313
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Polygonatum polysaccharide modified montmorillonite/chitosan/glycerophosphate composite hydrogel for bone tissue engineering

, , , , , , , , , , , & ORCID Icon show all
Pages 1176-1187 | Received 23 Apr 2021, Accepted 22 Jul 2021, Published online: 24 Aug 2021

References

  • Stolzing, A.; Jones, E.; McGonagle, D.; Scutt, A. Age-Related Changes in Human Bone Marrow-Derived Mesenchymal Stem Cells: Consequences for Cell Therapies Mechanisms of Ageing and Development. Mech. Ageing Dev. 2008, 129, 163–173. DOI: 10.1016/j.mad.2007.12.002.
  • Tripathi, A.; Saravanan, S.; Pattnaik, S.; Moorthi, A.; Partridge, N. C.; Selvamurugan, N. Bio-Composite Scaffolds Containing Chitosan/Nano-Hydroxyapatite/Nano-Copper-Zinc for Bone Tissue Engineering. Int. J. Biol. Macromol. 2012, 50, 294–299. DOI: 10.1016/j.ijbiomac.2011.11.013.
  • Kondiah, P. J.; Choonara, Y. E.; Kondiah, P. P. D.; Marimuthu, T.; Kumar, P.; Du Toit, L. C.; Pillay, V. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules. 2016, 21, 1580. DOI: 10.3390/molecules21111580.
  • Li, J.; Chen, G.; Xu, X.; Abdou, P.; Jiang, Q.; Shi, D.; Gu, Z. Advances of Injectable Hydrogel-Based Scaffolds for Cartilage Regeneration. Regen. Biomater. 2019, 6, 129–140. DOI: 10.1093/rb/rbz022.
  • Saravanan, S.; Vimalraj, S.; Thanikaivelan, P.; Banudevi, S.; Manivasagam, G. A Review on Injectable Chitosan/Beta Glycerophosphate Hydrogels for Bone Tissue Regeneration. Int. J. Biol. Macromol. 2019, 121, 38–54. DOI: 10.1016/j.ijbiomac.2018.10.014.
  • Guo, J. L.; Kim, Y. S.; Mikos, A. G. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies. Biomacromolecules. 2019, 20, 2904–2912. DOI: 10.1021/acs.biomac.9b00792.
  • Ramesh, N.; Alka, A. M. Biodegradable and Biocompatible Temperature Sensitive Triblock Copolymer Hydrogels as Draw Agents for Forward Osmosis. Sep. Purif. Technol. 2016, 168, 83–92.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. DOI: 10.1016/S0939-6411(03)00161-9.
  • Supper, S.; Anton, N.; Seidel, N.; Riemenschnitter, M.; Curdy, C.; Vandamme, T. Thermosensitive Chitosan/Glycerophosphate-Based Hydrogel and Its Derivatives in Pharmaceutical and Biomedical Applications. Expert Opin. Drug Deliv. 2014, 11, 249–267. DOI: 10.1517/17425247.2014.867326.
  • Demir, A. K.; Elçin, A. E.; Elçin, Y. M. Strontium-Modified Chitosan/Montmorillonite Composites as Bone Tissue Engineering Scaffold[J]. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 89, 8–14. DOI: 10.1016/j.msec.2018.03.021.
  • Ali, A.; Bano, S.; Poojary, S. S.; Kumar, D.; Negi, Y. S. Effect of Incorporation of Montmorillonite on Xylan/Chitosan Conjugate Scaffold. Colloids Surf. B Biointerfaces. 2019, 180, 75–82. DOI: 10.1016/j.colsurfb.2019.04.032.
  • Mauro, N.; Chiellini, F.; Bartoli, C.; Gazzarri, M.; Laus, M.; Antonioli, D.; Griffiths, P.; Manfredi, A.; Ranucci, E.; Ferruti, P.; et al. RGD-Mimic Polyamidoamine-Montmorillonite Composites with Tunable Stiffness as Scaffolds for Bone Tissue-Engineering Applications. J. Tissue Eng. Regen. Med. 2017, 11, 2164–2175. DOI: 10.1002/term.2115.
  • De Witte, T.-M.; Fratila-Apachitei, L. E.; Zadpoor, A. A.; Peppas, N. A. Bone Tissue Engineering via Growth Factor Delivery: From Scaffolds to Complex Matrices. Regen. Biomater. 2018, 5, 197–211. DOI: 10.1093/rb/rby013.
  • Li-Hua, C.; Wei-Dong, L.; Jing, Y.; Jia-Qi, Z.; Ying, Q.; Zhi-Bin, L. Ganoderma Lucidum Polysaccharides Accelerated IEC-6 Proliferation, Migration and Differentiation. Chinese Pharm J 2009, 44, 270–273.
  • Yongli, N.; Shuying, L.; Haixia, D. Experimental Study on Angelica Polysaccharide Promoting Angiogenesis of Chicken Chorioallantoic Membrane. Gansu J. TCM 2009, 22, 71–72.
  • Sanyasi, S.; Kumar, S.; Ghosh, A.; Majhi, R. K.; Kaur, N.; Choudhury, P.; Singh, U. P.; Goswami, C.; Goswami, L. A Modified Polysaccharide‐Based Hydrogel for Enhanced Osteogenic Maturation and Mineralization Independent of Differentiation Factors. Macromol. Biosci. 2017, 17, 1600268. DOI: 10.1002/mabi.201600268.
  • Gao-feng, Z.; Zhi-yong, Z.; Li, L.; De-qiang, X.; Shao-hui, Z.; Chun-xiang, X.; Yu-xi Z. Effect of polygonatum polysaccharide on bone metabolism cytokines in osteoporotic fracture rats. Chinese Journal of Tissue Engineering Research 2011, 15, 6199–6202.
  • Tian, D.; Wu, X.; Liu, C.; Xie, H.-Q. Synthesis and Flocculation Behavior of Cationic Konjac Glucomannan Containing Quaternary Ammonium Substituents. J. Appl. Polym. Sci. 2010, 115, 2368–2374. DOI: 10.1002/app.31170.
  • Guo, J.; Song, Y.; Ji, X.; Ji, L.; Cai, L.; Wang, Y.; Zhang, H.; Song, W. Preparation and Characterization of Nanoporous Activated Carbon Derived from Prawn Shell and Its Application for Removal of Heavy Metal Ions. Materials 2019, 12, 241. DOI: 10.3390/ma12020241.
  • Yan, J.; Wang, Y.; Zhang, X.; Zhao, X.; Ma, J.; Pu, X.; Wang, Y.; Ran, F.; Wang, Y.; Leng, F.; et al. Snakegourd Root/Astragalus Polysaccharide Hydrogel Preparation and Application in 3D Printing. Int. J. Biol. Macromol. 2019, 121, 309–316. DOI: 10.1016/j.ijbiomac.2018.10.008.
  • Pu, X.; Li, X.; Zhang, W.; Wang, X.; Li, H.; Li, H.; Xu, W. Preparation of Chitosan/Safflower and Ligusticum wallichii Polysaccharides Hydrogel for Potential Application in Drug Delivery and Tissue Engineering. J. Mater. Res. 2017, 32, 2719–2727. DOI: 10.1557/jmr.2017.255.
  • Zhang, W.; Wang, X.; Ma, J.; Zhao, L.; Yang, C.; Wang, K.; Pu, X.; Wang, Y.; Ran, F.; Wang, Y.; et al. Preparation of Chitosan/Pumpkin Polysaccharide Hydrogel for Potential Application in Drug Delivery and Tissue Engineering. J. Porous Mater. 2017, 24, 497–506. DOI: 10.1007/s10934-016-0285-x.
  • Cong, Z.; Shi, Y.; Peng, X.; Wei, B.; Wang, Y.; Li, J.; Li, J.; Li, J. Design and Optimization of Thermosensitive Nanoemulsion Hydrogel for Sustained-Release of Praziquantel. Drug Dev Ind Pharm 2017, 43, 558–573. DOI: 10.1080/03639045.2016.1270960.
  • Li, X.; Weng, Y.; Kong, X.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Wang, X.; Chen, H. A Covalently Crosslinked Polysaccharide Hydrogel for Potential Applications in Drug Delivery and Tissue Engineering. J. Mater. Sci. Mater. Med. 2012, 23, 2857–2865. DOI: 10.1007/s10856-012-4757-5.
  • Sun, K.; Nian, Z.; Xu, C.; Li, R.; Li, H. Preparation and Performance of Silk Fibroin Blended with Collagen. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014, 28, 903–908.
  • Liu, Z.; Huang, H. Preparation and Characterization of Cellulose Composite Hydrogels from Tea Residue and Carbohydrate Additives. Carbohydr. Polym. 2016, 147, 226–233. DOI: 10.1016/j.carbpol.2016.03.100.
  • Chun, Y. Y.; Wang, J. K.; Tan, N. S.; Chan, P. P. Y.; Tan, T. T. Y.; Choong, C. A Periosteum-Inspired 3D Hydrogel-Bioceramic Composite for Enhanced Bone Regeneration . Macromol. Biosci. 2016, 16, 276–287. DOI: 10.1002/mabi.201500258.
  • Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J.; Dong, W. A Novel Thermo-Responsive Hydrogel Based on Salecan and Poly(N-isopropylacrylamide): Synthesis and Characterization . Colloids Surf B Biointerfaces 2015, 125, 1–11. DOI: 10.1016/j.colsurfb.2014.10.057.
  • Bergaya, F.; Theng, B. K. G.; Lagaly, G. Modified Clays and Clay Minerals[M]//Developments in Clay Science. Elsevier 2006, 1, 261.
  • He, H.; Ma, L.; Zhu, J.; Frost, R. L.; Theng, B. K. G.; Bergaya, F. Synthesis of Organoclays: A Critical Review and Some Unresolved Issues. Appl. Clay Sci. 2014, 100, 22–28. DOI: 10.1016/j.clay.2014.02.008.
  • Panahi, Y.; Gharekhani, A.; Hamishehkar, H.; Zakeri-Milani, P.; Gharekhani, H. Stomach-Specific Drug Delivery of Clarithromycin Using a Semi Interpenetrating Polymeric Network Hydrogel Made of Montmorillonite and Chitosan: Synthesis, Characterization and in Vitro Drug Release Study. Adv. Pharm. Bull. 2019, 9, 159–173. DOI: 10.15171/apb.2019.019.
  • Zhang, J.; Wang, L.; Wang, A. Preparation and Properties of Chitosan-g-Poly (Acrylic Acid)/Montmorillonite Superabsorbent Nanocomposite via In Situ Intercalative Polymerization. Ind. Eng. Chem. Res. 2007, 46, 2497–2502. DOI: 10.1021/ie061385i.
  • Qin, H.; Wang, J.; Wang, T.; Gao, X.; Wan, Q.; Pei, X. Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide. Front. Chem. 2018, 6, 565. DOI: 10.3389/fchem.2018.00565.
  • Zhou, H. Y.; Jiang, L. J.; Cao, P. P.; Li, J. B.; Chen, X. G. Glycerophosphate-Based Chitosan Thermosensitive Hydrogels and Their Biomedical Applications. Carbohydr. Polym. 2015, 117, 524–536. DOI: 10.1016/j.carbpol.2014.09.094.
  • Neufeld, L.; Bianco-Peled, H. Designing a Biocompatible Hydrogel for the Delivery of Mesalamine. Int. J. Pharm. 2015, 491, 170–179. DOI: 10.1016/j.ijpharm.2015.06.026.
  • Liu, K.-H.; Liu, T.-Y.; Chen, S.-Y.; Liu, D.-M. Drug Release Behavior of Chitosan-Montmorillonite Nanocomposite Hydrogels Following Electrostimulation. Acta Biomater. 2008, 4, 1038–1045. DOI: 10.1016/j.actbio.2008.01.012.
  • Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly (N, N-Dimethylacrylamide) and Clay. Macromolecules. 2003, 36, 5732–5741. DOI: 10.1021/ma034366i.
  • García-Villén, F.; Faccendini, A.; Aguzzi, C.; Cerezo, P.; Bonferoni, M. C.; Rossi, S.; Grisoli, P.; Ruggeri, M.; Ferrari, F.; Sandri, G.; et al. Montmorillonite-Norfloxacin Nanocomposite Intended for Healing of Infected Wounds. Int. J. Nanomedicine. 2019, 14, 5051–5051. DOI: 10.2147/IJN.S208713.
  • Bhowmick, A.; Banerjee, S. L.; Pramanik, N.; Jana, P.; Mitra, T.; Gnanamani, A.; Das, M.; Kundu, P. P. Organically Modified Clay Supported Chitosan/Hydroxyapatite-Zinc Oxide Nanocomposites with Enhanced Mechanical and Biological Properties for the Application in Bone Tissue Engineering. Int. J. Biol. Macromol. 2018, 106, 11–19. DOI: 10.1016/j.ijbiomac.2017.07.168.
  • Sun, H.; Zhu, F.; Hu, Q.; Krebsbach, P. H. Controlling Stem Cell-Mediated Bone Regeneration through Tailored Mechanical Properties of Collagen Scaffolds[J]. Biomaterials. 2014, 35, 1176–1184. DOI: 10.1016/j.biomaterials.2013.10.054.
  • Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006, 126, 677–689. DOI: 10.1016/j.cell.2006.06.044.
  • Glassman, M. J.; Avery, R. K.; Khademhosseini, A.; Olsen, B. D. Toughening of Thermoresponsive Arrested Networks of Elastin-like Polypeptides to Engineer Cytocompatible Tissue Scaffolds. Biomacromolecules. 2016, 17, 415–426. DOI: 10.1021/acs.biomac.5b01210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.