267
Views
2
CrossRef citations to date
0
Altmetric
Articles

Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action

, , &
Pages 1303-1318 | Received 20 May 2021, Accepted 27 Jul 2021, Published online: 15 Aug 2021

References

  • Çebi, A. T.; Kasapoğlu, M. B.; Eren, S.; Kasapoğlu, Ç. Comparison of the Effects of Diclofenac Potassium and Tenoxicam on Postoperative Pain, Swelling, and Trismus Following Third Molar Surgery. Turk. J. Med. Sci. 2018, 48, 271–278. DOI: 10.3906/sag-1702-100.
  • Kołodziejska, J.; Kołodziejczyk, M. Diclofenac in the Treatment of Pain in Patients with Rheumatic Diseases. Reumatologia. 2018, 56, 174–183. DOI: 10.5114/reum.2018.76816.
  • Atzeni, F.; Masala, I. F.; Sarzi-Puttini, P. A Review of Chronic Musculoskeletal Pain: Central and Peripheral Effects of Diclofenac. Pain Ther. 2018, 7, 163–177. DOI: 10.1007/s40122-018-0100-2.
  • Cilurzo, F.; Minghetti, P.; Pagani, S.; Casiraghi, A.; Montanari, L. Design and Characterization of an Adhesive Matrix Based on a Poly(ethyl acrylate, methyl methacrylate). AAPS PharmSciTech. 2008, 9, 748–754. DOI: 10.1208/s12249-008-9102-4.
  • Affaitati, G.; Martelletti, P.; Lopopolo, M.; Tana, C.; Massimini, F.; Cipollone, F.; Lapenna, D.; Giamberardino, M. A.; Costantini, R. Use of Nonsteroidal Anti-Inflammatory Drugs for Symptomatic Treatment of Episodic Headache. Pain Pract. 2017, 17, 392–401. DOI: 10.1111/papr.12461.
  • Barros, N. R.; Chagas, P. A. M.; Borges, F. A.; Gemeinder, J. L. P.; Miranda, M. C. R.; Garms, B. C.; Herculano, R. D. Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier. J. Mater. 2015, 2015, 1–7. DOI: 10.1155/2015/807948.
  • Xu, P. G.; Lei, X. F.; Ren, B. D.; Lv, S. Y.; Zhang, J. L. Diclofenac Transdermal Patch Versus the Sustained Release Tablet: A Randomized Clinical Trial in Rheumatoid Arthritic Patients. Trop. J. Pharm. Res. 2017, 16, 477–482. DOI: 10.4314/tjpr.v16i2.29.
  • Balde, A.; Hasan, A.; Joshi, I.; Nazeer, R. A. Preparation and Optimization of Chitosan Nanoparticles from Discarded Squilla (Carinosquilla multicarinata) Shells for the Delivery of Anti-Inflammatory Drug: Diclofenac. J. Air Waste Manag. Assoc. 2020, 70, 1227–1235. DOI: 10.1080/10962247.2020.1727588.
  • Leppert, W.; Malec–Milewska, M.; Zajaczkowska, R.; Wordliczek, J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules. 2018, 23, 681–697. DOI: 10.3390/molecules23030681.
  • Vijayakumar, M. R.; Sathali, A. H.; Arun, K. Formulation and Evaluation of Diclofanac Potassium Ethosomes. Int. J. Pharm. Pharm. Sci. 2010, 2, 82–86.
  • Zhang, Y.; Cun, D.; Kong, X.; Fang, L. Design and Evaluation of a Novel Transdermal Patch Containing Diclofenac and Teriflunomide for Rheumatoid Arthritis Therapy. Asian J. Pharm. Sci. 2014, 9, 251–259. DOI: 10.1016/j.ajps.2014.07.007.
  • Yariv, D.; Efrat, R.; Libster, D.; Aserin, A.; Garti, N. In Vitro Permeation of Diclofenac Salts from Lyotropic Liquid Crystalline Systems. Colloids Surf. B Biointerfaces. 2010, 78, 185–192. DOI: 10.1016/j.colsurfb.2010.02.029.
  • Amjadi, M.; Sheykhansari, S.; Nelson, B. J.; Sitti, M. Recent Advances in Wearable Transdermal Delivery Systems. Adv. Mater. 2018, 30, 1–19. DOI: 10.1002/adma.201704530.
  • Hoffman, A. S. The Origins and Evolution of “Controlled” Drug Delivery systems. J. Control Release. 2008, 132, 153–163. DOI: 10.1016/j.jconrel.2008.08.012.
  • Soto, F.; Jeerapan, I.; Silva-López, C.; Lopez-Ramirez, M. A.; Chai, I.; Xiaolong, L.; Lv, J.; Kurniawan, J. F.; Martin, I.; Chakravarthy, K. Noninvasive Transdermal Delivery System of Lidocaine Using an Acoustic Droplet-Vaporization Based Wearable Patch. Small. 2018, 14, 1–5. DOI: 10.1002/smll.201803266.
  • Thakkar, S.; Misra, M. Electrospun Polymeric Nanofibers: New Horizons in Drug Delivery. Eur. J. Pharm. Sci. 2017, 107, 148–167. DOI: 10.1016/j.ejps.2017.07.001.
  • Gil-Castell, O.; Badia, J. D.; Ontoria-Oviedo, I.; Castellano, D.; Sepúlveda, P.; Ribes-Greus, A. Polycaprolactone/Gelatin-Based Scaffolds with Tailored Performance: In Vitro and In Vivo Validation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110296–110214. DOI: 10.1016/j.msec.2019.110296.
  • Khatti, T.; Naderi-Manesh, H.; Kalantar, S. M. Polypyrrole-Coated Polycaprolactone-Gelatin Conductive Nanofibers: Fabrication and Characterization. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019, 250, 114440–114448. DOI: 10.1016/j.mseb.2019.114440.
  • Li, D.; Chen, W.; Sun, B.; Li, H.; Wu, T.; Ke, Q.; Huang, C.; Ei-Hamshary, H.; Al-Deyab, S. S.; Mo, X. A Comparison of Nanoscale and Multiscale PCL/Gelatin Scaffolds Prepared by Disc-Electrospinning. Colloids Surf. B Biointerfaces. 2016, 146, 632–641. DOI: 10.1016/j.colsurfb.2016.07.009.
  • Aytac, Z.; Ipek, S.; Erol, I.; Durgun, E.; Uyar, T. Fast-Dissolving Electrospun Gelatin Nanofibers Encapsulating Ciprofloxacin/Cyclodextrin Inclusion Complex. Colloids Surf B Biointerfaces. 2019, 178, 129–136. DOI: 10.1016/j.colsurfb.2019.02.059.
  • Kannaiyan, J.; Khare, S.; Narayanan, S.; Mahuvawalla, F. Fabrication of Electrospun Polycaprolactone/Gelatin Composite Nanofibrous Scaffolds with Cellular Responses. Am. J. Nano Res. App. 2019, 7, 11–20. DOI: 10.11648/J.NANO.20190702.11.
  • Samadian, H.; Ehterami, A.; Sarrafzadeh, A.; Khastar, H.; Nikbakht, M.; Rezaei, A.; Chegini, L.; Salehi, M. Sophisticated Polycaprolactone/Gelatin Nanofibrous Nerve Guided Conduit Containing Platelet-Rich Plasma and Citicoline for Peripheral Nerve Regeneration: In Vitro and In Vivo Study. Int. J. Biol. Macromol. 2020, 150, 380–388. DOI: 10.1016/j.ijbiomac.2020.02.102.
  • Jiang, Y. C.; Jiang, L.; Huang, A.; Wang, X. F.; Li, Q.; Turng, L. S. Electrospun Polycaprolactone/Gelatin Composites with Enhanced Cell-Matrix Interactions as Blood Vessel Endothelial Layer Scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 901–908. DOI: 10.1016/j.msec.2016.10.083.
  • Huang, Y.; Shi, R.; Gong, M.; Zhang, J.; Li, W.; Song, Q.; Wu, C.; Tian, W. Icariin-Loaded Electrospun PCL/Gelatin Sub-Microfiber Mat for Preventing Epidural Adhesions After Laminectomy. Int. J. Nanomed. 2018, 13, 4831–4844. DOI: 10.2147/IJN.S169427.
  • Chong, E. J.; Phan, T. T.; Lim, I. J.; Zhang, Y. Z.; Bay, B. H.; Ramakrishna, S.; Lim, C. T. Evaluation of Electrospun PCL/Gelatin Nanofibrous Scaffold for Wound Healing and Layered Dermal Reconstitution. Acta Biomater. 2007, 3, 321–330. DOI: 10.1016/j.actbio.2007.01.002.
  • Ajmal, G.; Bonde, G. V.; Mittal, P.; Khan, G.; Pandey, V. K.; Bakade, B. V.; Mishra, B. Biomimetic PCL-Gelatin Based Nanofibers Loaded with Ciprofloxacin Hydrochloride and Quercetin: A Potential Antibacterial and Anti-Oxidant Dressing Material for Accelerated Healing of a Full Thickness Wound. Int. J. Pharm. 2019, 567, 118480–118412. DOI: 10.1016/j.ijpharm.2019.118480.
  • Goudarzi, Z. M.; Behzad, T.; Ghasemi-Mobarakeh, L.; Kharaziha, M.; Enayati, M. S. Structural and Mechanical Properties of Fibrous Poly (Caprolactone)/Gelatin Nanocomposite Incorporated with Cellulose Nanofibers. Polym. Bull. 2020, 77, 717–740. DOI: 10.1007/s00289-019-02756-5.
  • Daelemans, L.; Steyaert, I.; Schoolaert, E.; Goudenhooft, C.; Rahier, H.; Clerck, K. Nanostructured Hydrogels by Blend Electrospinning of Polycaprolactone/Gelatin Nanofibers. J. Nanomater. 2018, 8, 1–12. DOI: 10.3390/nano8070551.
  • Hivechi, A.; Bahrami, S. H.; Siegel, R. A. Investigation of Morphological, Mechanical and Biological Properties of Cellulose Nanocrystal Reinforced Electrospun Gelatin Nanofibers. Int. J. Biol. Macromol. 2019, 124, 411–417. DOI: 10.1016/j.ijbiomac.2018.11.214.
  • Ren, K.; Wang, Y.; Sun, T.; Yue, W.; Zhang, H. Electrospun PCL/Gelatin Composite Nanofiber Structures for Effective Guided Bone Regeneration Membranes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 324–332. DOI: 10.1016/j.msec.2017.04.084.
  • Zhou, Q.; Zhang, H.; Zhou, Y.; Yu, Z.; Yuan, H.; Feng, B.; Rijn, P.; Zhang, Y. Alkali-Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite Nanofibers for Tissue Scaffolding. Macromol. Biosci. 2017, 17, 1–10. DOI: 10.1002/mabi.201700268.
  • Yang, F.; Both, S. K.; Yang, X.; Walboomers, X. F.; Jansen, J. A. Development of an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application. Acta Biomater. 2009, 5, 3295–3304. DOI: 10.1016/j.actbio.2009.05.023.
  • Miraftab, M.; Saifullah, A. N.; Çay, A. Physical Stabilisation of Electrospun Poly(Vinyl Alcohol) Nanofibres: Comparative Study on Methanol and Heat-Based Crosslinking. J. Mater. Sci. 2015, 50, 1943–1957. DOI: 10.1007/s10853-014-8759-1.
  • El-Newehy, M. H.; El-Naggar, M. E.; Alotaiby, S.; El-Hamshary, H.; Moydeen, M.; Al-Deyab, S. Preparation of Biocompatible System Based on Electrospun CMC/PVA Nanofibers as Controlled Release Carrier of Diclofenac Sodium. J. Macromol. Sci. Part. A Pure Appl. Chem. 2016, 53, 566–573. DOI: 10.1080/10601325.2016.1201752.
  • Costa, P.; Lobo, J. M. S. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. DOI: 10.1016/S0928-0987(01)00095-1.
  • Moydeen, A. M.; Padusha, M. S. A.; Aboelfetoh, E. F.; Al-Deyab, S. S.; El-Newehy, M. H. Fabrication of Electrospun Poly(Vinyl Alcohol)/Dextran Nanofibers Via Emulsion Process as Drug Delivery System: Kinetics and In Vitro Release Study. Int. J. Biol. Macromol. 2018, 116, 1250–1259. DOI: 10.1016/j.ijbiomac.2018.05.130.
  • Bolzinger, M. A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of Drugs Through Skin, a Complex Rate-Controlling Membrane. Curr. Opin. Colloid Interface Sci. 2012, 17, 156–165. DOI: 10.1016/j.cocis.2012.02.001.
  • Godin, B.; Touitou, E. Transdermal Skin Delivery: Predictions for Humans from In Vivo, Ex Vivo and Animal Models. Adv. Drug Deliv. Rev. 2007, 59, 1152–1161. DOI: 10.1016/j.addr.2007.07.004.
  • Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine Ear Skin: An In Vitro Model for Human Skin. Skin Res. Technol. 2007, 13, 19–24. DOI: 10.1111/j.1600-0846.2006.00179.x.
  • Nikkola, L.; Morton, T.; Balmayor, E. R.; Jukola, H.; Harlin, A.; Redl, H.; Griensven, M.; Ashammakhi, N. Fabrication of Electrospun Poly(D,L Lactide-Co-Glycolide)80/20 Scaffolds Loaded with Diclofenac Sodium for Tissue Engineering Surgery. Eur. J. Med. Res. 2015, 20, 4–11. DOI: 10.1186/s40001-015-0145-1.
  • Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Van Dijck, A.; Mensch, J.; Noppe, M.; Brewster, M. E. Incorporation of Drugs in an Amorphous State into Electrospun Nanofibers Composed of a Water-Insoluble, Nonbiodegradable Polymer. J. Control Release. 2003, 92, 349–360. DOI: 10.1016/S0168-3659(03)00342-0.
  • Shen, X.; Yu, D.; Zhu, L.; Branford-White, C.; White, K.; Chatterton, N. P. Electrospun Diclofenac Sodium Loaded Eudragit® L 100-55 Nanofibers for Colon-Targeted Drug Delivery. Int. J. Pharm. 2011, 408, 200–207. DOI: 10.1016/j.ijpharm.2011.01.058.
  • Haider, A.; Haider, S.; Kang, I. K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem 2018, 11, 1165–1188. DOI: 10.1016/j.arabjc.2015.11.015.
  • Tariq, I.; Mumtaz, A. M.; Saeed, T.; Shah, P. A.; Raza, S. A.; Jawa, N. H.; Ali, M. Y.; Abbas, G. In Vitro Release Studies of Diclofenac Potassium Tablet from Pure and Blended Mixture of Hydrophilic and Hydrophobic Polymers. Lat. Am. J. Pharm 2012, 31, 380–387.
  • Hana, Y. K.; Faudoneb, S. N.; Zittob, G.; Bonafedea, S. L.; Rosascoa, M. A.; Segalla, A. I. Physicochemical Characterization of Physical Mixture and Solid Dispersion of Diclofenac Potassium with Mannitol. J. Appl. Pharm. Sci. 2017, 7, 204–208. DOI: 10.7324/JAPS.2017.70130.
  • Kuppan, P.; Sethuraman, S.; Krishnan, U. M. PCL and PCL-Gelatin Nanofibers as Esophageal Tissue Scaffolds: Optimization, Characterization and Cell-Matrix Interactions. Artic. J. Biomed. Nanotechnol. 2013, 9, 1540–1555. DOI: 10.1166/jbn.2013.1653.
  • Ki, C. S.; Baek, D. H.; Gang, K. D.; Lee, K. H.; Um, I. C.; Park, Y. H. Characterization of Gelatin Nanofiber Prepared from Gelatin-Formic Acid Solution. Polymer. 2005, 46, 5094–5102. DOI: 10.1016/j.polymer.2005.04.040.
  • Zhang, Y. Z.; Venugopal, J.; Huang, Z. M.; Lim, C. T.; Ramakrishna, S. Crosslinking of the Electrospun Gelatin Nanofibers. Polymer. 2006, 47, 2911–2917. DOI: 10.1016/j.polymer.2006.02.046.
  • Sobral, P. J. A.; Habitante, A. M. Q. B. Phase Transitions of Pigskin Gelatin. Food Hydrocoll. 2001, 15, 377–382. DOI: 10.1016/S0268-005X(01)00060-1.
  • Fini, A.; Garuti, M.; Fazio, G.; Alvarez-Fuentes, J.; Holgado, M. A. Diclofenac Salts. I. Fractal and Thermal Analysis of Sodium and Potassium Diclofenac Salts. J. Pharm. Sci. 2001, 90, 2049–2057. DOI: 10.1002/jps.1156.
  • Qandil, A. M.; Assaf, S. M.; Ani, E. A.; Yassin, A. E.; Obaidat, A. A. Sustained-Release Diclofenac Potassium Orally Disintegrating Tablet Incorporating Eudragit ERL/ERS: Possibility of Specific Diclofenac-Polymer Interaction. J. Pharm. Investig. 2013, 43, 171–183. DOI: 10.1007/s40005-013-0065-4.
  • Fukushima, K.; Tabuani, D.; Camino, G. Nanocomposites of PLA and PCL Based on Montmorillonite and Sepiolite. Mater. Sci. Eng. C. 2009, 29, 1433–1441. DOI: 10.1016/j.msec.2008.11.005.
  • Sivalingam, G.; Madras, G. Thermal Degradation of Binary Physical Mixtures and Copolymers of Poly(Ε-Caprolactone), Poly(D, L-Lactide), Poly(Glycolide). Polym. Degrad. Stab. 2004, 84, 393–398. DOI: 10.1016/j.polymdegradstab.2003.12.008.
  • Rodríguez-Rodríguez, R.; García-Carvajal, Z. Y.; Jiménez-Palomar, I.; Jiménez-Avalos, J. A.; Espinosa-Andrews, H. Development of Gelatin/Chitosan/PVA Hydrogels: Thermal Stability, Water State, Viscoelasticity, and Cytotoxicity Assays. J. Appl. Polym. Sci. 2019, 136, 47149–47149. DOI: 10.1002/app.47149.
  • Mullah, M. F.; Joseph, L.; Arfat, Y. A.; Ahmed, J. Thermal Properties of Gelatin and Chitosan. In Glass Transition Phase Transitions Food and Biological Materials, 1st ed.; Ahmed, J., Ed.; John Wiley & Sons: Chennai, 2017; pp 281–304.
  • Saghebasl, S.; Davaran, S.; Rahbarghazi, R.; Montaseri, A.; Salehi, R.; Ramazani, A. Synthesis and In Vitro Evaluation of Thermosensitive Hydrogel Scaffolds Based on (Pnipaam-PCL-PEG-PCL-Pnipaam)/Gelatin And (PCL-PEG-PCL)/Gelatin for Use in Cartilage Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2018, 29, 1185–1206. DOI: 10.1080/09205063.2018.1447627.
  • Carbinatto, F. M.; Castro, A. D.; Evangelista, R. C.; Cury, B. S. F. Insights into the Swelling Process and Drug Release Mechanisms from Cross-Linked Pectin/High Amylose Starch Matrices. Asian J. Pharm. Sci. 2014, 9, 27–34. DOI: 10.1016/j.ajps.2013.12.002.
  • Nagarajan, S.; Bechelany, M.; Kalkura, N. S.; Miele, P.; Bohatier, C. P.; Balme, S. Electrospun Nanofibers for Drug Delivery in Regenerative Medicine. In Applications of Targeted Nano Drugs and Delivery Systems, 1st ed.; Mohapatra, S. S., Ranjan, S., Dasgupta, N., Mishra, R. K., Thomas, S., Eds.; Elsevier: ■, 2019; pp 595–625
  • Dulnik, J.; Denis, P.; Sajkiewicz, P.; Kołbuk, D.; Choińska, E. Biodegradation of Bicomponent PCL/Gelatin and PCL/Collagen Nanofibers Electrospun from Alternative Solvent System. Polym. Degrad. Stab. 2016, 130, 10–21. DOI: 10.1016/j.polymdegradstab.2016.05.022.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Ramakrishna, S. Electrospun Poly(epsilon-caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials 2008, 29, 4532–4539. DOI: 10.1016/j.biomaterials.2008.08.007.
  • Cho, Y. W.; Lee, J.; Lee, S. C.; Huh, K. M.; Park, K. Hydrotropic Agents for Study of In Vitro Paclitaxel Release from Polymeric Micelles. J Control Release. 2004, 97, 249–257. DOI: 10.1016/j.jconrel.2004.03.013.
  • Kajdič, S.; Planinšek, O.; Gašperlin, M.; Kocbek, P. Electrospun Nanofibers for Customized Drug-Delivery Systems. J. Drug Deliv. Sci. Technol. 2019, 51, 672–681. DOI: 10.1016/j.jddst.2019.03.038.
  • Mwiiri, F. K.; Daniels, R. Electrospun Nanofibers for Biomedical Applications. In Delivery of Drugs Volume 2: Expectations and Realities of Multifunctional Drug Delivery System, 1st ed.; Shegokar, R., Ed.; Elsevier: Zimmern, 2020, pp 53–74.
  • Goonoo, N.; Bhaw-Luximon, A.; Jhurry, D. Drug Loading and Release from Electrospun Biodegradable Nanofibers. J. Biomed. Nanotechnol. 2014, 10, 2173–2199. DOI: 10.1166/jbn.2014.1885.
  • Peppas, N. A.; Narasimhan, B. Mathematical Models in Drug Delivery: How Modeling Has Shaped the Way We Design New Drug Delivery Systems. J Control Release. 2014, 190, 75–81. DOI: 10.1016/j.jconrel.2014.06.041.
  • Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta. Pol. Pharm. Drug Res. 2010, 67, 217–223. PMID: 20524422.
  • Baishya, H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J. Dev. Drugs. 2017, 6, 1–8. DOI: 10.4172/2329-6631.1000171.
  • Singhvi, G.; Singh, M. Review: In-Vitro Drug Release Characterization Models. Int. J. Pharm. Stud. Res. 2011, 2, 77–84.
  • Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. [Database] DOI: 10.1016/0378-5173(83)90064-9.
  • Lopes, C. M.; Lobo, J. M. S.; Costa, P. Formas Farmacêuticas de Liberação Modificada: Polímeros Hidrifílicos. Rev. Bras. Cienc. Farm. 2005, 41, 143–154. DOI: 10.1590/S1516-93322005000200003.
  • Iikura, H.; Uchida, K.; Ogawa-Fuse, C.; Bito, K.; Naitou, S.; Hosokawa, M.; Uchida, T.; Sano, T.; Todo, H.; Sugibayashi, K. Effects of Temperature and Humidity on the Skin Permeation of Hydrophilic and Hydrophobic Drugs. AAPS PharmSciTech. 2019, 20, 1–9. DOI: 10.1208/s12249-019-1481-1.
  • Bouwstra, J. A.; Graaff, A.; Gooris, G. S.; Nijsse, J.; Wiechers, J. W.; Van Aelst, A. C. Water Distribution and Related Morphology in Human Stratum Corneum at Different Hydration Levels. J. Invest. Dermatol. 2003, 120, 750–758. DOI: 10.1046/j.1523-1747.2003.12128.x.
  • Vyumvuhore, R.; Tfayli, A.; Duplan, H.; Delalleau, A.; Manfait, M.; Baillet-Guffroy, A. Effects of Atmospheric Relative Humidity on Stratum Corneum Structure at the Molecular Level: Ex Vivo Raman Spectroscopy Analysis. Analyst 2013, 138, 4103–4111. DOI: 10.1039/c3an00716b.
  • Folzer, E.; Gonzalez, D.; Singh, R.; Derendorf, H. Comparison of Skin Permeability for Three Diclofenac Topical Formulations: An In Vitro Study. Pharmazie. 2014, 69, 27–31. DOI: 10.1691/ph.2014.3087.
  • Minghetti, P.; Cilurzo, F.; Casiraghi, A.; Montanari, L.; Fini, A. Ex Vivo Study of Transdermal Permeation of Four Diclofenac Salts from Different Vehicles. J. Pharm. Sci. 2007, 96, 814–823. DOI: 10.1002/jps.20770.
  • Rainsford, K. D.; Kean, W. F.; Ehrlich, G. E. Review of the Pharmaceutical Properties and Clinical Effects of the Topical NSAID Formulation, Diclofenac Epolamine. Curr. Med. Res. Opin. 2008, 24, 2967–2992. DOI: 10.1185/03007990802381364.
  • Altman, R.; Bosch, B.; Brune, K.; Patrignani, P.; Young, C. Advances in NSAID Development: Evolution of Diclofenac Products Using Pharmaceutical Technology. Drugs 2015, 75, 859–877. DOI: 10.1007/s40265-015-0392-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.