388
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Poly(N-isopropylacrylamide) based pH- and temperature-sensitive ampholytic hydrogels with tunable mechanical, swelling and drug release properties

&
Pages 1148-1163 | Received 23 Mar 2021, Accepted 22 Jul 2021, Published online: 20 Aug 2021

References

  • Dwivedi, R.; Kumar Singh, A.; Dhillon, A.-K. A. pH-Responsive Drug Release from dependal-M Loaded Polyacrylamide Hydrogels. J. Sci. Adv. Mater. Devices. 2017, 2, 45–50. DOI: 10.1016/j.jsamd.2017.02.003.
  • Lanzalaco, S.; Armelin, E. Poly(N-Isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017, 3, 36. DOI: 10.3390/gels3040036.
  • Aydınoğlu, D. Investigation of pH-Dependent Swelling Behavior and Kinetic Parameters of Novel Poly(Acrylamide-co-Acrylic Acid) Hydrogels with Spirulina. e-Polymers 2015, 15, 81–93. DOI: 10.1515/epoly-2014-0170.
  • Lipp, L.; Sharma, D.; Banerjee, A.; Singh, J. In Vitro and In Vivo Optimization of Phase Sensitive Smart Polymer for Controlled Delivery of Rivastigmine for Treatment of Alzheimer’s Disease. Pharm. Res. 2020, 37, 1–12. DOI: 10.1007/s11095-020-2757-6.
  • Sharma, D.; Arora, S.; Singh, J. Smart Thermosensitive Copolymer Incorporating Chitosan–Zinc–Insulin Electrostatic Complexes for Controlled Delivery of Insulin: Effect of Chitosan Chain Length. Int. J Polym Mater Polym Biomater 2020, 69, 1054–1068. DOI: 10.1080/00914037.2019.1655750.
  • Chen, Y.; Gao, Y.; da Silva, L. P.; Pirraco, R. P.; Ma, M.; Yang, L.; Reis, R. L.; Chen, J. A Thermo-/pH-Responsive Hydrogel (PNIPAM-PDMA-PAA) with Diverse Nanostructures and Gel Behaviors as a General Drug Carrier for Drug Release. Polym. Chem. 2018, 9, 4063–4072. DOI: 10.1039/C8PY00838H.
  • Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Drug Delivery Stimuli-Responsive Hydrogels in Drug Delivery and Tissue Engineering Stimuli-Responsive Hydrogels in Drug Delivery and Tissue Engineering. Drug Deliv. 2016, 23, 748–770. DOI: 10.3109/10717544.2014.940091.
  • Schmaljohann, D. Thermo- and pH-Responsive Polymers in Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. DOI: 10.1016/j.addr.2006.09.020.
  • Almeida, H.; Amaral, M.-H.; Lobão, P. Temperature and pH Stimuli-Responsive Polymers and Their Applications in Controlled and Selfregulated Drug Delivery. J. Appl. Pharm. Sci. 2012, 2, 01–10.
  • Gürdağ, G.; Çavuş, S. Synthesis and Swelling Behavior of Poly(2-Dimethylaminoethyl Methacrylate-co-N-Hydroxymethyl Acrylamide) Hydrogels. Polym. Adv. Technol. 2006, 17, 878–883. DOI: 10.1002/pat.846.
  • Mishra, R.-K.; Ray, A.-R. Synthesis and Characterization of Poly{N-[3-(Dimethylamino) Propyl] Methacrylamide-co-Itaconic Acid} Hydrogels for Drug Delivery. J. Appl. Polym. Sci. 2011, 119, 3199–3206. DOI: 10.1002/app.32833.
  • Das, A.; Ray, A.-R. Synthesis and Characterization of Poly(Acrylic Acid-co-N-[3-(Dimethylamino)Propyl]-Methacrylamide) Hydrogel Membranes for Biomedical Applications. J. Appl. Polym. Sci. 2008, 108, 1273–1280. DOI: 10.1002/app.27665.
  • Das, A.; Mehndiratta, M.; Chattopadhyay, P.; Ray, A.-R. Prolonged Zero-Order BSA Release from pH-Sensitive Hydrogels of Poly(AAc- co -DMAPMA) Having Rich Nano through Micro Scale Morphology. J. Appl. Polym. Sci. 2010, 115, 393–403. DOI: 10.1002/app.30968.
  • Gao, Y.; Ahiabu, A.; Serpe, M.-J. Controlled Drug Release from the Aggregation-Disaggregation Behavior of pH-Responsive Microgels. ACS Appl. Mater. Interfaces 2014, 6, 13749–13756. DOI: 10.1021/am503200p.
  • Erbil, C.; Kazancıoğlu, E.; Uyanık, N. Synthesis, Characterization and Thermoreversible Behaviours of Poly(Dimethyl Siloxane)/Poly(N-Isopropyl Acrylamide) Semi-Interpenetrating Networks. Eur. Polym. J. 2004, 40, 1145–1154. DOI: 10.1016/j.eurpolymj.2003.12.024.
  • Erbil, C.; Kazancioǧlu, E.; Uyanik, N. Effects of Synthesis-Solvent Composition and Initiator Concentration on the Swelling Behaviour of Poly(N-Isopropylacrylamide) P(NIPAAM), Poly(NIPAAM-co-Dimethyl Itaconate), and Poly(NIPAAM-co Itaconic Acid) Gels. Polym. Int. 2000, 49, 795–800. DOI: 10.1002/1097-0126(200007)49:7<795::AID-PI457>3.0.CO;2-9.
  • Hashmi, S.; Ghavaminejad, A.; Obiweluozor, F.-O.; Vatankhah-Varnoosfaderani, M.; Stadler, F.-J. Supramolecular Interaction Controlled Diffusion Mechanism and Improved Mechanical Behavior of Hybrid Hydrogel Systems of Zwitterions and Cnt. Macromolecules. 2012, 45, 9804–9815. DOI: 10.1021/ma301366h.
  • Velada, J.-L.; Liu, Y.; Huglin, M.-B. Effect of pH on the Swelling Behaviour of Hydrogels Based on N-Isopropylacrylamide with Acidic Comonomers. Macromol. Chem. Phys. 1998, 199, 1127–1134. DOI: 10.1002/(SICI)1521-3935(19980601)199:6<1127::AID-MACP1127>3.0.CO;2-9.
  • Park, T.-G. Temperature Modulated Protein Release from pH/Temperature-Sensitive Hydrogels. Biomaterials. 1999, 20, 517–521. DOI: 10.1016/s0142-9612(98)00197-5.
  • Bokias, G.; Hourdet, D.; Iliopoulos, I. Positively Charged Amphiphilic Polymers Based on Poly(N-Isopropylacrylamide): Phase Behavior and Shear-Induced Thickening in Aqueous Solution. Macromolecules. 2000, 33, 2929–2935. DOI: 10.1021/ma991409f.
  • Ninni, L.; Ermatchkov, V.; Hasse, H.; Maurer, G. Influence of Salt and pH on the Swelling Equilibrium of Ionizable NIPAAm Based Hydrogels: Experimental Results and Modeling. In Progress in Colloid and Polymer Science. Springer Verlag: Switzerland, 2013; pp 163–173.
  • Zhang, C.; Easteal, A.-J. Study of Poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid) Hydrogels Made Using Gamma Radiation Initiation. J. Appl. Polym. Sci. 2003, 89, 1322–1330. DOI: 10.1002/app.12246.
  • Fei, R.; George, J.-T.; Park, J.; Means, A.-K.; Grunlan, M.-A. Ultra-Strong Thermoresponsive Double Network Hydrogels. Soft Matter. 2013, 9, 2912–2919. DOI: 10.1039/c3sm27226e.
  • Gao, L.; Sun, Y.; Zhang, W.; Li, D.; Hou, C.; Liu, Y. Mechanical Behavior of a Terpolymer-Based pH- and Temperature-Responsive Hydrogel. J. Polym. Res. 2015, 22, 1–9. DOI: 10.1007/s10965-015-0858-4.
  • Tamagawa, H.; Nogata, F.; Watanabe, T.; Abe, A.; Jin, J.-Y.; Popovic, S.; Taya, M. Reversible Hardness Variance as a Commonly Observable Phenomenon for Various Amphoteric Gels. JSME Int. J. Ser. A. 2002, 45, 579–584. DOI: 10.1299/jsmea.45.579.
  • Hazer, O.; Soykan, C.; Kartal, S. Synthesis and Swelling Behavior Analysis of Poly(Acrylamidoxime-co-2- Acrylamido-2-Methylpropane Sulfonic Acid) Hydrogels. J. Macromol. Sci. Part A Pure Appl. Chem. 2007, 45, 45–51. DOI: 10.1080/10601320701683223.
  • Ermatchkov, V.; Ninni, L.; Maurer, G. Thermodynamics of Phase Equilibrium for Systems Containing N-Isopropyl Acrylamide Hydrogels. Fluid Phase Equilib. 2010, 296, 140–148. DOI: 10.1016/j.fluid.2010.03.014.
  • Patel, T.; Ghosh, G.; Yusa, S. i.; Bahadur, P. Solution Behavior of Poly(n-Isopropylacrylamide) in Water: Effect of Additives. J. Dispers. Sci. Technol. 2011, 32, 1111–1118. DOI: 10.1080/01932691.2010.497701.
  • Bischofberger, I.; Calzolari, D.-C.-E.; De Los Rios, P.; Jelezarov, I.; Trappe, V. Hydrophobic Hydration of Poly-N-Isopropyl Acrylamide: A Matter of the Mean Energetic State of Water. Sci. Rep. 2014, 4, 4377–4377. DOI: 10.1038/srep04377.
  • Kitano, H.; Nagaoka, K.; Tada, S.; Gemmei-Ide, M. Structure of Water in the Vicinity of Amphoteric Polymers as Revealed by Raman Spectroscopy. J. Colloid Interface Sci. 2007, 313, 461–468. DOI: 10.1016/j.jcis.2007.05.009.
  • Kitano, H.; Imai, M.; Sudo, K.; Ide, M. Hydrogen-Bonded Network Structure of Water in Aqueous Solution of Sulfobetaine Polymers. J. Phys. Chem. B. 2002, 106, 11391–11396. DOI: 10.1021/jp020185r.
  • Zhang, Y.; Cremer, P.-S. Interactions between Macromolecules and Ions: The Hofmeister Series. Vol. 10, Current Opinion in Chemical Biology. Curr. Opin. Chem. Biol. 2006, 10, 658–663. DOI: 10.1016/j.cbpa.2006.09.020.
  • Peppas, N.-A.; Sahlin, J.-J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. DOI: 10.1016/0378-5173(89)90306-2.
  • Burschi, M.-L. Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems. Woodhead Publishing: England, 2015; pp 63–86.
  • Machín, R.; Isasi, J.-R.; Vélaz, I. Hydrogel Matrices Containing Single and Mixed Natural Cyclodextrins. Mechanisms of Drug Release. Eur. Polym. J. 2013, 49, 3912–3920. DOI: 10.1016/j.eurpolymj.2013.08.020.
  • Brazel, C.-S.; Peppas, N.-A. Mechanisms of Solute and Drug Transport in Relaxing, Swellable, Hydrophilic Glassy Polymers. Polymer. 1999, 40, 3383–3398. DOI: 10.1016/S0032-3861(98)00546-1.
  • Baggi, R.-B.; Kilaru, N.-B. Calculation of Predominant Drug Release Mechanism Using Peppas-Sahlin Model, Part-I (Substitution Method): A Linear Regression Approach. Asian J. Pharm. Technol. 2016, 6, 223. DOI: 10.5958/2231-5713.2016.00033.7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.