304
Views
16
CrossRef citations to date
0
Altmetric
Articles

Recent advancements in hybridized polymer nano-biocomposites for tissue engineering

ORCID Icon &
Pages 1262-1276 | Received 17 May 2021, Accepted 22 Jul 2021, Published online: 15 Aug 2021

References

  • Hutmacher, W. Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials. 2000, 21, 2529–2543. DOI: 10.1016/S0142-9612(00)00121-6.
  • Srinivasan, S.; Jayasree, R.; Chennazhi, P.; Nair, V.; Jayakumar, R. Biocompatible Alginate/Nano Bioactive Glass Ceramic Composite Scaffolds for Periodontal Tissue Regeneration. Carbohydrate Polym. 2012, 87, 274–283. DOI: 10.1016/j.carbpol.2011.07.058.
  • Rezwan, K.; Chen, Z.; Blaker, J.; Boccaccini, A. R. Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering. Biomaterials. 2006, 27, 3413–3431. DOI: 10.1016/j.biomaterials.2006.01.039.
  • Fathi-Achachelouei, M.; Knopf-Marques, H.; Ribeiro da Silva, C. E.; Barthès, J.; Bat, E.; Tezcaner, A.; Vrana, N. E. Use of Nanoparticles in Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2019, 7, 113. DOI: 10.3389/fbioe.2019.00113.
  • Yang, Y.; Wang, S.; Wang, Y.; Wang, X.; Wang, Q.; Chen, M. Advances in Self-Assembled Chitosan Nanomaterials for Drug Delivery. Biotechnol. Adv. 2014, 32, 1301–1316. DOI: 10.1016/j.biotechadv.2014.07.007.
  • Bhunia, K.; Saha, A.; Maity, R.; Ray, C.; Jana, R. Carbon Nanoparticle-Based Fluorescent Bioimaging Probes. Sci. Rep. 2013, 3, 1473. DOI: 10.1038/srep01473.
  • Keles, E.; Song, Y.; Du, D.; Dong, W. J.; Lin, Y. Recent Progress in Nanomaterials for Gene Delivery Applications. Biomater. Sci. 2016, 4, 1291–1309. DOI: 10.1039/C6BM00441E.
  • Almeida, J.; Souto, E. Solid Lipid Nanoparticles as a Drug Delivery System for Peptides and Proteins. Adv Drug Deliv Rev. 2007, 59, 478–490. DOI: 10.1016/j.addr.2007.04.007.
  • Prego, C.; García, M.; Torres, D.; Alonso, J. Transmucosal Macromolecular Drug Delivery. J Control Release. 2005, 101, 151–162. DOI: 10.1016/j.jconrel.2004.07.030.
  • Xu, P.; Zeng, H.; Lu, Q.; Yu, B. Inorganic Nanoparticles as Carriers for Efficient Cellular Delivery. Chem. Eng. Sci. 2006, 61, 1027–1040. DOI: 10.1016/j.ces.2005.06.019.
  • Jean-Gilles, R.; Soscia, D.; Sequeira, S.; Melfi, M.; Gadre, A.; Castracane, J.; Larsen, M. Novel Modeling Approach to Generate a Polymeric Nanofiber Sca Old for Salivary Gland Cells. J. Nanotechnol. Eng. Med. 2010, 1, 031008. DOI: 10.1115/1.4001744.
  • Li, X.; Liu, W.; Sun, L.; Fan, Y.; Feng, Q. The Application of Inorganic Nanomaterials in Bone Tissue Engineering. j. Biomater. Tissue. Eng. 2014, 4, 994–1003. DOI: 10.1166/jbt.2014.1253.
  • Sridhar, R.; Sundarrajan, S.; Venugopal, R.; Ravichandran, R.; Ramakrishna, S. Electrospun Inorganic and Polymer Composite Nanofibers for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2013, 24, 365–385. DOI: 10.1080/09205063.2012.690711.
  • O’Brien, F. J. Biomaterials and Scaffolds for Tissue Engineering. Mater. Today. 2011, 1, 88–95.
  • Cao, L.; Wu, X.; Wang, Q.; Wang, J. Biocompatible Nanocomposite of TiO2 Incorporated bi-Polymer for Articular Cartilage Tissue Regeneration: A Facile Material. J. Photoch. Photobio. B. 2018, 178, 440–446. DOI: 10.1016/j.jphotobiol.2017.10.026.
  • Sahoo, G.; Pan, Z.; Li, L.; He, B. Nanocomposites for Bone Tissue Regeneration. Nanomedicine. 2013, 8, 639–653. DOI: 10.2217/nnm.13.44.
  • Baranes, K.; Shevach, M.; Shefi, O.; Dvir, T. Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. Nano. Lett. 2016, 16, 2916–2920. DOI: 10.1021/acs.nanolett.5b04033.
  • Dvir, T.; Timko, P.; Brigham, D.; Naik, R.; Karajanagi, S.; Levy, O.; Jin, H.; Parker, K.; Langer, R.; Kohane, D. S. Nanowired Three-Dimensional Cardiac Patches. Nat. Nanotechnol. 2011, 6, 720–725. DOI: 10.1038/nnano.2011.160.
  • Jin, G.; Prabhakaran, P.; Nadappuram, P.; Singh, G.; Kai, D.; Ramakrishna, S. Electrospun Poly(L-Lactic Acid)-co-Poly(ϵ-Caprolactone) Nanofibres Containing Silver Nanoparticles for Skin-Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2012, 23, 2337–2352. DOI: 10.1163/156856211X617399.
  • Wei, G.; Ma, P. X. Structure and Properties of Nano-Hydroxyapatite/Polymer Composite Scaffolds for Bone Tissue Engineering. Biomaterials. 2004, 25, 4749–4757. DOI: 10.1016/j.biomaterials.2003.12.005.
  • Bini, B.; Gao, S.; Wang, S.; Ramakrishna, S. Poly(l-Lactide-co-Glycolide) Biodegradable Microfibers and Electrospun Nanofibers for Nerve Tissue Engineering: An in Vitro Study. J. Mater. Sci. 2006, 41, 6453–6459. DOI: 10.1007/s10853-006-0714-3.
  • Chen, X.; Fu, X.; Shi, G.; Wang, H. Regulation of the Osteogenesis of Pre-Osteoblasts by Spatial Arrangement of Electrospun Nanofibers in Two- and Three-Dimensional Environments. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1283–1292. DOI: 10.1016/j.nano.2013.04.013.
  • Teh, H.; Toh, L.; Goh, H. Aligned Hybrid Silk Scaffold for Enhanced Differentiation of Mesenchymal Stem Cells into Ligament Fibroblasts. Tissue Eng. C. 2011, 17, 687–703. DOI: 10.1089/ten.tec.2010.0513.
  • Wang, W.; Itoh, S.; Konno, K.; Kikkawa, T.; Ichinose, S.; Sakai, K.; Ohkuma, T.; Watabe, K. Effects of Schwann Cell Alignment along the Oriented Electrospun Chitosan Nanofibers on Nerve Regeneration. J. Biomed. Mater. Res. A. 2009, 91, 994–1005.
  • Cooper, A.; Jana, S.; Bhattarai, N.; Zhang, M. Aligned Chitosan-Based Nanofibers for Enhanced Myogenesis. J. Mater. Chem. 2010, 20, 8904–8911. DOI: 10.1039/c0jm01841d.
  • Gautam, S.; Chou, F.; Dinda, K.; Potdar, D.; Mishra, N. C. Surface Modification of Nanofibrous Polycaprolactone/Gelatin Composite Scaffold by Collagen Type I Grafting for Skin Tissue Engineering. Mater. Sci. Eng. C. 2014, 34, 402–409. DOI: 10.1016/j.msec.2013.09.043.
  • Li, J.; Tuli, R.; Okafor, C.; Derfoul, A.; Danielson, G.; Hall, J.; Tuan, S. A Three-Dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells. Biomaterials. 2005, 26, 599–609. DOI: 10.1016/j.biomaterials.2004.03.005.
  • Frenkel, R.; Di Cesare, E. Scaffolds for Articular Cartilage Repair. Ann. Biomed. Eng. 2004, 32, 26–34. DOI: 10.1023/B:ABME.0000007788.41804.0d.
  • Woodfield, T.; Bezemer, J.; Pieper, J.; Van Blitterswijk, C.; Riesle, J. Scaffolds for Tissue Engineering of Cartilage. Crit. Rev. Eukar. Gene Expr. 2002, 12, 28. DOI: 10.1615/CritRevEukarGeneExpr.v12.i3.40.
  • Wang, Y.; Blasioli, J.; Kim, J.; Kim, S.; Kaplan, L. Cartilage Tissue Engineering with Silk Scaffolds and Human Articular Chondrocytes. Biomaterials. 2006, 27, 4434–4442. DOI: 10.1016/j.biomaterials.2006.03.050.
  • Yoo, S.; Lee, A.; Yoon, J.; Park, G. Hyaluronic Acid Modified Biodegradable Scaffolds for Cartilage Tissue Engineering. Biomaterials. 2005, 26, 1925–1933. DOI: 10.1016/j.biomaterials.2004.06.021.
  • Gri On, D. J.; Sedighi, M. R.; Schae Er, D. V.; Eurell, J. A.; Johnson, A. L. Chitosan Sca Olds: Interconnective Pore Size and Cartilage Engineering. Acta Biomater. 2006, 2, 313–320.
  • Chang, Y.; Hung, H.; Chu, M.; Ko, S.; Lee, D. The Application of Type II Collagen and Chondroitin Sulfate Grafted PCL Porous Sca Old in Cartilage Tissue Engineering. J. Biomed. Mater. Res. A. 2010, 92, 712–723.
  • Rabea, I.; Badawy, T.; Stevens, V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules. 2003, 4, 1457–1465. DOI: 10.1021/bm034130m.
  • Jung, H.; Huh, W.; Meng, W.; Yuan, J.; Hyun, H.; Bae, J. S.; Hudson, S. M.; Kang, K. Preparation and Antibacterial Activity of PET/Chitosan Nanofibrous Mats Using an Electrospinning Technique. J. Appl. Polym. Sci. 2007, 105, 2816–2823. DOI: 10.1002/app.25594.
  • Boschetto, F.; Doan, H.; Vo, P.; Zanocco, M.; Zhu, W.; Sakai, W.; Adachi, T.; Ohgitani, E.; Tsutsum, N.; Mazda, O.; et al. Glass Nanofibers for Orthopedic Applications. Antibacterial and Osteoconductive Effects of Chitosan/Polyethylene Oxide (PEO)/Bioactive. Appl. Sci. 2020, 10, 2360. DOI: 10.3390/app10072360.
  • Sergi, R.; Cannillo, V.; Boccaccini, A.; Liverani, L. Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. Appl. Sci. 2020, 10, 5530. DOI: 10.3390/app10165530.
  • Van der Schueren, L.; De Schoenmaker, B.; Kalaoglu, Ö. I.; De Clerck, K. An Alternative Solvent System for the Steady State Electrospinning of Polycaprolactone. Eur. Polym. J. 2011, 47, 1256–1263. DOI: 10.1016/j.eurpolymj.2011.02.025.
  • Liverani, L.; Lacina, J.; Roether, A.; Boccardi, E.; Killian, M. S.; Schmuki, P.; Schubert, W.; Boccaccini, A. R. Incorporation of Bioactive Glass Nanoparticles in Electrospun PCL/Chitosan Fibers by Using Benign Solvents. Bioact. Mater. 2018, 3, 55–63. DOI: 10.1016/j.bioactmat.2017.05.003.
  • Liverani, L.; Boccaccini, A. Versatile Production of Poly(Epsilon-Caprolactone) Fibers by Electrospinning Using Benign Solvents. Nanomaterials. 2016, 6, 75. DOI: 10.3390/nano6040075.
  • Liverani, L.; Killian, S.; Boccaccini, R. Fibronectin Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalization. Front. Bioeng. Biotechnol. 2019, 7, 1–12.
  • Bellucci, D.; Salvatori, R.; Giannatiempo, J.; Anesi, A.; Bortolini, S.; Cannillo, A. New Bioactive Glass/Collagen Hybrid Composite for Applications in Dentistry. Materials. 2019, 12, 2079. DOI: 10.3390/ma12132079.
  • Bellucci, D.; Cannillo, V. A Novel Bioactive Glass Containing Strontium and Magnesium with Ultra-High Crystallization Temperature. Mater. Lett. 2018, 213, 67–70. DOI: 10.1016/j.matlet.2017.11.020.
  • Bellucci, D.; Salvatori, R.; Anesi, A.; Chiarini, L.; Cannillo, V. SBF Assays, Direct and Indirect Cell Culture Tests to Evaluate the Biological Performance of Bioglasses and Bioglass-Based Composites: Three Paradigmatic Cases. Mater. Sci. Eng. C. 2019, 96, 757–764. DOI: 10.1016/j.msec.2018.12.006.
  • Bellucci, D.; Veronesi, E.; Strusi, V.; Petrachi, T.; Murgia, A.; Mastrolia, I.; Dominici, M.; Cannillo, V. Human Mesenchymal Stem Cell Combined with a New Strontium-Enriched Bioactive Glass: An Ex-Vivo Model for Bone Regeneration. Materials. 2019, 12, 3633. DOI: 10.3390/ma12213633.
  • Bellucci, D.; Veronesi, E.; Dominici, M.; Cannillo, V. On the in Vitro Biocompatibility Testing of Bioactive Glasses. Materials. 2020, 13, 1816. DOI: 10.3390/ma13081816.
  • Elsayed, H.; Romero, R.; Bellucci, D.; Cannillo, V.; Bernardo, E. Advanced Open-Celled Structures from Low-Temperature Sintering of a Crystallization-Resistant Bioactive Glass. Materials. 2019, 12, 3653. DOI: 10.3390/ma12223653.
  • Sergi, R.; Bellucci, D.; Salvatori, R.; Cannillo, V. Chitosan Based Bioactive Glass Gauze: Microstructural Properties, in Vitro Bioactivity and Biological Tests. Materials. 2020, 13, 2819. DOI: 10.3390/ma13122819.
  • Sergi, R.; Bellucci, D.; Salvatori, R.; Maisetta, G.; Batoni, G.; Cannillo, V. Zinc Containing Bioactive Glasses with Ultra-High Crystallization Temperature, Good Biological Performance and Antibacterial Effects. Mater. Sci. Eng. C. 2019, 104, 109910. DOI: 10.1016/j.msec.2019.109910.
  • Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, M.; Misra, K.; Gilabert, J.; Valsami-Jones, E.; Sanchez, E.; Virtanen, S.; Boccaccini, R. Electrophoretic Deposition of ZnO/Alginate and ZnO-Bioactive Glass/Alginate Composite Coatings for Antimicrobial Applications. Mater. Sci. Eng. C. 2015, 55, 137–144. DOI: 10.1016/j.msec.2015.05.034.
  • Demir, M.; Ramos-Rivera, L.; Silva, R.; Nazhat, N.; Boccaccini, R. Zein-Based Composites in Biomedical Applications. J. Biomed. Mater. Res. 2017, 105, 1656–1665. DOI: 10.1002/jbm.a.36040.
  • Widholz, B.; Tsitlakidis, S.; Reible, B.; Moghaddam, A.; Westhauser, F. Pooling of Patient-Derived Mesenchymal Stromal Cells Reduces Inter-Individual Confounder-Associated Variation without Negative Impact on Cell Viability, Proliferation and Osteogenic Dierentiation. Cells. 2019, 8, 633. DOI: 10.3390/cells8060633.
  • Meyer, N.; Rivera, L.; Ellis, T.; Qi, J.; Ryan, M.; Boccaccini, A. Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition. Coatings. 2018, 8, 27. DOI: 10.3390/coatings8010027.
  • Melchels, F. P. W.; Domingos, M. A. N.; Klein, T. J.; Malda, J.; Bartolo, P. J.; Hutmacher, D. W. Additivemanufacturing of Tissues and Organs. Prog. Polym. Sci. 2012, 37, 1079–1104. DOI: 10.1016/j.progpolymsci.2011.11.007.
  • Schmitz, I.; Widholz, B.; Essers, C.; Becker, M.; Tulyaganov, U.; Moghaddam, A.; de Juan, G.; Westhauser, I. F. Superior Biocompatibility and Comparable Osteoinductive Properties: Sodium-Reduced Fluoride-Containing Bioactive Glass Belonging to the CaO–MgO–SiO2 System as a Promising Alternative to 45S5 Bioactive Glass. Bioact. Mater. 2020, 5, 55–65. DOI: 10.1016/j.bioactmat.2019.12.005.
  • Oves, M.; Rauf, M.; Ansari, M.; Warsi, M.; Hussain, A.; Ismail, I. 7 - Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering. In Woodhead Publishing Series in Biomaterials, Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering; Ahmad Bhawani, Showkat, Karim, Zoheb, Jawaid, Mohammad, Eds.; Woodhead Publishing: Cambridge, 2021, pp 103–129.
  • Nayak, A.; Maity, M.; Barik, H.; Nanda, S.; Hasnain, M.; Yi, D. 12 – Hydroxyapatite-Based Composites for Orthopedic Drug Delivery and Tissue Engineering. In Woodhead Publishing in Materials, Applications of Advanced Green Materials; Ahmed, Shakeel, Ed.; Woodhead Publishing: Cambridge, 2021, pp. 293–320.
  • Khan, M.; Haider, S.; Haider, A.; Razak, S.; Kadir, M.; Shah, S.; Javed, A.; Shakir, I.; Al-Zahrani, Z. Development of Porous, Antibacterial and Biocompatible GO/n-HAp/Bacterial Cellulose/β-Glucan Biocomposite Scaffold for Bone Tissue Engineering. Arabian. J. Chem. 2021, 14, 102924.] DOI: 10.1016/j.arabjc.2020.102924.
  • Liu, T.; Xu, J.; Pan, X.; Ding, Z.; Xie, H.; Wang, X.; Xie, H. Advances of Adipose-Derived Mesenchymal Stem Cells-Based Biomaterial Scaffolds for Oral and Maxillofacial Tissue Engineering. Bioact. Mater. 2021, 6, 2467–2478. DOI: 10.1016/j.bioactmat.2021.01.015.
  • Saatchi, A.; Arani, A.; Moghanian, A.; Mozafari, M. Synthesis and Characterization of Electrospun Cerium-Doped Bioactive Glass/Chitosan/Polyethylene Oxide Composite Scaffolds for Tissue Engineering Applications. Ceram. Int. 2021, 47, 260–271. DOI: 10.1016/j.ceramint.2020.08.130.
  • Vyas, C.; Zhang, J.; Øvrebø, O.; Huang, B.; Roberts, I.; Setty, M.; Allardyce, B.; Haugen, H.; Rajkhowa, R.; Bartolo, P. 3D Printing of Silk Microparticle Reinforced Polycaprolactone Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 118, 111433. DOI: 10.1016/j.msec.2020.111433.
  • Sofi, H. S.; Akram, T.; Shabir, N.; Vasita, R.; Jadhav, A. H.; Sheikh, F. A. Regenerated Cellulose Nanofibers from Cellulose Acetate: Incorporating Hydroxyapatite (HAp) and Silver (Ag) Nanoparticles (NPs), as a Scaffold for Tissue Engineering Applications. Mater. Sci. Eng C. Mater. Biol. Appl. 2021, 118, 111547. DOI: 10.1016/j.msec.2020.111547.
  • Radhakrishnan, S.; Nagarajan, S.; Belaid, H.; Farha, C.; Iatsunskyi, I.; Coy, E.; Soussan, L.; Huon, V.; Bares, J.; Belkacemi, K.; et al. Fabrication of 3D Printed Antimicrobial Polycaprolactone Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 118, 111525. DOI: 10.1016/j.msec.2020.111525.
  • Zarei, M.; Samimi, A.; Khorram, M.; Abdi, M.; Golestaneh, S. Fabrication and Characterization of Conductive Polypyrrole/Chitosan/Collagen Electrospun Nanofiber Scaffold for Tissue Engineering Application. Int. J. Biol. Macromol. 2021, 168, 175–186. DOI: 10.1016/j.ijbiomac.2020.12.031.
  • Oudadesse, H.; Najem, S.; Mosbahi, S.; Rocton, N.; Refifi, J.; El Feki, H.; Lefeuvre, B. Development of Hybrid Scaffold: Bioactive Glass Nanoparticles/Chitosan for Tissue Engineering Applications. J. Biomed. Mater. Res. 2021, 109, 590–599. DOI: 10.1002/jbm.a.37043.
  • Babilotte, J.; Martin, B.; Guduric, V.; Bareille, R.; Agniel, R.; Roques, S.; Héroguez, V.; Dussauze, M.; Gaudon, M.; Nihouannen, D.; Catros, S. Development and Characterization of a PLGA-HA Composite Material to Fabricate 3D-Printed Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng C. Mater. Biol. Appl. 2021, 118, 111334. DOI: 10.1016/j.msec.2020.111334.
  • Gautam, S.; Sharma, C.; Purohit, S.; Singh, H.; Dinda, A.; Potdar, P.; Chou, C.; Mishra, N. Gelatin-Polycaprolactone-Nanohydroxyapatite Electrospun Nanocomposite Scaffold for Bone Tissue Engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 119, 111588. DOI: 10.1016/j.msec.2020.111588.
  • Shanmugam, V.; Das, O.; Babu, K.; Marimuthu, U.; Veerasimman, A.; Johnson, D. J.; Neisiany, R. E.; Hedenqvist, M. S.; Ramakrishna, S.; Berto, F. Fatigue Behaviour of FDM-3D Printed Polymers, Polymeric Composites and Architected Cellular Materials. Int. J. Fatigue. 2021, 143, 106007. DOI: 10.1016/j.ijfatigue.2020.106007.
  • Kundu, K.; Afshar, A.; Katti, D.; Edirisinghe, M.; Katti, K. Composite Nanoclay-Hydroxyapatite-Polymer Fiber Scaffolds for Bone Tissue Engineering Manufactured Using Pressurized Gyration. Compos. Sci. Technol. 2021, 202, 108598. DOI: 10.1016/j.compscitech.2020.108598.
  • Ghorbani, M.; Roshangar, L. Construction of Collagen/Nanocrystalline Cellulose Based-Hydrogel Scaffolds: synthesis, Characterization, and Mechanical Properties Evaluation. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 142–148. DOI: 10.1080/00914037.2019.1695209.
  • Suo, H.; Zhang, J.; Xu, M.; Wang, L. Low-Temperature 3D Printing of Collagen and Chitosan Composite for Tissue Engineering. Mater. Sci. Eng C. Mater. Biol. Appl. 2021, 123, 111963. DOI: 10.1016/j.msec.2021.111963.
  • Hahn, L.; Maier, M.; Stahlhut, P.; Beudert, M.; Flegler, V.; Forster, S.; Altmann, A.; Töppke, F.; Fischer, K.; Seiffert, S.; et al. Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks. ACS. Appl. Mater. Interfaces. 2020, 12, 12445–12456. DOI: 10.1021/acsami.9b21282.
  • Hahn, L.; Karakaya, E.; Zorn, T.; Sochor, B.; Maier, M.; Stahlhut, P.; Forster, S.; Fischer, K.; Seiffert, S.; Pöppler, A. C.; et al. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-Oxazoline) Amphiphile. Biomacromolecules. 2021, 22(7): 3017–3027.
  • Adamkiewicz, M.; Rubinsky, B. Cryogenic 3D Printing for Tissue Engineering. Cryobiology. 2015, 71, 518–521. DOI: 10.1016/j.cryobiol.2015.10.152.
  • Pakhomova, C.; Popov, D.; Maltsev, E.; Akhatov, I.; Pasko, A. Software for Bioprinting. Int. J. Bioprint. 2020, 6, 279.
  • Tan, Z.; Parisi, C.; Di Silvio, L.; Dini, D.; Forte, A. E. Cryogenic 3D Printing of Super Soft Hydrogels. Sci. Rep. 2017, 7, 16293. DOI: 10.1038/s41598-017-16668-9.
  • Idumah, C.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32, 413–457.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Bio-Composites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. PolymEng. 2016, 36, 877–889.
  • Idumah, C.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14, 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C. I. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Thermoplast. Compos. Mater. 2020,
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf Reinforced Polymer Nanocomposites. J. Therm. Compos. Mater. 2020, 33, 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym.-Plast. Technol. Eng. 2019, 58, 1054–1109.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2020, 29, 509–527. 0967391120913658.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2020, 29, 246–258. 0967391120910882.
  • Idumah, C. I.; Odera, S. R. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Poly-Plast. Technol. Mater. 2020, 59, 1167–1190.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer Nano-Biocomposites. Polym. Plast. Technol. Mater. 2020, 60, 233–252.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Synth. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I. Novel Trends in Magnetic Polymeric Nanoarchitectures. Polym. Plast. Technol. Mater. 2020, 60, 830–848.
  • Idumah, C.; Ezeani, E.; Nwuzor, I. A Review: advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Mater. 2020, 60, 756–783.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2020, 100879.
  • Idumah, C. I. Influence of Nanotechnology in Polymeric Textiles, Applications, and Fight against COVID-19. J. Textile. Inst. 2020, 1–21. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bionanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020, 1–18. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Iheoma, N. Novel Trends in Plastic Wastes Management. SN Appl. Sci. 2019, 1, 1402. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I. Novel Trends in Self-healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 34, 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ezika, A. C.; Okpechi, V. U. Emerging Trends in Polymer Aerogel Nanoarchitectures. Surfaces. Interf. Appl. Surf. Interf. 25, 101258.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanoarchitectures and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021, 1–14.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitectures and Applications. Curr Res Green Sustainable Chem. 2021, 4, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Ezika, A.; Okpechi, V. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interfaces. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2021, 29, 509–527.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34, 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: advancements in Conductive Polymers Nanocomposites. Polym-Plast Technol Mater. 2021, 60, 756–783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2021, 29, 246–258.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites. Polym.-Plast. Technol. Mater. 2021, 1–13.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing anti-Fouling Coatings for Marine Environment. Saf. Extreme. Environ. 2021, 3, 9–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.