256
Views
0
CrossRef citations to date
0
Altmetric
Articles

Novel silicone rubber with carboxyl grafted polyhedral oligomeric silsesquioxane (POSS-COOH) as a potential scaffold for soft tissue filling

, , , , , , , & show all
Pages 162-179 | Received 20 Jul 2021, Accepted 26 Oct 2021, Published online: 12 Nov 2021

References

  • Kang, S. H.; Sutthiwanjampa, C.; Heo, C. Y.; Kim, W. S.; Lee, S. H.; Park, H. Current Approaches Including Novel Nano/Microtechniques to Reduce Silicone Implant-Induced Contracture with Adverse Immune Responses. IJMS 2018, 19, 1171. DOI: 10.3390/ijms19041171.
  • Duteille, F.; Perrot, P.; Bacheley, M. H.; Stewart, S. Eight-Year Safety Data for Round and Anatomical Silicone Gel Breast Implants. Aesthet. Surg. J. 2018, 38, 151–161. DOI: 10.1093/asj/sjx117.
  • Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of Silicone Surface Modification Techniques and Coatings for Antibacterial/Antimicrobial Applications to Improve Breast Implant Surfaces. Acta Biomater. 2021, 121, 68–88. DOI: 10.1016/j.actbio.2020.11.020.
  • Yoon, S.; Chang, J. H. Short-Term Safety of a Silicone Gel-Filled Breast Implant: A Manufacturer-Sponsored, Retrospective Study. Plast. Reconstr. Surg. Glob. Open. 2020, 8, e2807. DOI: 10.1097/GOX.0000000000002807.
  • Baker, J. E.; Seitz, A. P.; Boudreau, R. M.; Skinner, M. J.; Beydoun, A.; Kaval, N.; Caldwell, C. C.; Gulbins, E.; Edwards, M. J.; Gobble, R. M. Doxycycline-Coated Silicone Breast Implants Reduce Acute Surgical-Site Infection and Inflammation. Plast. Reconstr. Surg. 2020, 146, 1029–1041. DOI: 10.1097/PRS.0000000000007277.
  • Mempin, M.; Hu, H.; Chowdhury, D.; Deva, A.; Vickery, K. The A, B and C's of Silicone Breast Implants: Anaplastic Large Cell Lymphoma, Biofilm and Capsular Contracture. Materials 2018, 11, 2393. DOI: 10.3390/ma11122393.
  • Virden, C. P.; Dobke, M. K.; Paul, S.; Lowell Parsons, C.; Frank, D. H. Subclinical Infection of the Silicone Breast Implant Surface as a Possible Cause of Capsular Contracture. Aesthetic Plast. Surg. 2020, 44, 1141–1147. DOI: 10.1007/s00266-020-01816-w.
  • Manav, S.; Ayhan, M. S.; Deniz, E.; Özkoçer, E.; Elmas, Ç.; Yalinay, M.; Şahin, E. Capsular Contracture around Silicone Miniimplants following Bacterial Contamination: An In Vivo Comparative Experimental Study between Textured and Polyurethane Implants. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 1747–1757. DOI: 10.1016/j.bjps.2020.02.049.
  • Shin, B. H.; Kim, B. H.; Kim, S.; Lee, K.; Choy, Y. B.; Heo, C. Y. Silicone Breast Implant Modification Review: Overcoming Capsular Contracture. Biomater. Res. 2018, 22, 37. DOI: 10.1186/s40824-018-0147-5.
  • Vieira, V. J.; D'Acampora, A.; Neves, F. S.; Mendes, P. R.; Vasconcellos, Z. A.; Neves, R. D.; Figueiredo, C. P. Capsular Contracture in Silicone Breast Implants: Insights from Rat Models. An. Acad. Bras. Cienc. 2016, 88, 1459–1470. DOI: 10.1590/0001-3765201620150874.
  • McGuire, P.; Reisman, N. R.; Murphy, D. K. Risk Factor Analysis for Capsular Contracture, Malposition, and Late Seroma in Subjects Receiving Natrelle 410 Form-Stable Silicone Breast Implants. Plast. Reconstr. Surg. 2017, 139, 1–9. DOI: 10.1097/PRS.0000000000002837.
  • Boudot, C.; Kuhn, M.; Kuhn-Kauffeldt, M.; Schein, J. Vacuum Arc Plasma Deposition of Thin Titanium Dioxide Films on Silicone Elastomer as a Functional Coating for Medical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 508–514. DOI: 10.1016/j.msec.2016.12.045.
  • Ren, T. B.; Weigel, T.; Groth, T.; Lendlein, A. Microwave Plasma Surface Modification of Silicone Elastomer with Allylamine for Improvement of Biocompatibility. J. Biomed. Mater. Res. A. 2008, 86, 209–219. DOI: 10.1002/jbm.a.31508.
  • Ling, T.; Lin, J.; Tu, J.; Liu, S.; Weng, W.; Cheng, K.; Wang, H.; Du, P.; Han, G. Mineralized Collagen Coatings Formed by Electrochemical Deposition. J. Mater. Sci. Mater. Med. 2013, 24, 2709–2718. DOI: 10.1007/s10856-013-5028-9.
  • Shi, X. H.; Wang, S. L.; Zhang, Y. M.; Wang, Y. C.; Yang, Z.; Zhou, X.; Lei, Z. Y.; Fan, D. L. Hydroxyapatite-Coated Sillicone Rubber Enhanced Cell Adhesion and It May Be Through The Interaction of EF1β and γ-Actin. PLoS One 2014, 9, e111503 DOI: 10.1371/journal.pone.0111503.
  • Wang, S. L.; Shi, X. H.; Yang, Z.; Zhang, Y. M.; Shen, L. R.; Lei, Z. Y.; Zhang, Z. Q.; Cao, C.; Fan, D. L. Osteopontin (OPN) Is an Important Protein to Mediate Improvements in the Biocompatibility of C Ion-Implanted Silicone Rubber. PLoS One 2014, 9, e98320. DOI: 10.1371/journal.pone.0098320.
  • Zhou, X.; Chen, X.; Mao, T. C.; Li, X.; Shi, X. H.; Fan, D. L.; Zhang, Y. M. Carbon Ion Implantation: A Good Method to Enhance the Biocompatibility of Silicone Rubber. Plast. Reconstr. Surg. 2016, 137, 690e–699e. DOI: 10.1097/PRS.0000000000002022.
  • Yoo, B. Y.; Kim, B. H.; Lee, J. S.; Shin, B. H.; Kwon, H.; Koh, W. G.; Heo, C. Y. Dual Surface Modification of PDMS-Based Silicone Implants to Suppress Capsular Contracture. Acta Biomater. 2018, 76, 56–70. DOI: 10.1016/j.actbio.2018.06.022.
  • Kim, B. H.; Park, M.; Park, H. J.; Lee, S. H.; Choi, S. Y.; Park, C. G.; Han, S. M.; Heo, C. Y.; Choy, Y. B. Prolonged, Acute Suppression of Cysteinyl Leukotriene to Reduce Capsular Contracture around Silicone Implants. Acta Biomater. 2017, 51, 209–219. DOI: 10.1016/j.actbio.2017.01.033.
  • Steiert, A. E.; Boyce, M.; Sorg, H. Capsular Contracture by Silicone Breast Implants: Possible Causes, Biocompatibility, and Prophylactic Strategies. Med. Dev. 2013, 6, 211–218. DOI: 10.2147/MDER.S49522.
  • Matsuoka, M.; Akasaka, T.; Hashimoto, T.; Totsuka, Y.; Watari, F. Improvement in Cell Proliferation on Silicone Rubber by Carbon Nanotube Coating. Biomed. Mater. Eng. 2009, 19, 155–162. DOI: 10.3233/BME-2009-0575.
  • Shi, G.; Che, Y. X.; Wu, L. Y.; Rong, Y.; Ni, C. H. Synthesis and Characterization of Polypyrrole Doped by Cage Silsesquioxane with Carboxyl Groups. Korean J. Chem. Eng. 2017, 34, 470–475. DOI: 10.1007/s11814-016-0296-y.
  • Tanaka, K.; Ishiguro, F.; Chujo, Y. POSS Ionic Liquid. J. Am. Chem. Soc. 2010, 132, 17649–17651. DOI: 10.1021/ja105631j.
  • Ghanbari, H.; Cousins, B. G.; Seifalian, A. M. A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS). Macromol. Rapid Commun. 2011, 32, 1032–1046. DOI: 10.1002/marc.201100126.
  • Ghanbari, H.; de Mel, A.; Seifalian, A. M. Cardiovascular Application of Polyhedral Oligomeric Silsesquioxane Nanomaterials: A Glimpse into Prospective Horizons. Int. J. Nanomedicine 2011, 6, 775–786. DOI: 10.2147/IJN.S14881.
  • Wang, J. C.; Du, W. N.; Zhang, Z. T.; Gao, W. Y.; Li, Z. J. Biomass/Polyhedral Oligomeric Silsesquioxane Nanocomposites: Advances in Preparation Strategies and Performances. J. Appl. Polym. Sci. 2021, 138, 18. DOI: 10.1002/app.49641.
  • Rybiński, P.; Syrek, B.; Bradło, D.; Żukowski, W. Effect of POSS Particles and Synergism Action of POSS and Poly-(Melamine Phosphate) on the Thermal Properties and Flame Retardance of Silicone Rubber Composites. Materials 2018, 11, 1298. DOI: 10.3390/ma11081298.
  • Lee, M. J.; Sung, A. Y. Polyhedral Oligomeric Silsesquioxane Based Silicone Ophthalmic Contact Lens Material Containing Neodymium Nanoparticles. J. Nanosci. Nanotechnol. 2021, 21, 4625–4631. DOI: 10.1166/jnn.2021.19290.
  • Song, X.; Zhang, X.; Li, T.; Li, Z.; Chi, H. Mechanically Robust Hybrid POSS Thermoplastic Polyurethanes with Enhanced Surface Hydrophobicity. Polymers 2019, 11, 373. DOI: 10.3390/polym11020373.
  • van der Houwen, E. B.; Kuiper, L. H.; Burgerhof, J. G.; van der Laan, B. F.; Verkerke, G. J. Functional Buckling Behavior of Silicone Rubber Shells for Biomedical Use. J. Mech. Behav. Biomed. Mater. 2013, 28, 47–54. DOI: 10.1016/j.jmbbm.2013.07.002.
  • Li, M.; Neoh, K. G.; Xu, L. Q.; Wang, R.; Kang, E. T.; Lau, T.; Olszyna, D. P.; Chiong, E. Surface Modification of Silicone for Biomedical Applications Requiring Long-Term Antibacterial, Antifouling, and Hemocompatible Properties. Langmuir 2012, 28, 16408–16422. DOI: 10.1021/la303438t.
  • Bae, H. S.; Son, H. Y.; Lee, J. P.; Chang, H.; Park, J. U. The Role of Periostin in Capsule Formation on Silicone Implants. Biomed. Res. Int. 2018, 2018, 3167037. DOI: 10.1155/2018/3167037.
  • Kim, J. B.; Jeon, H. J.; Lee, J. W.; Choi, K. Y.; Chung, H. Y.; Cho, B. C.; Park, S. H.; Park, M. H.; Bae, J. S.; Yang, J. D. A Murine Model of Radiation-Induced Capsule-Tissue Reactions Around Smooth Silicone Implants. J. Plast. Surg. Hand Surg. 2018, 52, 217–224. DOI: 10.1080/2000656X.2018.1444617.
  • de Faria Castro Fleury, E.; D'Alessandro, G. S.; Lordelo Wludarski, S. C. Silicone-Induced Granuloma of Breast Implant Capsule (SIGBIC): Histopathology and Radiological Correlation. J. Immunol. Res. 2018, 2018, 6784971 DOI: 10.1155/2018/6784971.
  • Ganon, S.; Morinet, S.; Serror, K.; Mimoun, M.; Chaouat, M.; Boccara, D. Epidemiology and Prevention of Breast Prosthesis Capsular Contracture Recurrence. Aesthetic Plast. Surg. 2021, 45, 15–23. DOI: 10.1007/s00266-020-01876-y.
  • Oe, S.; Masum, M. A.; Ichii, O.; Nishimura, T.; Nakamura, T.; Namba, T.; Otani, Y.; Nakayama, Y.; Elewa, Y. H. A.; Kon, Y. Spatiotemporal Histological Changes Observed in Mouse Subcutaneous Tissues during the Foreign Body Reaction to Silicone. J. Biomed. Mater. Res. A. 2021, 109, 1220–1231. DOI: 10.1002/jbm.a.37115.
  • Bachour, Y. Capsular Contracture in Breast Implant Surgery: Where Are We Now and Where Are We Going? Aesthetic Plast. Surg. 2021, 45, 1328–1337. DOI: 10.1007/s00266-021-02141-6.
  • Arima, Y.; Iwata, H. Effect of Wettability and Surface Functional Groups on Protein Adsorption and Cell Adhesion Using Well-Defined Mixed Self-Assembled Monolayers. Biomaterials 2007, 28, 3074–3082. DOI: 10.1016/j.biomaterials.2007.03.013.
  • Hasan, A.; Pattanayek, S. K.; Pandey, L. M. Effect of Functional Groups of Self-Assembled Monolayers on Protein Adsorption and Initial Cell Adhesion. ACS Biomater. Sci. Eng. 2018, 4, 3224–3233. DOI: 10.1021/acsbiomaterials.8b00795.
  • Zhao, P.; Chen, L.; Shao, H.; Zhang, Y.; Sun, Y.; Ke, Y.; Ramakrishna, S.; He, L.; Xue, W. Cytotoxic and Adhesion-Associated Response of NIH-3T3 Fibroblasts to COOH-Functionalized Multi-Walled Carbon Nanotubes. Biomed. Mater. 2016, 11, 015021. DOI: 10.1088/1748-6041/11/1/015021.
  • Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173. DOI: 10.1021/cr900201r.
  • Au-Yeung, H. L.; Tam, A. Y.; Leung, S. Y.; Yam, V. W. Supramolecular Assembly of Platinum-Containing Polyhedral Oligomeric Silsesquioxanes: An Interplay of Intermolecular Interactions and a Correlation between Structural Modifications and Morphological Transformations. Chem. Sci. 2017, 8, 2267–2276. DOI: 10.1039/c6sc04169h.
  • Li, B.; Ma, Y.; Wang, S.; Moran, P. M. Influence of Carboxyl Group Density on Neuron Cell Attachment and Differentiation Behavior: Gradient-Guided Neurite Outgrowth. Biomaterials 2005, 26, 4956–4963. DOI: 10.1016/j.biomaterials.2005.01.018.
  • Hutter, H.; Vogel, B. E.; Plenefisch, J. D.; Norris, C. R.; Proenca, R. B.; Spieth, J.; Guo, C.; Mastwal, S.; Zhu, X.; Scheel, J.; Hedgecock, E. M. Conservation and Novelty in the Evolution of Cell Adhesion and Extracellular Matrix Genes. Science 2000, 287, 989–994. DOI: 10.1126/science.287.5455.989.
  • Park, D.; Wershof, E.; Boeing, S.; Labernadie, A.; Jenkins, R. P.; George, S.; Trepat, X.; Bates, P. A.; Sahai, E. Extracellular Matrix Anisotropy is Determined by TFAP2C-Dependent Regulation of Cell Collisions. Nat. Mater. 2020, 19, 227–238. DOI: 10.1038/s41563-019-0504-3.
  • Xing, H.; Lee, H.; Luo, L.; Kyriakides, T. R. Extracellular Matrix-Derived Biomaterials in Engineering Cell Function. Biotechnol. Adv. 2020, 42, 107421 DOI: 10.1016/j.biotechadv.2019.107421.
  • Grolman, J. M.; Weinand, P.; Mooney, D. J. Extracellular Matrix Plasticity as a Driver of Cell spreading. Proc. Natl. Acad. Sci. U S A. 2020, 117, 25999–26007. DOI: 10.1073/pnas.2008801117.
  • Cabral-Pacheco, G. A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuna, J. M.; Perez-Romero, B. A.; Guerrero-Rodriguez, J. F.; Martinez-Avila, N.; Martinez-Fierro, M. L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. IJMS 2020, 21,9739. DOI: 10.3390/ijms2124.
  • Kuno, K.; Terashima, Y.; Matsushima, K. ADAMTS-1 Is an Active Metalloproteinase Associated with the Extracellular Matrix. J. Biol. Chem. 1999, 274, 18821–18826. DOI: 10.1074/jbc.274.26.18821.
  • Chen, S. Z.; Ning, L. F.; Xu, X.; Jiang, W. Y.; Xing, C.; Jia, W. P.; Chen, X. L.; Tang, Q. Q.; Huang, H. Y. The miR-181d-Regulated Metalloproteinase Adamts1 Enzymatically Impairs Adipogenesis via ECM Remodeling. Cell Death Differ. 2016, 23, 1778–1791. DOI: 10.1038/cdd.2016.66.
  • Schmitz, P.; Gerber, U.; Schutze, N.; Jungel, E.; Blaheta, R.; Naggi, A.; Torri, G.; Bendas, G. Cyr61 is a Target for Heparin in Reducing MV3 Melanoma Cell Adhesion and Migration via the Integrin VLA-4. Thromb. Haemost. 2013, 110, 1046–1054. DOI: 10.1160/TH13-02-0158.
  • Kassis, J. N.; Virador, V. M.; Guancial, E. A.; Kimm, D.; Ho, A. S.; Mishra, M.; Chuang, E. Y.; Cook, J.; Gius, D.; Kohn, E. C. Genomic and Phenotypic Analysis Reveals a Key Role for CCN1 (CYR61) in BAG3-Modulated Adhesion and Invasion. J. Pathol. 2009, 218, 495–504. DOI: 10.1002/path.2557.
  • Hernandez, J. L.; Park, J.; Yao, S.; Blakney, A. K.; Nguyen, H. V.; Katz, B. H.; Jensen, J. T.; Woodrow, K. A. Effect of Tissue Microenvironment on Fibrous Capsule Formation to Biomaterial-Coated Implants. Biomaterials 2021, 273, 120806. DOI: 10.1016/j.biomaterials.2021.120806.
  • Katzel, E. B.; Koltz, P. F.; Tierney, R.; Williams, J. P.; Awad, H. A.; O'Keefe, R. J.; Langstein, H. N. The Impact of Smad3 Loss of Function on TGF-β Signaling and Radiation-Induced Capsular Contracture. Plast. Reconstr. Surg. 2011, 127, 2263–2269. DOI: 10.1097/PRS.0b013e3182131bea.
  • Luo, K. Signaling Cross Talk between TGF-Beta/Smad and Other Signaling Pathways. Cold Spring Harb. Perspect. Biol. 2017, 9, a022137. DOI: 10.1101/cshperspect.a022137.
  • Hu, H.-H.; Chen, D.-Q.; Wang, Y.-N.; Feng, Y.-L.; Cao, G.; Vaziri, N. D.; Zhao, Y.-Y. New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chem. Biol. Interact. 2018, 292, 76–83. DOI: 10.1016/j.cbi.2018.07.008.
  • Polager, S.; Ginsberg, D. E2F - At the Crossroads of Life and Death. Trends Cell Biol. 2008, 18, 528–535. DOI: 10.1016/j.tcb.2008.08.003.
  • Takagi, J.; Petre, B. M.; Walz, T.; Springer, T. A. Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling. Cell 2002, 110, 599–511. DOI: 10.1016/S0092-8674(02)00935-2.
  • Jean, C.; Gravelle, P.; Fournie, J. J.; Laurent, G. Influence of Stress on Extracellular Matrix and Integrin Biology. Oncogene 2011, 30, 2697–2706. DOI: 10.1038/onc.2011.27.
  • Kleinschmidt, E. G.; Schlaepfer, D. D. Focal Adhesion Kinase Signaling in Unexpected Places. Curr. Opin. Cell Biol. 2017, 45, 24–30. DOI: 10.1016/j.ceb.2017.01.003.
  • Cohen, L. A.; Guan, J. L. Mechanisms of Focal Adhesion Kinase Regulation. Curr. Cancer Drug Targets. 2005, 5, 629–643. DOI: 10.2174/156800905774932798.
  • Parsons, J. T.; Horwitz, A. R.; Schwartz, M. A. Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension. Nat. Rev. Mol. Cell Biol. 2010, 11, 633–643. DOI: 10.1038/nrm2957.
  • Webb, D. J.; Parsons, J. T.; Horwitz, A. F. Adhesion Assembly, Disassembly and Turnover in Migrating Cells - over and over and over again. Nat. Cell Biol. 2002, 4, E97–E100. DOI: 10.1038/ncb0402-e97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.