycol)-Poly(ε-Caprolactone) AB2 Miktoarm Copolymers for Self-Assembled Nanocarrier Systems: Synthesis, Characterization, and Effects of Morphology on Antitumor Activity. Polym. Chem. 2015, 6, 531–542. DOI: 10.1039/C4PY01380H.
  • Abourehab, M. A. S.; Ahmed, O. A. A.; Balata, G. F.; Almalki, W. H. Self-Assembled Biodegradable Polymeric Micelles to Improve Dapoxetine Delivery across the Blood–Brain Barrier. Int. J. Nanomed. 2018, 13, 3679–3687. DOI: 10.2147/IJN.S168148.
  • Decarolis, D.; Odarchenko, Y.; Herbert, J. J.; Qiu, C.; Longo, A.; Beale, A. M. Identification of the Key Steps in the Self-Assembly of Homogeneous Gold Metal Nanoparticles Produced Using Inverse Micelles. Phys. Chem. Chem. Phys. 2020, 22, 18824–18834. DOI: 10.1039/c9cp03473k.
  • Horvat, G.; Pantić, M.; Knez, Ž.; Novak, Z. Encapsulation and Drug Release of Poorly Water Soluble Nifedipine from Bio-Carriers. J. Non. Cryst. Solids 2018, 481, 486–493. DOI: 10.1016/j.jnoncrysol.2017.11.037.
  • Wais, U.; Jackson, A. W.; He, T.; Zhang, H. Nanoformulation and Encapsulation Approaches for Poorly Water-Soluble Drug Nanoparticles. Nanoscale 2016, 8, 1746–1769. DOI: 10.1039/c5nr07161e.
  • Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Prospects. Acta Pharm. Sin. B 2015, 5, 442–453. DOI: 10.1016/j.apsb.2015.07.003.
  • Tran, T. T. D.; Tran, P. H. L. Nanoconjugation and Encapsulation Strategies for Improving Drug Delivery and Therapeutic Efficacy of Poorly Water-Soluble Drugs. Pharmaceutics 2019, 1, 325. DOI: 10.3390/pharmaceutics11070325.
  • Xu, J.; Chen, Y.; Jiang, X.; Gui, Z.; Zhang, L. Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method. Processes 2019, 7, 331. DOI: 10.3390/pr7060331.
  • Himbert, S.; Alsop, R. J.; Rose, M.; Hertz, L.; Dhaliwal, A.; Moran-Mirabal, J. M.; Verschoor, C. P.; Bowdish, D. M. E.; Kaestner, L.; Wagner, C.; Rheinstädter, M. C. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes. Sci. Rep. 2017, 7, 39661. DOI: 10.1038/srep39661.
  • Hanson, E. K.; Ballantyne, J. A Blue Spectral Shift of the Hemoglobin Soret Band Correlates with the Age (Time since Deposition) of Dried Bloodstains. PLoS One 2010, 5, 1–11. DOI: 10.1371/journal.pone.0012830.
  • Islam, M. S.; Aryasomayajula, A.; Selvaganapathy, P. R. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines 2017, 8, 83. DOI: 10.3390/mi8030083.
  • Cvjetkovic, A.; Lötvall, J.; Lässer, C. The Influence of Rotor Type and Centrifugation Time on the Yield and Purity of Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 23111. DOI: 10.3402/jev.v3.23111.
  • Mohammed, O. F.; Vauthey, E. Simultaneous Generation of Different Types of Ion Pairs upon Charge-Transfer Excitation of a Donor -Acceptor Complex Revealed by Ultrafast Transient Absorption Spectroscopy. J. Phys. Chem. A. 2008, 112, 5804–5809. DOI: 10.1021/jp801004b.
  • Wood, B. R.; McNaughton, D. Raman Excitation Wavelength Investigation of Single Red Blood Cells In Vivo. J. Raman Spectrosc. 2002, 33, 517–523. DOI: 10.1002/jrs.870.
  • Jette, K. K.; Law, D.; Schmitt, E. A.; Kwon, G. S. Preparation and Drug Loading of Poly(Ethylene Glycol)-Block-Poly(ε- Caprolactone) Micelles through the Evaporation of a Cosolvent Azeotrope. Pharm. Res. 2004, 21, 1184–1191. DOI: 10.1023/B:PHAM.0000033005.25698.9c.
  • Erickson, H. P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 2009, 11, 32–51. DOI: 10.1007/s12575-009-9008-x.
  • Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to Improve Micelle Stability for Drug Delivery. Nano. Res. 2018, 11, 4985–4998. DOI: 10.1007/s12274-018-2152-3.
  • Stetefeld, J.; McKenna, S. A.; Patel, T. R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8, 409–427. DOI: 10.1007/s12551-016-0218-6.
  • Owen, S. C.; Chan, D. P. Y.; Shoichet, M. S. Polymeric Micelle Stability. Nano Today 2012, 7, 53–65. DOI: 10.1016/j.nantod.2012.01.002.
  • Kaasalainen, M.; Aseyev, V.; von Haartman, E.; Karaman, D. Ş.; Mäkilä, E.; Tenhu, H.; Rosenholm, J.; Salonen, J. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Res. Lett. 2017, 74, 12. DOI: 10.1186/s11671-017-1853-y.
  • Li, Y.; Lubchenko, V.; Vekilov, P. G. The Use of Dynamic Light Scattering and Brownian Microscopy to Characterize Protein Aggregation. Rev. Sci. Instrum. 2011, 82, 053106. DOI: 10.1063/1.3592581.
  • Sun, Y.; Lan, Y.; Yang, L.; Kong, F.; Du, H.; Feng, C. Preparation of Hemoglobin Imprinted Polymers Based on Graphene and Protein Removal Assisted by Electric Potential. RSC Adv. 2016, 6, 61897–61905. DOI: 10.1039/c6ra04039j.
  • Paul, R.; Paul, S. Synergistic Host–Guest Hydrophobic and Hydrogen Bonding Interactions in the Complexation between Endo-Functionalized Molecular Tube and Strongly Hydrophilic Guest Molecules in Aqueous Solution. Phys. Chem. Chem. Phys. 2018, 20, 16540–16550. DOI: 10.1039/C8CP01502C.
  • A.C, A. Turnovers of Erythrocytes and Plasma Proteins in Mammals. Nature 1960, 188, 37–40. DOI: 10.1038/188037a0.
  • Gong, C.; Xie, Y.; Wu, Q.; Wang, Y.; Deng, S.; Xiong, D.; Liu, L.; Xiang, M.; Qian, Z.; Wei, Y. Improving anti-Tumor Activity with Polymeric Micelles Entrapping Paclitaxel in Pulmonary Carcinoma. Nanoscale 2012, 4, 6004–6017. DOI: 10.1039/c2nr31517c.
  • Wu, Z. X.; Zou, X. Y.; Yang, L. L.; Lin, S.; Fan, J.; Yang, B.; Sun, X. Y.; Wan, Q.; Chen, Y.; Fu, S. Z. Thermosensitive Hydrogel Used in Dual Drug Delivery System with Paclitaxel-Loaded Micelles for in Situ Treatment of Lung Cancer. Colloid. Surf. B Biointerfaces 2014, 122, 90–98. DOI: 10.1016/j.colsurfb.2014.06.052.
  • Liu, Y.; Chang, Y.; Yang, C.; Sang, Z.; Yang, T.; Ang, W.; Ye, W.; Wei, Y.; Gong, C.; Luo, Y. Biodegradable Nanoassemblies of Piperlongumine Display Enhanced Anti-Angiogenesis and Anti-Tumor Activities. Nanoscale 2014, 6, 4325–4337. DOI: 10.1039/c3nr06599e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.