270
Views
3
CrossRef citations to date
0
Altmetric
Articles

Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights

, &
Pages 1221-1239 | Received 17 May 2021, Accepted 22 Jul 2021, Published online: 15 Aug 2021

References

  • Sharma, S.; Verma, A.; Singh, J.; Teja, B. V.; Mittapelly, N.; Pandey, G.; Urandur, S.; Shukla, R. P.; Konwar, R.; Mishra, P. R. Vitamin B6 Tethered Endosomal pH Responsive Lipid Nanoparticles for Triggered Intracellular Release of Doxorubicin. ACS Appl. Mater. Interfaces. 2016, 8, 30407–30421. DOI: 10.1021/acsami.6b08958.
  • Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics. CA. A Cancer J. Clin. 2020, 70, 7–30. DOI: 10.3322/caac.21590.
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Feng, R. M.; Zong, Y. N.; Cao, S. M.; Xu, R. H. Current Cancer Situation in China: Good or Bad News from the 2018 Global Cancer Statistics? Cancer Commun. 2019, 39, 22–34. DOI: 10.1186/s40880-019-0368-6.
  • Patnaik, J. L.; Byers, T.; DiGuiseppi, C.; Dabelea, D.; Denberg, T. D. Cardiovascular Disease Competes with Breast Cancer as the Leading Cause of Death for Older Females Diagnosed with Breast Cancer: A Retrospective Cohort Study. Breast Cancer Res. 2011, 13, R64. DOI: 10.1186/bcr2901.
  • Moore, P. S.; Chang, Y. Why Do Viruses Cause Cancer? Highlights of the First Century of Human Tumour Virology. Nat. Rev. Cancer. 2010, 10, 878–889. DOI: 10.1038/nrc2961.
  • Sinha, D. N.; Suliankatchi, R. A.; Gupta, P. C.; Thamarangsi, T.; Agarwal, N.; Parascandola, M.; Mehrotra, R. Global Burden of All-Cause and Cause-Specific Mortality Due to Smokeless Tobacco Use: Systematic Review and Meta-Analysis. Tob. Control. 2018, 27, 35–42. DOI: 10.1136/tobaccocontrol-2016-053302.
  • Gregg, E. W.; Cheng, Y. J.; Srinivasan, M.; Lin, J.; Geiss, L. S.; Albright, A. L.; Imperatore, G. Trends in Cause-Specific Mortality among Adults with and without Diagnosed Diabetes in the USA: An Epidemiological Analysis of Linked National Survey and Vital Statistics Data. Lancet 2018, 391, 2430–2440. DOI: 10.1016/S0140-6736(18)30314-3.
  • Zaorsky, N. G.; Churilla, T. M.; Egleston, B. L.; Fisher, S. G.; Ridge, J. A.; Horwitz, E. M.; Meyer, J. E. Causes of Death among Cancer Patients. Ann. Oncol. 2017, 28, 400–407. DOI: 10.1093/annonc/mdw604.
  • Wang, F.; Shen, L.; Li, J.; Zhou, Z.; Liang, H.; Zhang, X.; Tang, L.; Xin, Y.; Jin, J.; Zhang, Y.; et al. The Chinese Society of Clinical Oncology (CSCO): Clinical Guidelines for the Diagnosis and Treatment of Gastric Cancer. Cancer Commun. 2019, 39, 10–84. DOI: 10.1186/s40880-019-0349-9.
  • Vanmeerbeek, I.; Sprooten, J.; De Ruysscher, D.; Tejpar, S.; Vandenberghe, P.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L.; Garg, A. D. Trial Watch: Chemotherapy-Induced Immunogenic Cell Death in Immuno-Oncology. Oncoimmunology 2020, 9, 1703449–1703432. DOI: 10.1080/2162402X.2019.1703449.
  • De Ruysscher, D.; Niedermann, G.; Burnet, N. G.; Siva, S.; Lee, A. W. M.; Hegi-Johnson, F. Radiotherapy Toxicity. Nat. Rev. Dis. Primers. 2019, 5, 13–45. DOI: 10.1038/s41572-019-0064-5.
  • Chen, Q.; Chen, J.; Yang, Z.; Xu, J.; Xu, L.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. Adv. Mater. 2019, 31, 1802228. DOI: 10.1002/adma.201802228.
  • Brooks, E. D.; Chang, J. Y. Time to Abandon Single-Site Irradiation for Inducing Abscopal Effects. Nat. Rev. Clin. Oncol. 2019, 16, 123–135. DOI: 10.1038/s41571-018-0119-7.
  • Hombach-Klonisch, S.; Mehrpour, M.; Shojaei, S.; Harlos, C.; Pitz, M.; Hamai, A.; Siemianowicz, K.; Likus, W.; Wiechec, E.; Toyota, B. D.; et al. Glioblastoma and Chemoresistance to Alkylating Agents: Involvement of Apoptosis, Autophagy, and Unfolded Protein Response. Pharmacol. Ther. 2018, 184, 13–41. DOI: 10.1016/j.pharmthera.2017.10.017.
  • Fu, D.; Calvo, J. A.; Samson, L. D. Balancing Repair and Tolerance of DNA Damage Caused by Alkylating Agents. Nat. Rev. Cancer. 2012, 12, 104–120. DOI: 10.1038/nrc3185.
  • Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer. 2013, 13, 714–726. DOI: 10.1038/nrc3599.
  • Bax, B. D.; Chan, P. F.; Eggleston, D. S.; Fosberry, A.; Gentry, D. R.; Gorrec, F.; Giordano, I.; Hann, M. M.; Hennessy, A.; Hibbs, M.; et al. Type IIa Topoisomerase Inhibition by a New Class of Antibacterial Agents. Nature. 2010, 466, 935–U951. DOI: 10.1038/nature09197.
  • Luengo, A.; Gui, D. Y.; Vander Heiden, M. G. Targeting Metabolism for Cancer Therapy. Cell Chem. Biol. 2017, 24, 1161–1180. DOI: 10.1016/j.chembiol.2017.08.028.
  • Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The Role of P53 in Cancer Drug Resistance and Targeted Chemotherapy. Oncotarget. 2017, 8, 8921–8946. DOI: 10.18632/oncotarget.13475.
  • Shroff, R. T.; Kennedy, E. B.; Bachini, M.; Bekaii-Saab, T.; Crane, C.; Edeline, J.; El-Khoueiry, A.; Feng, M.; Katz, M. H. G.; Primrose, J.; et al. Adjuvant Therapy for Resected Biliary Tract Cancer: ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 1015–1027. DOI: 10.1200/JCO.18.02178.
  • Rawal, S.; Patel, M. M. Threatening Cancer with Nanoparticle Aided Combination Oncotherapy. J. Control Release. 2019, 301, 76–109. DOI: 10.1016/j.jconrel.2019.03.015.
  • Zhang, Z.; Ji, Y.; Chen, W. Hollow Mno2/Gnps Serving as a Multiresponsive Nanocarrier for Controlled Drug Release. Chin. J. Chem. Eng. 2020, 28, 1405–1414. DOI: 10.1016/j.cjche.2019.12.013.
  • Zhang, Z.; Ji, Y. Nanostructured Manganese Dioxide for Anticancer Applications: Preparation, Diagnosis, and Therapy. Nanoscale. 2020, 12, 17982–18003. DOI: 10.1039/d0nr04067c.
  • Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J. Synthetic Polypeptides: From Polymer Design to Supramolecular Assembly and Biomedical Application. Chem. Soc. Rev. 2017, 46, 6570–6599. DOI: 10.1039/c7cs00460e.
  • Chassenieux, C.; Tsitsilianis, C. Recent Trends in pH/Thermo-Responsive Self-Assembling Hydrogels: From Polyions to Peptide-Based Polymeric Gelators. Soft Matter. 2016, 12, 1344–1359. DOI: 10.1039/c5sm02710a.
  • Duncan, R. Drug-Polymer Conjugates: Potential for Improved Chemotherapy. Anticancer. Drugs. 1992, 3, 175–210. DOI: 10.1097/00001813-199206000-00001.
  • Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Adv. Drug Del. Rev. 2011, 63, 131–135. DOI: 10.1016/j.addr.2010.03.011.
  • Maeda, H. Toward a Full Understanding of the EPR Effect in Primary and Metastatic Tumors as Well as Issues Related to Its Heterogeneity. Adv. Drug Del. Rev. 2015, 91, 3–6. DOI: 10.1016/j.addr.2015.01.002.
  • Nakamura, H.; Jun, F.; Maeda, H. Development of Next-Generation Macromolecular Drugs Based on the EPR Effect: Challenges and Pitfalls. Expert Opin. Drug Del. 2015, 12, 53–64. DOI: 10.1517/17425247.2014.955011.
  • Hu, C.-M. J.; Zhang, L. Nanoparticle-Based Combination Therapy toward Overcoming Drug Resistance in Cancer. Biochem. Pharmacol. 2012, 83, 1104–1111. DOI: 10.1016/j.bcp.2012.01.008.
  • Zhang, R. X.; Wong, H. L.; Xue, H. Y.; Eoh, J. Y.; Wu, X. Y. Nanomedicine of Synergistic Drug Combinations for Cancer Therapy – Strategies and Perspectives. J. Control Release. 2016, 240, 489–503. DOI: 10.1016/j.jconrel.2016.06.012.
  • Langguth, P.; Hanafy, A.; Frenzel, D.; Grenier, P.; Nhamias, A.; Ohlig, T.; Vergnault, G.; Spahn-Langguth, H. Nanosuspension Formulations for Low-Soluble Drugs: Pharmacokinetic Evaluation Using Spironolactone as Model Compound. Drug Dev. Ind. Pharm. 2005, 31, 319–329. DOI: 10.1081/ddc-52182.
  • Palanikumar, L.; Jeena, M. T.; Kim, K.; Yong Oh, J.; Kim, C.; Park, M.-H.; Ryu, J.-H. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles. Sci. Rep. 2017, 7, 46540. DOI: 10.1038/srep46540.
  • Moss, D. M.; Siccardi, M. Optimizing Nanomedicine Pharmacokinetics Using Physiologically Based Pharmacokinetics Modelling. Br. J. Pharmacol. 2014, 171, 3963–3979. DOI: 10.1111/bph.12604.
  • Chou, T.-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010, 70, 440–446. DOI: 10.1158/0008-5472.CAN-09-1947.
  • Chou, T.-C.; Talalay, P. Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. DOI: 10.1016/0065-2571(84)90007-4.
  • Cheng, Y.; Ji, Y. Mitochondria-Targeting Nanomedicine Self-Assembled from GSH-Responsive Paclitaxel-Ss-Berberine Conjugate for Synergetic Cancer Treatment with Enhanced Cytotoxicity. J. Control Release. 2020, 318, 38–49. DOI: 10.1016/j.jconrel.2019.12.011.
  • Cheng, Y.; Ji, Y.; Tong, J. Triple Stimuli-Responsive Supramolecular Nanoassembly with Mitochondrial Targetability for Chemophotothermal Therapy. J. Control Release. 2020, 327, 35–49. DOI: 10.1016/j.jconrel.2020.08.006.
  • Zhang, R. X.; Cai, P.; Zhang, T.; Chen, K.; Li, J. S.; Cheng, J.; Pang, K. S.; Adissu, H. A.; Rauth, A. M.; Wu, X. Y. Polymer-Lipid Hybrid Nanoparticles Synchronize Pharmacokinetics of Co-Encapsulated Doxorubicin-Mitomycin C and Enable Their Spatiotemporal Co-Delivery and Local Bioavailability in Breast Tumor. Nanomed-Nanotechnol. 2016, 12, 1279–1290. DOI: 10.1016/j.nano.2015.12.383.
  • Cheetham, A. G.; Chakroun, R. W.; Ma, W.; Cui, H. G. Self-Assembling Prodrugs. Chem. Soc. Rev. 2017, 46, 6638–6663. DOI: 10.1039/c7cs00521k.
  • Wu, Y. C.; Lv, S. X.; Li, Y. J.; He, H.; Ji, Y.; Zheng, M. F.; Liu, Y.; Yin, L. C. Co-Delivery of Dual Chemo-Drugs with Precisely Controlled, High Drug Loading Polymeric Micelles for Synergistic Anti-Cancer Therapy. Biomater. Sci. 2020, 8, 949–959. DOI: 10.1039/c9bm01662g.
  • Wan, X.; Beaudoin, J. J.; Vinod, N.; Min, Y.; Makita, N.; Bludau, H.; Jordan, R.; Wang, A.; Sokolsky, M.; Kabanov, A. V. Co-Delivery of Paclitaxel and Cisplatin in Poly(2-Oxazoline) Polymeric Micelles: Implications for Drug Loading, Release, Pharmacokinetics and Outcome of Ovarian and Breast Cancer Treatments. Biomaterials. 2019, 192, 1–14. DOI: 10.1016/j.biomaterials.2018.10.032.
  • Duong, H. H. P.; Yung, L.-Y. L. Synergistic Co-Delivery of Doxorubicin and Paclitaxel Using Multi-Functional Micelles for Cancer Treatment. Int. J. Pharm. 2013, 454, 486–495. DOI: 10.1016/j.ijpharm.2013.06.017.
  • Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R.; et al. Enzyme-Activatable Polymer-Drug Conjugate Augments Tumour Penetration and Treatment Efficacy. Nat. Nanotechnol. 2019, 14, 799–809. DOI: 10.1038/s41565-019-0485-z.
  • Lee, S.; Stubelius, A.; Hamelmann, N.; Tran, V.; Almutairi, A. Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance anti-Inflammatory Drug Efficacy. ACS Appl. Mater. Interfaces. 2018, 10, 40378–40387. DOI: 10.1021/acsami.8b08254.
  • Seidi, F.; Jenjob, R.; Crespy, D. Designing Smart Polymer Conjugates for Controlled Release of Payloads. Chem. Rev. 2018, 118, 3965–4036. DOI: 10.1021/acs.chemrev.8b00006.
  • Ha, W.; Zhao, X. B.; Chen, X. Y.; Jiang, K.; Shi, Y. P. Prodrug-Based Cascade Self-Assembly Strategy for Precisely Controlled Combination Drug Therapy. ACS Appl. Mater. Interfaces. 2018, 10, 21149–21159. DOI: 10.1021/acsami.8b05170.
  • Wei, X.; Wang, Y.; Xiong, X.; Guo, X.; Zhang, L.; Zhang, X.; Zhou, S. Codelivery of a Pi-Pi Stacked Dual Anticancer Drug Combination with Nanocarriers for Overcoming Multidrug Resistance and Tumor Metastasis. Adv. Funct. Mater. 2016, 26, 8266–8280. DOI: 10.1002/adfm.201603336.
  • Xiao, H.; Song, H.; Yang, Q.; Cai, H.; Qi, R.; Yan, L.; Liu, S.; Zheng, Y.; Huang, Y.; Liu, T.; Jing, X. A Prodrug Strategy to Deliver Cisplatin(IV) and Paclitaxel in Nanomicelles to Improve Efficacy and Tolerance. Biomaterials. 2012, 33, 6507–6519. DOI: 10.1016/j.biomaterials.2012.05.049.
  • Yang, M.; Ding, H. Q.; Zhu, Y. X.; Ge, Y. X.; Li, L. B. Co-Delivery of Paclitaxel and Doxorubicin Using Mixed Micelles Based on the Redox Sensitive Prodrugs. Colloids Surf. B Biointerfaces. 2019, 175, 126–135. DOI: 10.1016/j.colsurfb.2018.11.086.
  • Noh, I.; Kim, H.-O.; Choi, J.; Choi, Y.; Lee, D. K.; Huh, Y.-M.; Haam, S. Co-Delivery of Paclitaxel and Gemcitabine via CD44-Targeting Nanocarriers as a Prodrug with Synergistic Antitumor Activity against Human Biliary Cancer. Biomaterials. 2015, 53, 763–774. DOI: 10.1016/j.biomaterials.2015.03.006.
  • Ekladious, I.; Colson, Y. L.; Grinstaff, M. W. Polymer-Drug Conjugate Therapeutics: Advances, Insights and Prospects. Nat. Rev. Drug Discov. 2019, 18, 273–294. DOI: 10.1038/s41573-018-0005-0.
  • Koziolová, E.; Janoušková, O.; Cuchalová, L.; Hvězdová, Z.; Hraběta, J.; Eckschlager, T.; Sivák, L.; Ulbrich, K.; Etrych, T.; Šubr, V. Overcoming Multidrug Resistance in Dox-Resistant Neuroblastoma Cell Lines via Treatment with HPMA Copolymer Conjugates Containing Anthracyclines and P-gp Inhibitors. J. Control. Release. 2016, 233, 136–146. DOI: 10.1016/j.jconrel.2016.05.036.
  • Baabur-Cohen, H.; Vossen, L. I.; Krüger, H. R.; Eldar-Boock, A.; Yeini, E.; Landa-Rouben, N.; Tiram, G.; Wedepohl, S.; Markovsky, E.; Leor, J.; et al. In Vivo Comparative Study of Distinct Polymeric Architectures Bearing a Combination of Paclitaxel and Doxorubicin at a Synergistic Ratio. J. Control. Release. 2017, 257, 118–131. DOI: 10.1016/j.jconrel.2016.06.037.
  • Wu, J.; Waxman, D. J. Immunogenic Chemotherapy: Dose and Schedule Dependence and Combination with Immunotherapy. Cancer Lett. 2018, 419, 210–221. DOI: 10.1016/j.canlet.2018.01.050.
  • Qin, T.; Xu, X.; Zhang, Z.; Li, J.; You, X.; Guo, H.; Sun, H.; Liu, M.; Dai, Z.; Zhu, H. Paclitaxel/Sunitinib-Loaded Micelles Promote an Antitumor Response in Vitro through Synergistic Immunogenic Cell Death for Triple-Negative Breast Cancer. Nanotechnology. 2020, 31, 365101. DOI: 10.1088/1361-6528/ab94dc.
  • Xiao, H. H.; Yan, L. S.; Dempsey, E. M.; Song, W. T.; Qi, R. G.; Li, W. L.; Huang, Y. B.; Jing, X. B.; Zhou, D. F.; Ding, J. X.; Chen, X. S. Recent Progress in Polymer-Based Platinum Drug Delivery Systems. Prog. Polym. Sci. 2018, 87, 70–106. DOI: 10.1016/j.progpolymsci.2018.07.004.
  • Mi, Y.; Zhao, J.; Feng, S. S. Targeted Co-Delivery of Docetaxel, Cisplatin and Herceptin by Vitamin E TPGS-Cisplatin Prodrug Nanoparticles for Multimodality Treatment of Cancer. J. Control Release. 2013, 169, 185–192. DOI: 10.1016/j.jconrel.2013.01.035.
  • Mi, Y.; Zhao, J.; Feng, S. S. Vitamin E TPGS Prodrug Micelles for Hydrophilic Drug Delivery with Neuroprotective Effects. Int. J. Pharm. 2012, 438, 98–106. DOI: 10.1016/j.ijpharm.2012.08.038.
  • Siddikuzzaman , Guruvayoorappan, C.; Berlin Grace, V. M. All Trans Retinoic Acid and Cancer. Immunopharmacol. Immunotoxicol. 2011, 33, 241–249. DOI: 10.3109/08923973.2010.521507.
  • Zhu, Y. H.; Ye, N.; Tang, X. F.; Khan, M. I.; Liu, H. L.; Shi, N.; Hang, L. F. Synergistic Effect of Retinoic Acid Polymeric Micelles and Prodrug for the Pharmacodynamic Evaluation of Tumor Suppression. Front. Pharmacol. 2019, 10, 447. DOI: 10.3389/fphar.2019.00447.
  • Batra, H.; Pawar, S.; Bahl, D. Curcumin in Combination with Anti-Cancer Drugs: A Nanomedicine Review. Pharmacol. Res. 2019, 139, 91–105. DOI: 10.1016/j.phrs.2018.11.005.
  • Hu, B.; Sun, D.; Sun, C.; Sun, Y.-F.; Sun, H.-X.; Zhu, Q.-F.; Yang, X.-R.; Gao, Y.-B.; Tang, W.-G.; Fan, J.; et al. A Polymeric Nanoparticle Formulation of Curcumin in Combination with Sorafenib Synergistically Inhibits Tumor Growth and Metastasis in an Orthotopic Model of Human Hepatocellular Carcinoma. Biochem. Biophys. Res. Commun. 2015, 468, 525–532. DOI: 10.1016/j.bbrc.2015.10.031.
  • Coussens, L. M.; Werb, Z. Inflammation and Cancer. Nature. 2002, 420, 860–867. DOI: 10.1038/nature01322.
  • Grivennikov, S. I.; Greten, F. R.; Karin, M. Immunity, Inflammation, and Cancer. Cell. 2010, 140, 883–899. DOI: 10.1016/j.cell.2010.01.025.
  • Crusz, S. M.; Balkwill, F. R. Inflammation and Cancer: Advances and New Agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. DOI: 10.1038/nrclinonc.2015.105.
  • Zeng, Z.; Wei, Z. L.; Ma, L. M.; Xu, Y.; Xing, Z. H.; Niu, H.; Wang, H. B.; Huang, W. pH-Responsive Nanoparticles Based on Ibuprofen Prodrug as Drug Carriers for Inhibition of Primary Tumor Growth and Metastasis. J. Mater. Chem. B. 2017, 5, 6860–6868. DOI: 10.1039/c7tb01288h.
  • Jia, H. Z.; Chen, S.; Zhuo, R. X.; Feng, J.; Zhang, X. Z. Polymeric Prodrug for Bio-Controllable Gene and Drug Co-Delivery. Sci. China Chem. 2016, 59, 1397–1404. DOI: 10.1007/s11426-016-0230-9.
  • Marzbali, M. Y.; Khosroushahi, A. Y. Polymeric Micelles as Mighty Nanocarriers for Cancer Gene Therapy: A Review. Cancer Chemother. Pharmacol. 2017, 79, 637–649. DOI: 10.1007/s00280-017-3273-1.
  • He, C.; Tang, Z.; Tian, H.; Chen, X. Co-Delivery of Chemotherapeutics and Proteins for Synergistic Therapy. Adv. Drug Del. Rev. 2016, 98, 64–76. DOI: 10.1016/j.addr.2015.10.021.
  • Deng, Z. Y.; Yang, Q. X.; Peng, Y. B.; He, J. X.; Xu, S. J.; Wang, D.; Peng, T. H.; Wang, R. W.; Wang, X. Q.; Tan, W. H. Polymeric Engineering of Aptamer-Drug Conjugates for Targeted Cancer Therapy. Bioconjugate Chem. 2020, 31, 37–42. DOI: 10.1021/acs.bioconjchem.9b00715.
  • Liu, J.; He, J.; Zhang, M.; Xu, G.; Ni, P. A Synergistic Polyphosphoester-Based Co-Delivery System of the Anticancer Drug Doxorubicin and the Tumor Suppressor Gene P53 for Lung Cancer Therapy. J. Mater. Chem. B. 2018, 6, 3262–3273. DOI: 10.1039/c8tb00746b.
  • Salzano, G.; Navarro, G.; Trivedi, M. S.; De Rosa, G.; Torchilin, V. P. Multifunctional Polymeric Micelles Co-Loaded with anti–Survivin Sirna and Paclitaxel Overcome Drug Resistance in an Animal Model of Ovarian Cancer. Mol. Cancer Ther. 2015, 14, 1075–1084. DOI: 10.1158/1535-7163.MCT-14-0556.
  • Fang, Z. J.; Pan, S. B.; Gao, P.; Sheng, H. G.; Li, L. J.; Shi, L.; Zhang, Y. Q.; Cai, X. Q. Stimuli-Responsive Charge-Reversal Nano Drug Delivery System: The Promising Targeted Carriers for Tumor Therapy. Int. J. Pharm. 2020, 575, 118841. DOI: 10.1016/j.ijpharm.2019.118841.
  • Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R.; Basri, S. M. M.; Mirshekari, H.; Amiri, M.; Pishabad, Z. S.; Aslani, A.; Bozorgomid, M.; et al. Smart Micro/Nanoparticles in Stimulus-Responsive Drug/Gene Delivery Systems. Chem. Soc. Rev. 2016, 45, 1457–1501. DOI: 10.1039/c5cs00798d.
  • Xu, C.; Song, R. J.; Lu, P.; Chen, J. C.; Zhou, Y. Q.; Shen, G.; Jiang, M. J.; Zhang, W. A pH-Responsive Charge-Reversal Drug Delivery System with Tumor-Specific Drug Release and ROS Generation for Cancer Therapy. IJN. 2020, 15, 65–80. DOI: 10.2147/IJN.S230237.
  • Sun, J. H.; Li, J.; Liu, Q.; Jiang, M.; Yang, M. J.; Zhan, S. W.; Qiu, T.; He, K. Y.; Zhang, X. Q. Tuning mPEG-PLA/Vitamin E-TPGS-Based Mixed Micelles for Combined Celecoxib/Honokiol Therapy for Breast Cancer. Eur. J. Pharm. Sci. 2020, 146, 105277. DOI: 10.1016/j.ejps.2020.105277.
  • Liu, S.; Li, R.; Qian, J.; Sun, J. B.; Li, G. W.; Shen, J. L.; Xie, Y. Combination Therapy of Doxorubicin and Quercetin on Multidrug-Resistant Breast Cancer and Their Sequential Delivery by Reduction-Sensitive Hyaluronic Acid-Based Conjugate/d-α-Tocopheryl Poly(ethylene glycol) 1000 Succinate Mixed Micelles. Mol. Pharm. 2020, 17, 1415–1427. DOI: 10.1021/acs.molpharmaceut.0c00138.
  • Zhai, S. D.; Hu, X. L.; Hu, Y. J.; Wu, B. Y.; Xing, D. Visible Light-Induced Crosslinking and Physiological Stabilization of Diselenide-Rich Nanoparticles for Redox-Responsive Drug Release and Combination Chemotherapy. Biomaterials. 2017, 121, 41–54. DOI: 10.1016/j.biomaterials.2017.01.002.
  • Wan, X.; Min, Y.; Bludau, H.; Keith, A.; Sheiko, S. S.; Jordan, R.; Wang, A. Z.; Sokolsky-Papkov, M.; Kabanov, A. V. Drug Combination Synergy in Worm-Like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer. ACS Nano. 2018, 12, 2426–2439. DOI: 10.1021/acsnano.7b07878.
  • Zhu, D.; Fan, F.; Huang, C.; Zhang, Z.; Qin, Y.; Lu, L.; Wang, H.; Jin, X.; Zhao, H.; Yang, H.; et al. Bubble-Generating Polymersomes Loaded with Both Indocyanine Green and Doxorubicin for Effective Chemotherapy Combined with Photothermal Therapy. Acta Biomater. 2018, 75, 386–397. DOI: 10.1016/j.actbio.2018.05.033.
  • Jin, X.; Zhou, J. P.; Zhang, Z. H.; Lv, H. X. Doxorubicin Combined with Betulinic Acid or Lonidamine in Rgd Ligand-Targeted pH-Sensitive Micellar System for Ovarian Cancer Treatment. Int. J. Pharm. 2019, 571, 118751. DOI: 10.1016/j.ijpharm.2019.118751.
  • Li, Y.; Hou, H.; Zhang, P.; Zhang, Z. Co-Delivery of Doxorubicin and Paclitaxel by Reduction/pH Dual Responsive Nanocarriers for Osteosarcoma Therapy. Drug Deliv. 2020, 27, 1044–1053. DOI: 10.1080/10717544.2020.1785049.
  • Mozhi, A.; Sunil, V.; Zhan, W.; Ghode, P. B.; Thakor, N. V.; Wang, C. H. Enhanced Penetration of Pro-Apoptotic and Anti-Angiogenic Micellar Nanoprobe in 3D Multicellular Spheroids for Chemophototherapy. J. Control Release. 2020, 323, 502–518. DOI: 10.1016/j.jconrel.2020.05.005.
  • Liao, J. H.; Peng, H. S.; Wei, X.; Song, Y. J.; Liu, C.; Li, D.; Yin, Y. H.; Xiong, X.; Zheng, H.; Wang, Q. A Bio-Responsive 6-Mercaptopurine/Doxorubicin Based “Click Chemistry” Polymeric Prodrug for Cancer Therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110461. DOI: 10.1016/j.msec.2019.110461.
  • Yin, W.; Ke, W. D.; Chen, W. J.; Xi, L. C.; Zhou, Q. H.; Mukerabigwi, J. F.; Ge, Z. S. Integrated Block Copolymer Prodrug Nanoparticles for Combination of Tumor Oxidative Stress Amplification and ROS-Responsive Drug Release. Biomaterials. 2019, 195, 63–74. DOI: 10.1016/j.biomaterials.2018.12.032.
  • Wang, M. L.; Zhai, Y. L.; Ye, H.; Lv, Q. Z.; Sun, B. J.; Luo, C.; Jiang, Q. K.; Zhang, H. T.; Xu, Y. J.; Jing, Y. K.; et al. High Co-Loading Capacity and Stimuli-Responsive Release Based on Cascade Reaction of Self-Destructive Polymer for Improved Chemo-Photodynamic Therapy. ACS Nano. 2019, 13, 7010–7023. DOI: 10.1021/acsnano.9b02096.
  • Wan, Z. Y.; Sun, J. J.; Xu, J. N.; Moharil, P.; Chen, J.; Xu, J. C.; Zhu, J. J.; Li, J.; Huang, Y. X.; Xu, P. F.; et al. Dual Functional Immunostimulatory Polymeric Prodrug Carrier with Pendent Indoximod for Enhanced Cancer Immunochemotherapy. Acta Biomater. 2019, 90, 300–313. DOI: 10.1016/j.actbio.2019.03.048.
  • Zhang, B.; Jia, F.; Fleming, M. Q.; Mallapragada, S. K. Injectable Self-Assembled Block Copolymers for Sustained Gene and Drug Co-Delivery: An In Vitro Study. Int. J. Pharm. 2012, 427, 88–96. DOI: 10.1016/j.ijpharm.2011.10.018.
  • Nam, K.; Nam, H. Y.; Kim, P.-H.; Kim, S. W. Paclitaxel-Conjugated PEG and Arginine-Grafted Bioreducible Poly (Disulfide Amine) Micelles for Co-Delivery of Drug and Gene. Biomaterials 2012, 33, 8122–8130. DOI: 10.1016/j.biomaterials.2012.07.031.
  • Zhang, Y.; Xiao, C.; Li, M.; Chen, J.; Ding, J.; He, C.; Zhuang, X.; Chen, X. Co-Delivery of 10-Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromol. Biosci. 2013, 13, 584–594. DOI: 10.1002/mabi.201200441.
  • Yu, H.; Xu, Z.; Chen, X.; Xu, L.; Yin, Q.; Zhang, Z.; Li, Y. Reversal of Lung Cancer Multidrug Resistance by pH-Responsive Micelleplexes Mediating Co-Delivery of Sirna and Paclitaxel. Macromol. Biosci. 2014, 14, 100–109. DOI: 10.1002/mabi.201300282.
  • Gao, J.; Yu, B.; Li, C.; Xu, M.; Cao, Z.; Xie, X.; Wang, W.; Liu, J. Ultrasound Triggered Phase-Change Nanodroplets for Doxorubicin Prodrug Delivery and Ultrasound Diagnosis: An In Vitro Study. Colloids Surf. B. Biointerfaces. 2019, 174, 416–425. DOI: 10.1016/j.colsurfb.2018.11.046.
  • Zhang, L. H.; Qin, Y.; Zhang, Z. M.; Fan, F.; Huang, C. L.; Lu, L.; Wang, H.; Jin, X.; Zhao, H. X.; Kong, D. L.; et al. Dual pH/Reduction-Responsive Hybrid Polymeric Micelles for Targeted Chemo-Photothermal Combination Therapy. Acta Biomater. 2018, 75, 371–385. DOI: 10.1016/j.actbio.2018.05.026.
  • Bertrand, N.; Wu, J.; Xu, X. Y.; Kamaly, N.; Farokhzad, O. C. Cancer Nanotechnology: The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology. Adv. Drug Del. Rev. 2014, 66, 2–25. DOI: 10.1016/j.addr.2013.11.009.
  • Arroyo-Crespo, J. J.; Arminan, A.; Charbonnier, D.; Balzano-Nogueira, L.; Huertas-Lopez, F.; Marti, C.; Tarazona, S.; Forteza, J.; Conesa, A.; Vicent, M. J. Tumor Microenvironment-Targeted Poly-L-Glutamic Acid-Based Combination Conjugate for Enhanced Triple Negative Breast Cancer Treatment. Biomaterials. 2018, 186, 8–21. DOI: 10.1016/j.biomaterials.2018.09.023.
  • Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H. M. N. Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems. Eur. J. Med. Chem. 2018, 157, 705–715. DOI: 10.1016/j.ejmech.2018.08.034.
  • Sun, J.; Liu, Y.; Chen, Y.; Zhao, W.; Zhai, Q.; Rathod, S.; Huang, Y.; Tang, S.; Kwon, Y. T.; Fernandez, C.; et al. Doxorubicin Delivered by a Redox-Responsive Dasatinib-Containing Polymeric Prodrug Carrier for Combination Therapy. J. Control Release. 2017, 258, 43–55. DOI: 10.1016/j.jconrel.2017.05.006.
  • Sun, J.; Wan, Z.; Chen, Y.; Xu, J.; Luo, Z.; Parise, R. A.; Diao, D.; Ren, P.; Beumer, J. H.; Lu, B.; Li, S. Triple Drugs Co-Delivered by a Small Gemcitabine-Based Carrier for Pancreatic Cancer Immunochemotherapy. Acta Biomater. 2020, 106, 289–300. DOI: 10.1016/j.actbio.2020.01.039.
  • Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. J. Am. Chem. Soc. 2010, 132, 442–443. DOI: 10.1021/ja908124g.
  • Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Recent Advances in Nanomaterial-Based Synergistic Combination Cancer Immunotherapy. Chem. Soc. Rev. 2019, 48, 3771–3810. DOI: 10.1039/c8cs00896e.
  • Vankayala, R.; Hwang, K. C. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv. Mater. 2018, 30, 1706320. DOI: 10.1002/adma.201706320.
  • Zhu, H. J.; Cheng, P. H.; Chen, P.; Pu, K. Y. Recent Progress in the Development of Near-Infrared Organic Photothermal and Photodynamic Nanotherapeutics. Biomater. Sci. 2018, 6, 746–765. DOI: 10.1039/c7bm01210a.
  • Dong, Y.; Gunning, P.; Cao, H.; Mathew, A.; Newland, B.; Saeed, A. O.; Magnusson, J. P.; Alexander, C.; Tai, H.; Pandit, A.; Wang, W. Dual Stimuli Responsive PEG Based Hyperbranched Polymers. Polym. Chem. 2010, 1, 827–830. DOI: 10.1039/c0py00101e.
  • Kim, J.-H.; Lee, E.; Park, J.-S.; Kataoka, K.; Jang, W.-D. Dual Stimuli-Responsive Dendritic-Linear Block Copolymers. Chem. Commun. 2012, 48, 3662–3664. DOI: 10.1039/c2cc17205d.
  • Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual Stimuli-Responsive Self-Assembled Supramolecular Nanoparticles. Angew. Chem. Int. Ed. Engl. 2014, 53, 3400–3404. DOI: 10.1002/anie.201310829.
  • Wang, Y.; Li, Q. Y.; Liu, X. B.; Zhang, C. Y.; Wu, Z. M.; Guo, X. D. Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery. ACS Appl. Mater. Interfaces. 2015, 7, 25592–25600. DOI: 10.1021/acsami.5b08366.
  • Carr, A. C.; Felberg, L. E.; Piunova, V. A.; Rice, J. E.; Head-Gordon, T.; Swope, W. C. Effect of Hydrophobic Core Topology and Composition on the Structure and Kinetics of Star Polymers: A Molecular Dynamics Study. J. Phys. Chem. B. 2017, 121, 2902–2918. DOI: 10.1021/acs.jpcb.7b00865.
  • Ghitman, J.; Stan, R.; Vlasceanu, G.; Vasile, E.; Iovu, H. Predicting the Drug Loading Efficiency into Hybrid Nanocarriers Based on PLGA-Vegetable Oil Using Molecular Dynamic Simulation Approach and Flory-Huggins Theory. J. Drug Deliv. Sci. Technol. 2019, 53, 101203. DOI: 10.1016/j.jddst.2019.101203.
  • Huynh, L.; Neale, C.; Pomes, R.; Allen, C. Computational Approaches to the Rational Design of Nanoemulsions, Polymeric Micelles, and Dendrimers for Drug Delivery. Nanomedicine. 2012, 8, 20–36. DOI: 10.1016/j.nano.2011.05.006.
  • Curchod, B. F. E.; Martinez, T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018, 118, 3305–3336. DOI: 10.1021/acs.chemrev.7b00423.
  • Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics Simulation for All. Neuron. 2018, 99, 1129–1143. DOI: 10.1016/j.neuron.2018.08.011.
  • Luo, Z.; Li, Y.; Wang, B.; Jiang, J. pH-Sensitive Vesicles Formed by Amphiphilic Grafted Copolymers with Tunable Membrane Permeability for Drug Loading/Release: A Multiscale Simulation Study. Macromolecules. 2016, 49, 6084–6094. DOI: 10.1021/acs.macromol.6b01211.
  • Becker, C. A.; Tavazza, F.; Trautt, Z. T.; de Macedo, R. A. B. Considerations for Choosing and Using Force Fields and Interatomic Potentials in Materials Science and Engineering. Curr. Opin. Solid State Mater. Sci. 2013, 17, 277–283. DOI: 10.1016/j.cossms.2013.10.001.
  • Francisca Matus, M.; Luduena, M.; Vilos, C.; Palomo, I.; Mariscal, M. M. Atomic-Level Characterization and Cilostazol Affinity of Poly(Lactic Acid) Nanoparticles Conjugated with Differentially Charged Hydrophilic Molecules. Beilstein J. Nanotechnol. 2018, 9, 1328–1338. DOI: 10.3762/bjnano.9.126.
  • Sun, Y.; Wu, H.; Dong, W.; Zhou, J.; Zhang, X.; Liu, L.; Zhang, X.; Cheng, H.; Guan, J.; Zhao, R.; Mao, S. Molecular Simulation Approach to the Rational Design of Self-Assembled Nanoparticles for Enhanced Peroral Delivery of Doxorubicin. Carbohydr. Polym. 2019, 218, 279–288. DOI: 10.1016/j.carbpol.2019.04.095.
  • Geetha, P.; Sivaram, A. J.; Jayakumar, R.; Mohan, C. G. Integration of In Silico Modeling, Prediction by Binding Energy and Experimental Approach to Study the Amorphous Chitin Nanocarriers for Cancer Drug Delivery. Carbohydr. Polym. 2016, 142, 240–249. DOI: 10.1016/j.carbpol.2016.01.059.
  • Meunier, M.; Goupil, A.; Lienard, P. Predicting Drug Loading in PLA-PEG Nanoparticles. Int. J. Pharm. 2017, 526, 157–166. DOI: 10.1016/j.ijpharm.2017.04.043.
  • Peng, S.; Yuan, X.; Lin, W.; Cai, C.; Zhang, L. pH-Responsive Controlled Release of Mesoporous Silica Nanoparticles Capped with Schiff Base Copolymer Gatekeepers: Experiment and Molecular Dynamics Simulation. Colloids Surf B Biointerfaces. 2019, 176, 394–403. DOI: 10.1016/j.colsurfb.2019.01.024.
  • Ansari, M.; Moradi, S.; Shahlaei, M. A Molecular Dynamics Simulation Study on the Mechanism of Loading of Gemcitabine and Camptothecin in Poly Lactic-Co-Glycolic Acid as a Nano Drug Delivery System. J. Mol. Liq. 2018, 269, 110–118. DOI: 10.1016/j.molliq.2018.08.032.
  • Lyubartsev, A. P.; Rabinovich, A. L. Recent Development in Computer Simulations of Lipid Bilayers. Soft Matter. 2011, 7, 25–39. DOI: 10.1039/C0SM00457J.
  • Lyubartsev, A.; Mirzoev, A.; Chen, L.; Laaksonen, A. Systematic Coarse-Graining of Molecular Models by the Newton Inversion Method. Faraday Discuss. 2010, 144, 43–56. DOI: 10.1039/b901511f.
  • Grunewald, F.; Rossi, G.; de Vries, A. H.; Marrink, S. J.; Monticelli, L. Transferable Martini Model of Poly(Ethylene Oxide). J. Phys. Chem. B. 2018, 122, 7436–7449. DOI: 10.1021/acs.jpcb.8b04760.
  • Lee, H.; de Vries, A. H.; Marrink, S.-J.; Pastor, R. W. A Coarse-Grained Model for Polyethylene Oxide and Polyethylene Glycol: Conformation and Hydrodynamics. J. Phys. Chem. B. 2009, 113, 13186–13194. DOI: 10.1021/jp9058966.
  • Kremer, K.; Grest, G. S. Dynamics of Entangled Linear Polymer Melts – A Molecular-Dynamics Simulation. J. Chem. Phys. 1990, 92, 5057–5086. DOI: 10.1063/1.458541.
  • Huang, W.; Mandal, T.; Larson, R. G. Multiscale Computational Modeling of the Nanostructure of Solid Dispersions of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin. Mol. Pharm. 2017, 14, 3422–3435. DOI: 10.1021/acs.molpharmaceut.7b00441.
  • Mackenzie, R.; Booth, J.; Alexander, C.; Garnett, M. C.; Laughton, C. A. Multiscale Modeling of Drug-Polymer Nanoparticle Assembly Identifies Parameters Influencing Drug Encapsulation Efficiency. J. Chem. Theory Comput. 2015, 11, 2705–2713. DOI: 10.1021/ct501152a.
  • Xu, J. C.; Wang, Z. K.; Gao, J. B.; Li, C. L.; Sun, S. Q.; Hu, S. Q. Dissipative Particle Dynamics Simulations Reveal the pH-Driven Micellar Transition Pathway of Monorhamnolipids. J. Colloid Interface Sci. 2017, 506, 493–503. DOI: 10.1016/j.jcis.2017.07.083.
  • Wang, Z.; Gao, J.; Ustach, V.; Li, C.; Sun, S.; Hu, S.; Faller, R. Tunable Permeability of Cross-Linked Microcapsules from pH-Responsive Amphiphilic Diblock Copolymers: A Dissipative Particle Dynamics Study. Langmuir. 2017, 33, 7288–7297. DOI: 10.1021/acs.langmuir.7b01586.
  • Guskova, O. A.; Seidel, C. Mesoscopic Simulations of Morphological Transitions of Stimuli-Responsive Diblock Copolymer Brushes. Macromolecules. 2011, 44, 671–682. DOI: 10.1021/ma102349k.
  • Guo, H.; Qiu, X.; Zhou, J. Self-Assembled Core-Shell and Janus Microphase Separated Structures of Polymer Blends in Aqueous Solution. J. Chem. Phys. 2013, 139, 084907. DOI: 10.1063/1.4817003.
  • Tian, Y.; Shi, C.; Sun, Y.; Zhu, C.; Sun, C. C.; Mao, S. Designing Micellar Nanocarriers with Improved Drug Loading and Stability Based on Solubility Parameter. Mol. Pharm. 2015, 12, 816–825. DOI: 10.1021/mp5006504.
  • Patra, C. N.; Yethiraj, A. Density Functional Theory for Nonuniform Polymers: Accurate Treatment of the Effect of Attractive Interactions. J. Chem. Phys. 2003, 118, 4702–4706. DOI: 10.1063/1.1543141.
  • Yang, S. J.; Olishevski, P.; Kertesz, M. Bandgap Calculations for Conjugated Polymers. Synth. Met. 2004, 141, 171–177. DOI: 10.1016/j.synthmet.2003.08.019.
  • Moyers-Montoya, E.; Garcia-Casillas, P.; Vargas-Requena, C.; Escobedo-Gonzalez, R.; Martel-Estrada, S.-A.; Martinez-Perez, C. A. Polycaprolactone/Amino-Cyclodextrin Inclusion Complex Prepared by an Electrospinning Technique. Polymers. 2016, 8, 395–412. DOI: 10.3390/polym8110395.
  • Lyubimov, I.; Wessels, M. G.; Jayaraman, A. Molecular Dynamics Simulation and Prism Theory Study of Assembly in Solutions of Amphiphilic Bottlebrush Block Copolymers. Macromolecules. 2018, 51, 7586–7599. DOI: 10.1021/acs.macromol.8b01535.
  • Halperin, A.; KröGer, M. Collapse of Thermoresponsive Brushes and the Tuning of Protein Adsorption. Macromolecules. 2011, 44, 6986–7005. DOI: 10.1021/ma201006h.
  • Zhang, L.; Zhang, S.; Xu, J.; Li, Y.; He, J.; Yang, Y.; Huynh, T.; Ni, P.; Duan, G.; Yang, Z.; Zhou, R. Low-Dose X-Ray-Responsive Diselenide Nanocarriers for Effective Delivery of Anticancer Agents. ACS Appl. Mater. Interfaces. 2020, 12, 43398–43407. DOI: 10.1021/acsami.0c11627.
  • Jia, J.; Zhu, F.; Ma, X.; Cao, Z.; Cao, Z. W.; Li, Y.; Li, Y. X.; Chen, Y. Z. Mechanisms of Drug Combinations: Interaction and Network Perspectives. Nat. Rev. Drug Discov. 2009, 8, 111–128. DOI: 10.1038/nrd2683.
  • Chu, D. F.; Fu, X. Q.; Liu, W. H.; Liu, K.; Li, Y. X. Pharmacokinetics and in Vitro and in Vivo Correlation of Huperzine a Loaded Poly(Lactic-Co-Glycolic Acid) Microspheres in Dogs. Int. J. Pharm. 2006, 325, 116–123. DOI: 10.1016/j.ijpharm.2006.06.032.
  • Zolnik, B. S.; Burgess, D. J. Evaluation of In Vivo-In Vitro Release of Dexamethasone from PLGA Microspheres. J. Control Release. 2008, 127, 137–145. DOI: 10.1016/j.jconrel.2008.01.004.
  • Zeglinski, M.; Ludke, A.; Jassal, D. S.; Singal, P. K. Trastuzumab-Induced Cardiac Dysfunction: A Dual-Hit. Exp. Clin. Cardiol. 2011, 16, 70–74.
  • Hare, J. I.; Lammers, T.; Ashford, M. B.; Puri, S.; Storm, G.; Barry, S. T. Challenges and Strategies in Anti-Cancer Nanomedicine Development: An Industry Perspective. Adv. Drug Del. Rev. 2017, 108, 25–38. DOI: 10.1016/j.addr.2016.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.