126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of drug loading nanofibrous microsphere scaffolds modified by ethanolamine-modified polylactide

, , & ORCID Icon
Pages 1141-1147 | Received 07 May 2021, Accepted 29 Jun 2021, Published online: 04 Aug 2021

References

  • Holzwarth, J. M.; Ma, P. 3D Nanofibrous Scaffolds for Tissue Engineering. J. Mater. Chem. 2011, 21, 10243–10251. DOI: 10.1039/c1jm10522a.
  • Huang, S.-Y.; Huang, G. The Dextrans as Vehicles for Gene and Drug Delivery. Future Med. Chem. 2019, 11, 1659–1667. DOI: 10.4155/fmc-2018-0586.
  • HuangLiu, G. Y.; Chen, L. Chitosan and Its Derivatives as Vehicles for Drug Delivery. Drug Deliv. 2017, 24, 108–113. DOI: 10.1080/10717544.2017.1399305.
  • Huang, G.; Huang, H. Hyaluronic Acid-Based Biopharmaceutical Delivery and Tumor-Targeted Drug Delivery System. J. Control Rel. 2018, 278, 122–126. DOI: 10.1016/j.jconrel.2018.04.015.
  • Huang, G.; Huang, H. Application of Hyaluronic Acid as Carriers in Drug Delivery. Drug Deliv. 2018, 25, 766–772. DOI: 10.1080/10717544.2018.1450910.
  • Ma, P. X. Scaffolds for Tissue Fabrication. Mater. Today 2004, 7, 30–40. DOI: 10.1016/S1369-7021(04)00233-0.
  • Du, Y.; Chen, X.; Hag Koh, Y.; Lei, B. Facilely Fabricating PCL Nanofibrous Scaffolds with Hierarchical Pore Structure for Tissue Engineering. Mater. Lett. 2014, 122, 62–65. DOI: 10.1016/j.matlet.2014.02.031.
  • Ghomi, H.; Emadi, R.; Javanmard, S. H. Preparation of Nanostructure Bioactive Diopside Scaffolds for Bone Tissue Engineering by Two near Net Shape Manufacturing Techniques. Mater. Lett. 2016, 167, 157–160. DOI: 10.1016/j.matlet.2015.12.161.
  • Dippold, D.; Tallawi, M.; Tansaz, S.; Roether, J. A.; Boccaccini, A. R. Novel Electrospun Poly (Glycerol Sebacate)–Zein Fiber Mats as Candidate Materials for Cardiac Tissue Engineering. Eur. Polym. J. 2016, 75, 504–513. DOI: 10.1016/j.eurpolymj.2015.12.030.
  • Rahman, R. A.; Sukri, N. M.; Nazir, N. M. The Potential of 3-Dimensional Construct Engineered from Poly(Lactic-co-Glycolic Acid)/Fibrin Hybrid Scaffold Seeded with Bone Marrow Mesenchymal Stem Cells for in Vitro Cartilage Tissue Engineering. Tissue Cell 2015, 47, 420–430. DOI: 10.1016/j.tice.2015.06.001.
  • Yazdanpanah, A.; Tahmasbi, M.; Amoabediny, G.; Nourmohammadi, J.; Moztarzadeh, F.; Mozafari, M. Fabrication and Characterization of Electrospun poly-L-Lactide/Gelatin Graded Tubular Scaffolds: Toward a New Design for Performance Enhancement in Vascular Tissue Engineering. Progr. Nat. Sci. 2015, 25, 405–413. DOI: 10.1016/j.pnsc.2015.09.009.
  • Emmert, M. Y.; Hitchcock, R. W.; Hoerstrup, S. P. Cell Therapy, 3D Culture Systems and Tissue Engineering for Cardiac Regeneration. Adv. Drug Deliv. Rev. 2014, 69–70, 254–269. DOI: 10.1016/j.addr.2013.12.004.
  • Pilipchuk, S. P.; Plonka, A. B.; Monje, A.; Taut, A. D.; Lanis, A.; Kang, B.; Giannobile, W. V. Tissue Engineering for Bone Regeneration and Osseointegration in the Oral Cavity. Dent. Mater. 2015, 31, 317–338. DOI: 10.1016/j.dental.2015.01.006.
  • Cheng, T.-Y.; Chen, M.-H.; Chang, W.-H.; Huang, M.-Y.; Wang, T.-W. Neural Stem Cells Encapsulated in a Functionalized Self-Assembling Peptide Hydrogel for Brain Tissue Engineering. Biomaterials 2013, 34, 2005–2016. DOI: 10.1016/j.biomaterials.2012.11.043.
  • Liu, Q.; Tian, S.; Zhao, C.; Chen, X.; Lei, I.; Wang, Z.; Ma, P. X. Porous Nanofibrous Poly(L-Lactic Acid) Scaffolds Supporting Cardiovascular Progenitor Cells for Cardiac Tissue Engineering. Acta Biomater. 2015, 26, 105–114. DOI: 10.1016/j.actbio.2015.08.017.
  • Lou, T.; Wang, X.; Song, G.; Gu, Z.; Yang, Z. Fabrication of PLLA/β-TCP Nanocomposite Scaffolds with Hierarchical Porosity for Bone Tissue Engineering. Int. J. Biol. Macromol. 2014, 69, 464–470. DOI: 10.1016/j.ijbiomac.2014.06.004.
  • Huang, R.; Zhu, X.; Tu, H.; Wan, A. The Crystallization Behavior of Porous Poly(Lactic Acid) Prepared by Modified Solvent Casting/Particulate Leaching Technique for Potential Use of Tissue Engineering Scaffold. Mater. Lett. 2014, 136, 126–129. DOI: 10.1016/j.matlet.2014.08.044.
  • Ju, D.; Han, L.; Li, Z.; Chen, Y.; Wang, Q.; Bian, J.; Dong, L. Porous Poly(l-Lactic Acid) Sheet Prepared by Stretching with Starch Particles as Filler for Tissue Engineering. Carbohydr. Polym. 2016, 142, 222–229. DOI: 10.1016/j.carbpol.2016.01.038.
  • Mi, H.-Y.; Salick, M. R.; Jing, X.; Jacques, B. R.; Crone, W. C.; Peng, X.-F.; Turng, L.-S. Characterization of Thermoplastic Polyurethane/Polylactic Acid (TPU/PLA) Tissue Engineering Scaffolds Fabricated by Microcellular Injection Molding. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4767–4776. DOI: 10.1016/j.msec.2013.07.037.
  • Nishida, Y.; Domura, R.; Sakai, R.; Okamoto, M.; Arakawa, S.; Ishiki, R.; Salick, M. R.; Turng, L.-S. Fabrication of PLLA/HA Composite Scaffolds Modified by DNA. Polymer 2015, 56, 73–81. DOI: 10.1016/j.polymer.2014.09.063.
  • Ly, H. B.; Le Droumaguet, B.; Monchiet, V.; Grande, D. Tailoring Doubly Porous Poly (2-Hydroxyethyl Methacrylate)-Based Materials via Thermally Induced Phase Separation. Polymer 2016, 86, 138–146. DOI: 10.1016/j.polymer.2016.01.064.
  • Zhao, J.; Han, W.; Tu, M.; Huan, S.; Zeng, R.; Wu, H.; Cha, Z.; Zhou, C. Preparation and Properties of Biomimetic Porous Nanofibrous Poly(l-Lactide) Scaffold with Chitosan Nanofiber Network by a Dual Thermally Induced Phase Separation Technique. Mater. Sci. Eng. C. Mater. Biol. Appl. 2012, 32, 1496–1502. DOI: 10.1016/j.msec.2012.04.031.
  • Molladavoodi, S.; Gorbet, M.; Medley, J.; Kwon, H. J. Investigation of Microstructure, Mechanical Properties and Cellular Viability of Poly(L-Lactic Acid) Tissue Engineering Scaffolds Prepared by Different Thermally Induced Phase Separation Protocols. J. Mech. Behav. Biomed. Mater. 2013, 17, 186–197. DOI: 10.1016/j.jmbbm.2012.08.021.
  • Zhang, H.; Liu, X.; Yang, M.; Zhu, L. Silk Fibroin/Sodium Alginate Composite Nano-Fibrous Scaffold Prepared through Thermally Induced Phase-Separation (TIPS) Method for Biomedical Applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 55, 8–13. DOI: 10.1016/j.msec.2015.05.052.
  • Liu, S.; He, Z.; Xu, G.; Xiao, X. Fabrication of Polycaprolactone Nanofibrous Scaffolds by Facile Phase Separation Approach. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014, 44, 201–208. DOI: 10.1016/j.msec.2014.08.012.
  • Siqueira, N. M.; Paiva, B.; Camassola, M.; Rosenthal-Kim, E. Q.; Garcia, K. C.; dos Santos, F. P.; Soares, R. M. D. Gelatin and Galactomannan-Based Scaffolds: Characterization and Potential for Tissue Engineering Applications. Carbohydr. Polym. 2015, 133, 8–18. DOI: 10.1016/j.carbpol.2015.06.039.
  • Sharifi, E.; Azami, M.; Kajbafzadeh, A.-M.; Moztarzadeh, F.; Faridi-Majidi, R.; Shamousi, A.; Karimi, R.; Ai, J. Preparation of a Biomimetic Composite Scaffold from Gelatin/Collagen and Bioactive Glass Fibers for Bone Tissue Engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 59, 533–541. DOI: 10.1016/j.msec.2015.09.037.
  • Sudheesh Kumar, P. T.; Srinivasan, S.; Lakshmanan, V.-K.; Tamura, H.; Nair, S. V.; Jayakumar, R. β-Chitin Hydrogel/Nano Hydroxyapatite Composite Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2011, 85, 584–591. DOI: 10.1016/j.carbpol.2011.03.018.
  • Kim, H.-L.; Jung, G.-Y.; Yoon, J.-H.; Han, J.-S.; Park, Y.-J.; Kim, D.-G.; Zhang, M.; Kim, D.-J. Preparation and Characterization of Nano-Sized Hydroxyapatite/Alginate/Chitosan Composite Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 54, 20–25. DOI: 10.1016/j.msec.2015.04.033.
  • Kanimozhi, K.; Basha, S. K.; Kumari, V. S. Processing and Characterization of Chitosan/PVA and Methylcellulose Porous Scaffolds for Tissue Engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 61, 484–491. DOI: 10.1016/j.msec.2015.12.084.
  • Zhao, J.; Han, W.; Chen, H.; Tu, M.; Zeng, R.; Shi, Y.; Cha, Z.; Zhou, C. Preparation, Structure and Crystallinity of Chitosan Nano-Fibers by a Solid–Liquid Phase Separation Technique. Carbohydr. Polym. 2011, 83, 1541–1546. DOI: 10.1016/j.carbpol.2010.10.009.
  • Teimouri, A.; Azadi, M.; Emadi, R.; Lari, J.; Chermahini, A. N. Preparation, Characterization, Degradation and Biocompatibility of Different Silk Fibroin Based Composite Scaffolds Prepared by Freeze-Drying Method for Tissue Engineering Application. Polym. Degrad. Stab. 2015, 121, 18–29. DOI: 10.1016/j.polymdegradstab.2015.08.004.
  • Elomaa, L.; Teixeira, S.; Hakala, R.; Korhonen, H.; Grijpma, D. W.; Seppälä, J. V. Preparation of Poly(ε-Caprolactone)-Based Tissue Engineering Scaffolds by Stereolithography. Acta Biomater. 2011, 7, 3850–3856. DOI: 10.1016/j.actbio.2011.06.039.
  • Declercq, H. A.; Desmet, T.; Berneel, E. E. M.; Dubruel, P.; Cornelissen, M. J. Synergistic Effect of Surface Modification and Scaffold Design of Bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater. 2013, 9, 7699–7708. DOI: 10.1016/j.actbio.2013.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.