160
Views
5
CrossRef citations to date
0
Altmetric
Articles

Evaluation of dermal growth of keratinocytes derived from foreskin in co-culture condition with mesenchymal stem cells on polyurethane/gelatin/amnion scaffold

, , , , , , , & show all
Pages 386-396 | Received 03 Aug 2021, Accepted 10 Dec 2021, Published online: 30 Dec 2021

References

  • Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P. X.; Guo, B. Degradable Conductive Injectable Hydrogels as Novel Antibacterial, Anti-Oxidant Wound Dressings for Wound Healing. Chem. Eng. J. 2019, 362, 548–560. DOI: 10.1016/j.cej.2019.01.028.
  • Ajmal, G.; Bonde, G. V.; Thokala, S.; Mittal, P.; Khan, G.; Singh, J.; Pandey, V. K.; Mishra, B. Ciprofloxacin HCl and Quercetin Functionalized Electrospun Nanofiber Membrane: Fabrication and Its Evaluation in Full Thickness Wound Healing. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 228–240. DOI: 10.1080/21691401.2018.1548475.
  • Chouhan, D.; Lohe, T-u.; Thatikonda, N.; Naidu, V.; Hedhammar, M.; Mandal, B. B. Silkworm Silk Scaffolds Functionalized with Recombinant Spider Silk Containing a Fibronectin Motif Promotes Healing of Full-Thickness Burn Wounds. ACS Biomater. Sci. Eng. 2019, 5, 4634–4645. DOI: 10.1021/acsbiomaterials.9b00887.
  • Granick, M. S.; Baetz, N. W.; Labroo, P.; Milner, S.; Li, W. W.; Sopko, N. A. In Vivo Expansion and Regeneration of Full-Thickness Functional Skin with an Autologous Homologous Skin Construct: Clinical Proof of Concept for Chronic Wound Healing. Int Wound J. 2019, 16, 841–846. DOI: 10.1111/iwj.13109.
  • Liang, Y.; Zhao, X.; Hu, T.; Chen, B.; Yin, Z.; Ma, P. X.; Guo, B. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing. Small 2019, 15, 1900046. DOI: 10.1002/smll.201900046.
  • Ma, K.; Liao, S.; He, L.; Lu, J.; Ramakrishna, S.; Chan, C. K. Effects of Nanofiber/Stem Cell Composite on Wound Healing in Acute Full-Thickness Skin Wounds. Tissue Eng. Part A. 2011, 17, 1413–1424. DOI: 10.1089/ten.TEA.2010.0373.
  • Nafiu, A. B.; Rahman, M. T. Anti-Inflammatory and Antioxidant Properties of Unripe Papaya Extract in an Excision Wound Model. Pharm. Biol. 2015, 53, 662–671. DOI: 10.3109/13880209.2014.936470.
  • Xue, J.; He, M.; Liang, Y.; Crawford, A.; Coates, P.; Chen, D.; Shi, R.; Zhang, L. Fabrication and Evaluation of Electrospun PCL-Gelatin Micro-/Nanofiber Membranes for Anti-Infective GTR Implants. J. Mater. Chem. B. 2014, 2, 6867–6877. DOI: 10.1039/c4tb00737a.
  • Celebioglu, A.; Umu, O. C.; Tekinay, T.; Uyar, T. Antibacterial Electrospun Nanofibers from Triclosan/Cyclodextrin Inclusion Complexes. Colloids Surf. B Biointerfaces. 2014, 116, 612–619. DOI: 10.1016/j.colsurfb.2013.10.029.
  • Chhabra, R.; Peshattiwar, V.; Pant, T.; Deshpande, A.; Modi, D.; Sathaye, S.; Tibrewala, A.; Dyawanapelly, S.; Jain, R.; Dandekar, P.; et al. In Vivo Studies of 3D Starch–Gelatin Scaffolds for Full-Thickness Wound Healing. ACS Appl. Bio Mater. 2020, 3, 2920–2929. DOI: 10.1021/acsabm.9b01139.
  • Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P. D.; Chen, D.; Shi, R.; Zhang, L. Drug Loaded Homogeneous Electrospun PCL/Gelatin Hybrid Nanofiber Structures for anti-Infective Tissue Regeneration Membranes. Biomaterials 2014, 35, 9395–9405. DOI: 10.1016/j.biomaterials.2014.07.060.
  • Kim, S. E.; Heo, D. N.; Lee, J. B.; Kim, J. R.; Park, S. H.; Jeon, S. H.; Kwon, I. K. Electrospun Gelatin/Polyurethane Blended Nanofibers for Wound Healing. Biomed. Mater. 2009, 4, 044106. DOI: 10.1088/1748-6041/4/4/044106.
  • Nasiry, D.; Khalatbary, A. R.; Abdollahifar, M.-A.; Amini, A.; Bayat, M.; Noori, A.; Piryaei, A. Engraftment of Bioengineered Three-Dimensional Scaffold from Human Amniotic Membrane-Derived Extracellular Matrix Accelerates Ischemic Diabetic Wound Healing. Arch. Dermatol. Res. 2021, 313, 1–16. DOI: 10.1007/s00403-021-02312-0.
  • Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Ijms. 2020, 21, 1306. DOI: 10.3390/ijms21041306.
  • Milan, P. B.; Lotfibakhshaiesh, N.; Joghataie, M. T.; Ai, J.; Pazouki, A.; Kaplan, D. L.; Kargozar, S.; Amini, N.; Hamblin, M. R.; Mozafari, M.; et al. Accelerated Wound Healing in a Diabetic Rat Model Using Decellularized Dermal Matrix and Human Umbilical Cord Perivascular Cells. Acta Biomater. 2016, 45, 234–246. DOI: 10.1016/j.actbio.2016.08.053.
  • Li, P.; Guo, X. A Review: therapeutic Potential of Adipose-Derived Stem Cells in Cutaneous Wound Healing and Regeneration. Stem Cell Res. Ther. 2018, 9, 1–7. DOI: 10.1186/s13287-018-1044-5.
  • Hassanshahi, A.; Hassanshahi, M.; Khabbazi, S.; Hosseini-Khah, Z.; Peymanfar, Y.; Ghalamkari, S.; Su, Y.-W.; Xian, C. J. Adipose-Derived Stem Cells for Wound Healing. J. Cell. Physiol. 2019, 234, 7903–7914. DOI: 10.1002/jcp.27922.
  • Hosseinzadeh, S.; Soleimani, M.; Rezayat, S. M.; Ai, J.; Vasei, M. The Activation of Satellite Cells by Nanofibrous Poly ε-Caprolacton Constructs. J. Biomater. Appl. 2014, 28, 801–812. DOI: 10.1177/0885328213481072.
  • Esmaeili, E.; Soleimani, M.; Ghiass, M. A.; Hatamie, S.; Vakilian, S.; Zomorrod, M. S.; Sadeghzadeh, N.; Vossoughi, M.; Hosseinzadeh, S. Magnetoelectric Nanocomposite Scaffold for High Yield Differentiation of Mesenchymal Stem Cells to Neural-Like Cells. J. Cell. Physiol. 2019, 234, 13617–13628. DOI: 10.1002/jcp.28040.
  • Hosseinzadeh, S.; Esnaashari, S.; Sadeghpour, O.; Hamedi, S. Predictive Modeling of Phenolic Compound Release from Nanofibers of Electrospun Networks for Application in Periodontal Disease. J. Polym. Eng. 2016, 36, 457–464. DOI: 10.1515/polyeng-2015-0178.
  • Hosseinzadeh, S.; Zarei-Behjani, Z.; Bohlouli, M.; Khojasteh, A.; Ghasemi, N.; Salehi-Nik, N. Fabrication and Optimization of Bioactive Cylindrical Scaffold Prepared by Electrospinning for Vascular Tissue Engineering. Iran. Polym. J. 2021, 30, 1–15. DOI: 10.1007/s13726-021-00983-0.
  • Christensen, M. B.; Oberg, K.; Wolchok, J. C. Tensile Properties of the Rectal and Sigmoid Colon: A Comparative Analysis of Human and Porcine Tissue. Springerplus 2015, 4, 1–10. DOI: 10.1186/s40064-015-0922-x.
  • Lambertz, D.; Pérot, C.; Almeida-Silveira, M. I.; Goubel, F. Changes in Stiffness Induced by Hindlimb Suspension in Rat Achilles Tendon. Eur. J. Appl. Physiol. 2000, 81, 252–257. DOI: 10.1007/s004210050039.
  • Hasmad, H.; Yusof, M. R.; Mohd Razi, Z. R.; Hj Idrus, R. B.; Chowdhury, S. R. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration. Tissue Eng. Part C Methods. 2018, 24, 368–378. DOI: 10.1089/ten.TEC.2017.0447.
  • Arasteh, S.; Kazemnejad, S.; Khanjani, S.; Heidari-Vala, H.; Akhondi, M. M.; Mobini, S. Fabrication and Characterization of Nano-Fibrous Bilayer Composite for Skin Regeneration Application. Methods 2016, 99, 3–12. DOI: 10.1016/j.ymeth.2015.08.017.
  • Aghmiuni, A. I.; Keshel, S. H.; Sefat, F.; AkbarzadehKhiyavi, A. Fabrication of 3D Hybrid Scaffold by Combination Technique of Electrospinning-like and Freeze-Drying to Create Mechanotransduction Signals and Mimic Extracellular Matrix Function of Skin. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111752. DOI: 10.1016/j.msec.2020.111752.
  • McHale, G.; Rowan, S. M.; Newton, M.; Banerjee, M. K. Evaporation and the Wetting of a Low-Energy Solid Surface. J. Phys. Chem. B. 1998, 102, 1964–1967. DOI: 10.1021/jp972552i.
  • Hosseinzadeh, S.; Hamedi, S.; Esmaeili, E.; Kabiri, M.; Babaie, A.; Soleimani, M.; Ardeshirylajimi, A. Mucoadhesive Nanofibrous Membrane with anti-Inflammatory Activity. Polym. Bull. 2019, 76, 4827–4840. DOI: 10.1007/s00289-018-2618-1.
  • Murphy, S. V.; Skardal, A.; Nelson, R. A.; Sunnon, K.; Reid, T.; Clouse, C.; Kock, N. D.; Jackson, J.; Soker, S.; Atala, A. Amnion Membrane Hydrogel and Amnion Membrane Powder Accelerate Wound Healing in a Full Thickness Porcine Skin Wound Model. Stem Cells Transl. Med. 2020, 9, 80–92. DOI: 10.1002/sctm.19-0101.
  • Demétrio da Silva, V.; dos Santos, L. M.; Subda, S. M.; Ligabue, R.; Seferin, M.; Carone, C. L. P.; Einloft, S. Synthesis and Characterization of Polyurethane/Titanium Dioxide Nanocomposites Obtained by in Situ Polymerization. Polym. Bull. 2013, 70, 1819–1833. DOI: 10.1007/s00289-013-0927-y.
  • Zamanlui, S.; Mahmoudifard, M.; Soleimani, M.; Bakhshandeh, B.; Vasei, M.; Faghihi, S. Enhanced Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells on PCL/PLGA Electrospun with Different Alignments and Compositions. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 50–60. DOI: 10.1080/00914037.2017.1297941.
  • Zamanlui, S.; Amirabad, L. M.; Soleimani, M.; Faghihi, S. Influence of Hydrodynamic Pressure on Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Cultured in Perfusion System. Biologicals 2018, 56, 1–8. DOI: 10.1016/j.biologicals.2018.04.004.
  • Chen, J.; Zhou, Y.; Nan, Q.; Sun, Y.; Ye, X.; Wang, Z. Synthesis, Characterization and Infrared Emissivity Study of Polyurethane/TiO2 Nanocomposites. Appl. Surf. Sci. 2007, 253, 9154–9158. DOI: 10.1016/j.apsusc.2007.05.046.
  • Esmaeili, E.; Khalili, M.; Sohi, A. N.; Hosseinzadeh, S.; Taheri, B.; Soleimani, M. Dendrimer Functionalized Magnetic Nanoparticles as a Promising Platform for Localized Hyperthermia and Magnetic Resonance Imaging Diagnosis. J. Cell. Physiol. 2019, 234, 12615–12624. DOI: 10.1002/jcp.27849.
  • Chao, S. C.; Wang, M.-J.; Pai, N.-S.; Yen, S.-K. Preparation and Characterization of Gelatin-Hydroxyapatite Composite Microspheres for Hard Tissue Repair. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 113–122. DOI: 10.1016/j.msec.2015.07.047.
  • Jackson, M.; Haris, P. I.; Chapman, D. Conformational Transitions in Poly (L-Lysine): Studies Using Fourier Transform Infrared Spectroscopy. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1989, 998, 75–79. DOI: 10.1016/0167-4838(89)90121-0.
  • González Flórez, A. I.; Mucha, E.; Ahn, D.-S.; Gewinner, S.; Schöllkopf, W.; Pagel, K.; von Helden, G. Charge-Induced Unzipping of Isolated Proteins to a Defined Secondary Structure. Angew. Chem. Int. Ed. Engl. 2016, 55, 3295–3299. DOI: 10.1002/anie.201510983.
  • Pelton, J. T.; McLean, L. R. Spectroscopic Methods for Analysis of Protein Secondary Structure. Anal. Biochem. 2000, 277, 167–176. DOI: 10.1006/abio.1999.4320.
  • Kyogoku, Y.; Higuchi, S.; Tsuboi, M. Intra-Red Absorption Spectra of the Single Crystals of 1-Methyl-Thymine, 9-Methyladenine and Their 1: 1 Complex. Spectrochimica Acta Part A: Molecular Spectroscopy 1967, 23, 969–983. DOI: 10.1016/0584-8539(67)80022-9.
  • Diaz, M. A. L.; D'Angelo, J. A.; Del Fueyo, G. M.; Carrizo, M. A. FTIR Spectroscopic Features of the Pteridosperm Ruflorinia Orlandoi and Host Rock (Springhill Formation, Lower Cretaceous, Argentina). J. South Am. Earth Sci. 2020, 99, 102520. DOI: 10.1016/j.jsames.2020.102520.
  • Guo, X.; Kaplunovsky, A.; Zaka, R.; Wang, C.; Rana, H.; Turner, J. Modulation of Cell Attachment, Proliferation, and Angiogenesis by Decellularized, Dehydrated Human Amniotic Membrane in in Vitro Models. Wounds: a Compendium of Clinical Research and Practice 2016, 29, 28–38.
  • Krishnamurithy, G.; Shilpa, P.; Ahmad, R.; Sulaiman, S.; Ng, C.; Kamarul, T. Human Amniotic Membrane as a Chondrocyte Carrier Vehicle/Substrate: In Vitro Study. J. Biomed. Mater. Res. A. 2011, 99, 500–506. DOI: 10.1002/jbm.a.33184.
  • Piran, M.; Shiri, M.; Soufi Zomorrod, M.; Esmaeili, E.; Soufi Zomorrod, M.; Vazifeh Shiran, N.; Mahboudi, H.; Daneshpazhouh, H.; Dehghani, N.; Hosseinzadeh, S.; et al. Electrospun Triple‐Layered PLLA/Gelatin. PRGF/PLLA Scaffold Induces Fibroblast Migration. J. Cell. Biochem. 2019, 120, 11441–11453. DOI: 10.1002/jcb.28422.
  • Paramio, J. M.; Casanova, M. L.; Segrelles, C.; Mittnacht, S.; Lane, E. B.; Jorcano, J. L. Modulation of Cell Proliferation by Cytokeratins K10 and K16. Mol. Cell. Biol. 1999, 19, 3086–3094. DOI: 10.1128/MCB.19.4.3086.
  • Chavez-Munoz, C.; Nguyen, K. T.; Xu, W.; Hong, S.-J.; Mustoe, T. A.; Galiano, R. D. Transdifferentiation of Adipose-Derived Stem Cells into Keratinocyte-like Cells: engineering a Stratified Epidermis. PLOS One. 2013, 8, e80587. DOI: 10.1371/journal.pone.0080587.
  • Ranjbarvan, P.; Mahmoudifard, M.; Kehtari, M.; Babaie, A.; Hamedi, S.; Mirzaei, S.; Soleimani, M.; Hosseinzadeh, S. Natural Compounds for Skin Tissue Engineering by Electrospinning of nylon-Beta Vulgaris. Asaio J. 2018, 64, 261–269. DOI: 10.1097/MAT.0000000000000611.
  • Jin, E.; Kim, T. H.; Han, S.; Kim, S. W. Amniotic Epithelial Cells Promote Wound Healing in Mice through High Epithelialization and Engraftment. J Tissue Eng. Regen. Med. 2016, 10, 613–622. DOI: 10.1002/term.2069.
  • Hosseinzadeh, S.; Soleimani, M.; Vossoughi, M.; Ranjbarvan, P.; Hamedi, S.; Zamanlui, S.; Mahmoudifard, M. Study of Epithelial Differentiation and Protein Expression of Keratinocyte-Mesenchyme Stem Cell co-Cultivation on Electrospun Nylon/B. Vulgaris Extract Composite Scaffold. Mater Sci Eng C Mater Biol Appl. 2017, 75, 653–662. DOI: 10.1016/j.msec.2017.02.101.
  • Nour, S.; Imani, R.; Chaudhry, G. R.; Sharifi, A. M. Skin Wound Healing Assisted by Angiogenic Targeted Tissue Engineering: A Comprehensive Review of Bioengineered Approaches. J. Biomed. Mater. Res. A. 2021, 109, 453–478. DOI: 10.1002/jbm.a.37105.
  • Lantis, J. C.; Paredes, J. A. Topical Wound Care Treatment and Indications for Their Use. The Diabetic Foot: Springer 2018, 281–304.
  • Ashhurst, J. J. Barton Professor of Surgery and Professor of Clinical Surgery, University of. Univ of Pennsylvania Medical Bulletin: Volume I-XXIII October, 1888 to February, 1911 1892; 4: 41.
  • Levine, M. S. Morphology of the Esophagus; Springer: Dysphagia, 2017. pp 385–410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.