383
Views
0
CrossRef citations to date
0
Altmetric
Articles

Targeted and fluorescence traceable multifunctional host-guest supramolecular gene delivery platform based on poly(cyclodextrin) and rhodamine conjugated disulfide-containing azobenzene-terminated branched polymer

, , , &
Pages 472-484 | Received 16 Aug 2021, Accepted 11 Jan 2022, Published online: 26 Jan 2022

References

  • Guo, X.; Huang, L. Recent Advances in Nonviral Vectors for Gene Delivery. Acc. Chem. Res. 2012, 45, 971–979. DOI: 10.1021/ar200151m.
  • Wu, J.; Li, R. K. Ultrasound-Targeted Microbubble Destruction in Gene Therapy: A New Tool to Cure Human Diseases. Genes Dis. 2017, 4, 64–74. DOI: 10.1016/j.gendis.2016.08.001.
  • Naldini, L. Gene Therapy Returns to Centre Stage. Nature 2015, 526, 351–360. DOI: 10.1038/nature15818.
  • Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral Cancer Gene Therapy: Delivery Cascade and Vector Nanoproperty Integration. Adv. Drug Deliver. Rev. 2017, 115, 115–154. DOI: 10.1016/j.addr.2017.07.021.
  • Sarvari, R.; Nouri, M.; Agbolaghi, S.; Roshangar, L.; Sadrhaghighi, A.; Seifalian, A. M.; Keyhanvar, P. A Summary on Non-Viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. 2022, 71, 246–265. DOI: 10.1080/00914037.2020.1825081.
  • Rabiee, N.; Bagherzadeh, M.; Tavakolizadeh, M.; Pourjavadi, A.; Atarod, M.; Webster, T. J. Synthesis, Characterization and Mechanistic Study of Nano Chitosan Tetrazole as a Novel and Promising Platform for CRISPR Delivery. Int. J. Polym. Mater. 2022, 71, 116–126. DOI: 10.1080/00914037.2020.1809405.
  • Chen, J.; Wang, K.; Wu, J.; Tian, H.; Chen, X. Polycations for Gene Delivery: Dilemmas and Solutions. Bioconjugate Chem. 2019, 30, 338–349. DOI: 10.1021/acs.bioconjchem.8b00688.
  • Shi, B.; Zheng, M.; Tao, W.; Chung, R.; Jin, D.; Ghaffari, D.; Farokhzad, O. C. Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules 2017, 18, 2231–2246. DOI: 10.1021/acs.biomac.7b00803.
  • Lin, G.; Li, L.; Panwar, N.; Wang, J.; Tjin, S. C.; Wang, X. K.; Yong, T. Non-Viral Gene Therapy Using Multifunctional Nanoparticles: Status, Challenges, and Opportunities. Coordin. Chem. Rev. 2018, 374, 133–152. DOI: 10.1016/j.ccr.2018.07.001.
  • Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv. Mater. 2017, 29, 1606628. DOI: 10.1002/adma.201606628.
  • Ogris, M.; Brunner, S.; Schuller, S.; Kircheis, R.; Wagner, E. PEGylated DNA/Transferrin-PEI Complexes: Reduced Interaction with Blood Components, Extended Circulation in Blood and Potential for Systemic Gene Delivery. Gene Ther. 1999, 6, 595–605. DOI: 10.1038/sj.gt.3300900.
  • Massaro, M.; Barone, G.; Biddeci, G.; Cavallaro, G.; Di Blasi, F.; Lazzara, G.; Nicotra, G.; Spinella, C.; Spinelli, G.; Riela, S. Halloysite Nanotubes-Carbon Dots Hybrids Multifunctional Nanocarrier with Positive Cell Target Ability as a Potential Non-Viral Vector for Oral Gene Therapy. J. Colloid Interf. Sci. 2019, 552, 236–246. DOI: 10.1016/j.jcis.2019.05.062.
  • Santhosh, K.; Saji, U.; Chong, S.; In-Kyu, P. Trigger-Responsive Gene Transporters for Anticancer Therapy. Nanomaterials 2017, 7, 120. DOI: 10.3390/nano7060120.
  • Singh, R.; Jha, D.; Gautam, H. K.; Kumar, P. Supramolecular Self-Assemblies of Engineered Polyethylenimines as Multifunctional Nanostructures for DNA Transportation with Excellent Antimicrobial Activity. Bioorg. Chem. 2021, 106, 104463–104463. DOI: 10.1016/j.bioorg.2020.104463.
  • Tang, F.; Liu, J.Y.; Wu, C.Y.; Liang, Y.X.; Lu, Z.L.; Ding, A.X.; Xu, M.D. Two-Photon near-Infrared AIE Luminogens as Multifunctional Gene Carriers for Cancer Theranostics. ACS Appl. Mater. Interfaces 2021, 13, 23384–23395. DOI: 10.1021/acsami.1c02600.
  • Zhu, H.; An, J.; Pang, C.; Chen, S.; Li, W.; Liu, J.; Chen, Q.; Gao, H. A Multifunctional Polymeric Gene Delivery System for Circumventing Biological Barriers. J. Mater. Chem. B 2019, 7, 384–392. DOI: 10.1039/C8TB03069C.
  • Zeng, M.; Zhou, D.; Alshehri, F.; Lara-Sáez, I.; Lyu, Y.; Creagh-Flynn, J.; Xu, Q.; A, S.; Zhang, J.; Wang, W. Manipulation of Transgene Expression in Fibroblast Cells by a Multifunctional Linear-Branched Hybrid Poly (β-Amino Ester) Synthesized through an Oligomer Combination Approach. Nano Lett. 2019, 19, 381–391. DOI: 10.1021/acs.nanolett.8b04098.
  • Fus-Kujawa, A.; Teper, P.; Botor, M.; Klarzyńska, K.; Sieroń, Ł.; Verbelen, B.; Smet, M.; Sieroń, A. L.; Mendrek, B.; Kowalczuk, A. Functional Star Polymers as Reagents for Efficient Nucleic Acids Delivery into HT-1080 Cells. Int. J. Polym. Mater. 2021, 70, 356–370. DOI: 10.1080/00914037.2020.1716227.
  • Zhao, H.; Duan, J.; Xiao, Y.; Tang, G.; Wu, C.; Zhang, Y.; Liu, Z.; Xue, W. Microenvironment-Driven Cascaded Responsive Hybrid Carbon Dots as a Multifunctional Theranostic Nanoplatform for Imaging-Traceable Gene Precise Delivery. Chem. Mater. 2018, 30, 3438–3453. DOI: 10.1021/acs.chemmater.8b01011.
  • Yasen, W.; Dong, R.; Zhou, L.; Huang, Y.; Guo, D.; Chen, D.; Li, C.; Aini, A.; Zhu, X. Supramolecular Block Copolymers for Gene Delivery: Enhancement of Transfection Efficiency by Charge Regulation. Chem. Commun. 2017, 53, 12782–12785. DOI: 10.1039/C7CC07652E.
  • Wang, J.; Liu, L.; Chen, J.; Deng, M.; Feng, X.; Chen, L. Supramolecular Nanoplatforms via Cyclodextrin Host-Guest Recognition for Synergistic Gene-Photodynamic Therapy. Eur. Polym. J. 2019, 118, 220–230. DOI: 10.1016/j.eurpolymj.2019.04.051.
  • Gallego-Yerga, L.; Blanco-Fernández, L.; Urbiola, K.; Carmona, T.; Marcelo, G.; Benito, J. M.; Mendicuti, F.; Tros de Ilarduya, C.; Ortiz Mellet, C.; García Fernández, J. M. Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry 2015, 21, 12093–12104. DOI: 10.1002/chem.201501678.
  • Zhang, Y.; Duan, J.; Cai, L.; Ma, D.; Xue, W. Supramolecular Aggregate as a High-Efficiency Gene Carrier Mediated with Optimized Assembly Structure. ACS Appl. Mater. Interfaces 2016, 8, 29343–29355. DOI: 10.1021/acsami.6b11390.
  • Chen, F.; Kong, L.; Wang, L.; Fan, Y.; Shen, M.; Shi, X. Construction of Core-Shell Tecto Dendrimers Based on Supramolecular Host-Guest Assembly for Enhanced Gene Delivery. J. Mater. Chem. B 2017, 5, 8459–8466. DOI: 10.1039/c7tb02585h.
  • Rivero-Barbarroja, G.; Benito, J. M.; Mellet, C.; Fernández, J. Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials 2020, 10, 2517. DOI: 10.3390/nano10122517.
  • Yasen, W.; Dong, R.; Zhou, L.; Wu, J.; Cao, C.; Aini, A.; Zhu, X. Synthesis of a Cationic Supramolecular Block Copolymer with Covalent and Noncovalent Polymer Blocks for Gene Delivery. ACS Appl. Mater. Interfaces 2017, 9, 9006–9014. DOI: 10.1021/acsami.6b15919.
  • Blakney, A. K.; Liu, R.; Yilmaz, G.; Abdouni, Y.; McKay, P. F.; Bouton, C. R.; Shattock, R. J.; Becer, C. R. Precisely Targeted Gene Delivery in Human Skin Using Supramolecular Cationic Glycopolymers. Polym. Chem. 2020, 11, 3768–3774. DOI: 10.1039/D0PY00449A.
  • Jiang, C.; Qi, Z.; Jia, H.; Huang, Y.; Wang, Y.; Zhang, W.; Wu, Z.; Yang, H.; Liu, J. ATP-Responsive Low-Molecular-Weight Polyethylenimine-Based Supramolecular Assembly via Host-Guest Interaction for Gene Delivery. Biomacromolecules 2019, 20, 478–489. DOI: 10.1021/acs.biomac.8b01395.
  • Liu, J.; Xu, L.; Jin, Y.; Qi, C.; Li, Q.; Zhang, Y.; Jiang, X.; Wang, G.; Wang, Z.; Wang, L. Cell-Targeting Cationic Gene Delivery System Based on a Modular Design Rationale. ACS Appl. Mater. Interfaces 2016, 8, 14200–14210. DOI: 10.1021/acsami.6b04462.
  • Liao, R.; Yi, S.; Liu, M.; Jin, W.; Yang, B. Folic-Acid-Targeted Self-Assembling Supramolecular Carrier for Gene Delivery. Chembiochem. 2015, 16, 1622–1628. DOI: 10.1002/cbic.201500208.
  • Liu, Y.; Du, J.; Choi, JS.; Chen, K.J.; Hou, S.; Yan, M.; Lin, W.Y.; Chen, K. S.; Ro, T.; Lipshutz, G. S.; et al. A High-Throughput Platform for Formulating and Screening Multifunctional Nanoparticles Capable of Simultaneous Delivery of Genes and Transcription Factors. Angew. Chem. Int. Ed. Engl. 2016, 55, 169–173. DOI: 10.1002/anie.201507546.
  • Wong, L. Y.; Xia, B.; Wolvetang, E.; Cooper-White, J. Targeted, Stimuli-Responsive Delivery of Plasmid DNA and miRNAs Using a Facile Self-Assembled Supramolecular Nanoparticle System. Biomacromolecules 2018, 19, 353–363. DOI: 10.1021/acs.biomac.7b01462.
  • Sun, Y. X.; Zhu, J. Y.; Qiu, W. X.; Lei, Q.; Chen, S.; Zhang, X. Z. Versatile Supermolecular Inclusion Complex Based on Host-Guest Interaction for Targeted Gene Delivery. ACS Appl. Mater. Interfaces 2017, 9, 42622–42632. DOI: 10.1021/acsami.7b14963.
  • Wen, Y.; Zhang, Z.; Li, J. Highly Efficient Multifunctional Supramolecular Gene Carrier System Self-Assembled from Redox-Sensitive and Zwitterionic Polymer Blocks. Adv. Funct. Mater. 2014, 24, 3874–3884. DOI: 10.1002/adfm.201303687.
  • Hu, Y.; Zhao, N.; Yu, B.; Liu, F.; Xu, F. J. Versatile Types of Polysaccharide-Based Supramolecular Polycation/pDNA Nanoplexes for Gene Delivery. Nanoscale 2014, 6, 7560–7569. DOI: 10.1039/c4nr01590h.
  • Song, H. Q.; Li, R. Q.; Duan, S.; Yu, B.; Zhao, H.; Chen, D. F.; Xu, F. J. Ligand-Functionalized Degradable Polyplexes Formed by Cationic Poly(Aspartic Acid)-Grafted Chitosan-Cyclodextrin Conjugates. Nanoscale 2015, 7, 5803–5814. DOI: 10.1039/c4nr07515c.
  • Li, W.; Wang, Y.; Chen, L.; Huang, Z.; Hu, Q.; Ji, J. Light-Regulated Host–Guest Interaction as a New Strategy for Intracellular PEG-Detachable Polyplexes to Facilitate Nuclear Entry. Chem. Commun. 2012, 48, 10126–10128. DOI: 10.1039/C2CC34768G.
  • Li, W.; Du, J.; Zheng, K.; Zhang, P.; Hu, Q.; Wang, Y. Multifunctional Nanoparticles via Host-Guest Interactions: A Universal Platform for Targeted Imaging and Light-Regulated Gene Delivery. Chem. Commun. 2014, 50, 1579–1581. DOI: 10.1039/C3CC48098D.
  • Liu, J.; Hennink, W. E.; Van Steenbergen, M. J.; Zhuo, R.; Jiang, X. A Facile Modular Approach toward Multifunctional Supramolecular Polyplexes for Targeting Gene Delivery. J. Mater. Chem. B 2016, 4, 7022–7030. DOI: 10.1039/c6tb01671e.
  • Zhang, Y.; Jiang, Q.; Wojnilowicz, M.; Pan, S.; Ju, Y.; Zhang, W.; Liu, J.; Zhuo, R.; Jiang, X. Acid-Sensitive Poly(β-Cyclodextrin)-Based Multifunctional Supramolecular Gene Vector. Polym. Chem. 2018, 9, 450–462. DOI: 10.1039/C7PY01847A.
  • Jiang, Q.; Zhang, Y.; Zhuo, R.; Jiang, X. A Light and Reduction Dual Sensitive Supramolecular Self-Assembly Gene Delivery System Based on Poly(Cyclodextrin) and Disulfide-Containing Azobenzene-Terminated Branched Polycations. J. Mater. Chem. B 2016, 4, 7731–7740. DOI: 10.1039/c6tb02248k.
  • Rizzo, L. Y.; Golombek, S. K.; Mertens, M. E.; Pan, Y.; Laaf, D.; Broda, J.; Jayapaul, J.; Möckel, D.; Subr, V.; Hennink, W. E.; et al. In Vivo Nanotoxicity Testing Using the Zebrafish Embryo Assay. J. Mater. Chem. B 2013, 1, 3918–3925. DOI: 10.1039/c3tb20528b.
  • Zhao, T.; Zhang, H.; Newland, B.; Aied, A.; Zhou, D.; Wang, W. Significance of Branching for Transfection: Synthesis of Highly Branched Degradable Functional Poly (Dimethylaminoethyl Methacrylate) by Vinyl Oligomer Combination. Angew. Chem. Int. Ed. Engl. 2014, 53, 6095–6100. DOI: 10.1002/anie.201402341.
  • Li, Q.; Bao, Y.; Wang, H.; Du, F.; Li, Q.; Jin, B.; Bai, R. A Facile and Highly Efficient Strategy for Esterification of Poly (Meth) Acrylic Acid with Halogenated Compounds at Room Temperature Promoted by 1,1,3, 3-Tetramethylguanidine. Polym. Chem. 2013, 4, 2891–2897. DOI: 10.1039/c3py00155e.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. DOI: 10.1016/j.addr.2015.09.012.
  • De Wolf, H. K.; Luten, J.; Snel, C. J.; Oussoren, C.; Hennink, W. E.; Storm, G. In Vivo Tumor Transfection Mediated by Polyplexes Based on Biodegradable Poly (DMAEA)-Phosphazene. J. Control. Release 2005, 109, 275–287. DOI: 10.1016/j.jconrel.2005.05.030.
  • Wang, Y.; Ye, M.; Xie, R.; Gong, S. Enhancing the In Vitro and In Vivo Stabilities of Polymeric Nucleic Acid Delivery Nanosystems. Bioconjugate Chem. 2019, 30, 325–337. DOI: 10.1021/acs.bioconjchem.8b00749.
  • Vader, P.; van der Aa, L. J.; Engbersen, J. F.; Storm, G.; Schiffelers, R. M. Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(Amido Amine)s. Pharm. Res. 2012, 29, 352–361. DOI:10.1007/s11095-011-0545-z.
  • Liu, J.; Hennink, W. E.; Van Steenbergen, M. J.; Zhuo, R.; Jiang, X. Versatile Supramolecular Gene Vector Based on Host–Guest Interaction. Bioconjugate Chem. 2016, 27, 1143–1152. DOI: 10.1021/acs.bioconjchem.6b00094.
  • Yuan, Q.; Wang, K.; Zhang, X.; Zhang, X.; Wei, Y. New Method to Determine the Effect of Surface PEGylation on Cellular Uptake Efficiency of Mesoporous Silica Nanoparticles with AIEgens. Macromol. Chem. Phys. 2018, 219, 1800034. DOI: 10.1002/macp.201800034.
  • Hsu, C. Y. M.; Uludağ, H. A Simple and Rapid Nonviral Approach to Efficiently Transfect Primary Tissue–Derived Cells Using Polyethylenimine. Nat. Protoc. 2012, 7, 935–945. DOI: 10.1038/nprot.2012.038.
  • Gouda, N.; Miyata, K.; Christie, R. J.; Suma, T.; Kishimura, A.; Fukushima, S.; Nomoto, T.; Liu, X.; Nishiyama, N.; Kataoka, K. Silica Nanogelling of Environment-Responsive PEGylated Polyplexes for Enhanced Stability and Intracellular Delivery of siRNA. Biomaterials 2013, 34, 562–570. DOI: 10.1016/j.biomaterials.2012.09.077.
  • Gerlai, R. Zebra Fish: An Uncharted Behavior Genetic Model. Behav. Genet. 2003, 33, 461–468. DOI: 10.1023/a:1025762314250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.