502
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Organic/polymeric antibiofilm coatings for surface modification of medical devices

, , , , , , & show all
Pages 867-908 | Received 28 Dec 2021, Accepted 12 Apr 2022, Published online: 02 Jun 2022

References

  • Zander, Z. K.; Becker, M. L. Antimicrobial and Antifouling Strategies for Polymeric Medical Devices. ACS Macro Lett. 2018, 7, 16–25. DOI: 10.1021/acsmacrolett.7b00879.
  • Sotiropoulos, F.; Borazjani, I. A Review of State-of-the-Art Numerical Methods for Simulating Flow through Mechanical Heart Valves. Med. Biol. Eng. Comput. 2009, 47, 245–256. DOI: 10.1007/s11517-009-0438-z.
  • Singha, P.; Locklin, J.; Handa, H. A Review of the Recent Advances in Antimicrobial Coatings for Urinary Catheters. Acta Biomater. 2017, 50, 20–40. DOI: 10.1016/j.actbio.2016.11.070.
  • Gallieni, M.; Giordano, A.; Pinerolo, C.; Cariati, M. Type of Peritoneal Dialysis Catheter and Outcomes. J. Vasc. Access. 2015, 16, S68–S72. DOI: 10.5301/jva.5000369.
  • Mani, G.; Feldman, M. D.; Patel, D.; Agrawal, C. M. Coronary Stents: A Materials Perspective. Biomaterials 2007, 28, 1689–1710. DOI: 10.1016/j.biomaterials.2006.11.042.
  • Jayaswal, G. P.; Dange, S. P.; Khalikar, A. N. Bioceramic in Dental Implants: A Review. J. Indian Prosthodont. Soc. 2010, 10, 8–12. DOI: 10.1007/s13191-010-0002-4.
  • Xinming, L.; Yingde, C.; Lloyd, A. W.; Mikhalovsky, S. V.; Sandeman, S. R.; Howel, C. A.; Liewen, L. Polymeric Hydrogels for Novel Contact Lens-Based Ophthalmic Drug Delivery Systems: A Review. Cont. Lens Anterior Eye 2008, 31, 57–64. DOI: 10.1016/j.clae.2007.09.002.
  • Chehade, M.; Elder, M. J. Intraocular Lens Materials and Styles: A Review. Aust. N. Z. J. Ophthalmol. 1997, 25, 255–263. DOI: 10.1111/j.1442-9071.1997.tb01512.x.
  • Dormer, K. J.; Gan, R. Z. Biomaterials for Implantable Middle Ear Hearing Devices. Otolaryngol. Clin. North Am. 2001, 34, 289–297. DOI: 10.1016/S0030-6665(05)70332-7.
  • Granchi, D.; Cenni, E.; Trisolino, G.; Giunti, A.; Baldini, N. Sensitivity to Implant Materials in Patients Undergoing Total Hip Replacement. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 77, 257–264. DOI: 10.1002/jbm.b.30445.
  • Price, A. J.; Alvand, A.; Troelsen, A.; Katz, J. N.; Hooper, G.; Gray, A.; Carr, A.; Beard, D. Knee Replacement. Lancet 2018, 392, 1672–1682. DOI: 10.1016/S0140-6736(18)32344-4.
  • Narayana, S.; Srihari, S. V. V. A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm. Regener. Eng. Transl. Med. 2019, 6, 330–346.
  • Benčina, M.; Mavrič, T.; Junkar, I.; Bajt, A.; Krajnović, A.; Lakota, K.; Žigon, P.; Sodin-Šemrl, S.; Kralj-Iglič, V.; Iglič, A. The Importance of Antibacterial Surfaces in Biomedical Applications. Adv. Biomembr. Lipid Self-Assembly 2018, 28, 115–165. DOI: 10.1016/bs.abl.2018.05.001.
  • Lendlein, A.; Langer, R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296, 1673–1676. DOI: 10.1126/science.1066102.
  • Kalanuria, A. A.; Mirski, M.; Ziai, W. Ventilator-Associated Pneumonia in the ICU. Crit. Care 2014, 18, 208.
  • Kojic, E. M.; Darouiche, R. O. Candida Infections of Medical Devices. Clin. Microbiol. Rev. 2004, 17, 255–267. DOI: 10.1128/CMR.17.2.255-267.2004.
  • Finkelstein, E. S.; Jekel, J.; Troidle, L.; Gorban-Brennan, N.; Finkelstein, F. O.; Bia, F. J. Patterns of Infection in Patients Maintained on Long-Term Peritoneal Dialysis Therapy with Multiple Episodes of Peritonitis. Am. J. Kidney Dis. 2002, 39, 1278–1286. DOI: 10.1053/ajkd.2002.33403.
  • Maki, D. G.; Tambyah, P. A. Engineering out the Risk for Infection with Urinary Catheters. Emerg. Infect. Dis. 2001, 7, 342–347. DOI: 10.3201/eid0702.010240.
  • Nicolle, L. E. The Prevention of Hospital-Acquired Urinary Tract Infection. Clin. Infect. Dis. 2008, 46, 251–253. DOI: 10.1086/524663.
  • Saint, S.; Elmore, J. G.; Sullivan, S. D.; Emerson, S. S.; Koepsell, T. D. The Efficacy of Silver Alloy-Coated Urinary Catheters in Preventing Urinary Tract Infection: A Meta-Analysis. Am. J. Med. 1998, 105, 236–241. DOI: 10.1016/S0002-9343(98)00240-X.
  • Haley, R. W.; Hooton, T. M.; Culver, D. H.; Stanley, R. C.; Emori, T. G.; Hardison, C. D.; Quade, D.; Shachtman, R. H.; Schaberg, D. R.; Shah, B. V.; Schatz, G. D. Nosocomial Infections in US Hospitals, 1975–1976: Estimated Frequency by Selected Characteristics of Patients. Am. J. Med. 1981, 70, 947–959. DOI: 10.1016/0002-9343(81)90561-1.
  • Richards, M. J.; Edwards, J. R.; Culver, D. H.; Gaynes, R. P. Nosocomial Infections in Medical Intensive Care Units in the United States. Crit. Care Med. 1999, 27, 887–892. DOI: 10.1097/00003246-199905000-00020.
  • Lo, J.; Lange, D.; Chew, B. H. Ureteral Stents and Foley Catheters-Associated Urinary Tract Infections: The Role of Coatings and Materials in Infection Prevention. Antibiotics 2014, 3, 87–97. DOI: 10.3390/antibiotics3010087.
  • Weber, D. J.; Sickbert-Bennett, E. E.; Gould, C. V.; Brown, V. M.; Huslage, K.; Rutala, W. A. Incidence of Catheter-Associated and Non-Catheter-Associated Urinary Tract Infections in a Healthcare System. Infect. Control Hosp. Epidemiol. 2011, 32, 822–823. DOI: 10.1086/661107.
  • Trautner, B. W.; Darouiche, R. O. Catheter-Associated Infections: Pathogenesis Affects Prevention. Arch. Intern. Med. 2004, 164, 842–850. DOI: 10.1001/archinte.164.8.842.
  • Warren, J. W. Catheter-Associated Urinary Tract Infections. Infect. Dis. Clin. North Am. 1997, 11, 609–622. DOI: 10.1016/S0891-5520(05)70376-7.
  • Jacobsen, S. M.; Stickler, D. J.; Mobley, H. L. T.; Shirtliff, M. E. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. DOI: 10.1128/CMR.00019-07.
  • Zhou, J.; Hou, S.; Li, L.; Yao, D.; Liu, Y.; Jenkins, A. T. A.; Fan, Y. Theranostic Infection‐Responsive Coating to In Situ Detect and Prevent Urinary Catheter Blockage. Adv. Mater. Interfaces 2018, 5, 1801242. DOI: 10.1002/admi.201801242.
  • Olmo, J. A. D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Sáez-Martínez, V.; Vilas-Vilela, J. L. Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings 2020, 10, 139. DOI: 10.3390/coatings10020139.
  • Vasilev, K. Nanoengineered Antibacterial Coatings and Materials: A Perspective. Coatings 2019, 9, 654. DOI: 10.3390/coatings9100654.
  • Zhang, X.; Wang, L.; Levänen, E. Superhydrophobic Surfaces for the Reduction of Bacterial Adhesion. RSC Adv. 2013, 3, 12003–12020. DOI: 10.1039/c3ra40497h.
  • Mi, G.; Shi, D.; Wang, M.; Webster, T. J. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv. Healthcare Mater. 2018, 7, 1800103. DOI: 10.1002/adhm.201800103.
  • Watson, G. S.; Green, D. W.; Schwarzkopf, L.; Li, X.; Cribb, B. W.; Myhra, S.; Watson, J. A. A Gecko Skin Micro/Nano Structure–A Low Adhesion, Superhydrophobic, Anti-Wetting, Self-Cleaning, Biocompatible, Antibacterial Surface. Acta Biomater. 2015, 21, 109–122. DOI: 10.1016/j.actbio.2015.03.007.
  • Hasan, J.; Crawford, R. J.; Ivanova, E. P. Antibacterial Surfaces: The Quest for a New Generation of Biomaterials. Trends Biotechnol. 2013, 31, 295–304. DOI: 10.1016/j.tibtech.2013.01.017.
  • Francolini, I.; Piozzi, A. Antimicrobial Polyurethanes for Intravascular Medical Devices. In Advances in Polyurethane Biomaterials; Elsevier: Amsterdam; 2016; pp 349–385.
  • Lynch, A. S.; Robertson, G. T. Bacterial and Fungal Biofilm Infections. Annu. Rev. Med. 2008, 59, 415–428. DOI: 10.1146/annurev.med.59.110106.132000.
  • Lewis, K. Persister Cells, Dormancy and Infectious Disease. Nat. Rev. Microbiol. 2007, 5, 48–56. DOI: 10.1038/nrmicro1557.
  • Gould, C. V.; Umscheid, C. A.; Agarwal, R. K.; Kuntz, G.; Pegues, D. A.; Healthcare Infection Control Practices Advisory Committee. Guideline for Prevention of Catheter-Associated Urinary Tract Infections 2009. Infect. Control Hosp. Epidemiol. 2010, 31, 319–326. DOI: 10.1086/651091.
  • Zhu, Z.; Wang, Z.; Li, S.; Yuan, X. Antimicrobial Strategies for Urinary Catheters. J. Biomed. Mater. Res. A 2019, 107, 445–467. DOI: 10.1002/jbm.a.36561.
  • Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface Hydration: Principles and Applications toward Low-Fouling/Nonfouling Biomaterials. Polymer 2010, 51, 5283–5293. DOI: 10.1016/j.polymer.2010.08.022.
  • Song, L.; Sun, L.; Zhao, J.; Wang, X.; Yin, J.; Luan, S.; Ming, W. Synergistic Superhydrophobic and Photodynamic Cotton Textiles with Remarkable Antibacterial Activities. ACS Appl. Bio Mater. 2019, 2, 2756–2765. DOI: 10.1021/acsabm.9b00149.
  • Hsu, L. C.; Fang, J.; Borca-Tasciuc, D. A.; Worobo, R. W.; Moraru, C. I. Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces. Appl. Environ. Microbiol. 2013, 79, 2703–2712. DOI: 10.1128/AEM.03436-12.
  • Carman, M. L.; Estes, T. G.; Feinberg, A. W.; Schumacher, J. F.; Wilkerson, W.; Wilson, L. H.; Callow, M. E.; Callow, J. A.; Brennan, A. B. Engineered Antifouling Microtopographies-Correlating Wettability with Cell Attachment. Biofouling 2006, 22, 11–21. DOI: 10.1080/08927010500484854.
  • Ivanova, E. P.; Hasan, J.; Webb, H. K.; Gervinskas, G.; Juodkazis, S.; Truong, V. K.; Wu, A. H.; Lamb, R. N.; Baulin, V. A.; Watson, G. S.; et al. Bactericidal Activity of Black Silicon. Nat. Commun. 2013, 4, 1–7. DOI: 10.1038/ncomms3838.
  • Li, X.; Cheung, G. S.; Watson, G. S.; Watson, J. A.; Lin, S.; Schwarzkopf, L.; Green, D. W. The Nanotipped Hairs of Gecko Skin and Biotemplated Replicas Impair and/or Kill Pathogenic Bacteria with High Efficiency. Nanoscale 2016, 8, 18860–18869. DOI: 10.1039/c6nr05046h.
  • Zeiger, C.; da Silva, I. C. R.; Mail, M.; Kavalenka, M. N.; Barthlott, W.; Hölscher, H. Microstructures of Superhydrophobic Plant Leaves – Inspiration for Efficient Oil Spill Cleanup Materials. Bioinspir. Biomim. 2016, 11, 056003. DOI: 10.1088/1748-3190/11/5/056003.
  • Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nanomicro Lett. 2017, 9, 23. DOI: 10.1007/s40820-016-0125-1.
  • Tripathy, A.; Sen, P.; Su, B.; Briscoe, W. H. Natural and Bioinspired Nanostructured Bactericidal Surfaces. Adv. Colloid Interface Sci. 2017, 248, 85–104. DOI: 10.1016/j.cis.2017.07.030.
  • Dickson, M. N.; Liang, E. I.; Rodriguez, L. A.; Vollereaux, N.; Yee, A. F. Nanopatterned Polymer Surfaces with Bactericidal Properties. Biointerphases 2015, 10, 021010. DOI: 10.1116/1.4922157.
  • Feng, G.; Cheng, Y.; Wang, S. Y.; Borca-Tasciuc, D. A.; Worobo, R. W.; Moraru, C. I. Bacterial Attachment and Biofilm Formation on Surfaces Are Reduced by Small-Diameter Nanoscale Pores: How Small Is Small Enough? NPJ Biofilms Microbiomes 2015, 1, 1–9. DOI: 10.1038/npjbiofilms.2015.22.
  • Hasan, J.; Jain, S.; Padmarajan, R.; Purighalla, S.; Sambandamurthy, V. K.; Chatterjee, K. Multi-Scale Surface Topography to Minimize Adherence and Viability of Nosocomial Drug-Resistant Bacteria. Mater. Des. 2018, 140, 332–344. DOI: 10.1016/j.matdes.2017.11.074.
  • Park, M. R.; Banks, M. K.; Applegate, B.; Webster, T. J. Influence of Nanophase Titania Topography on Bacterial Attachment and Metabolism. Int. J. Nanomedicine 2008, 3, 497–504. DOI: 10.2147/ijn.s4399.
  • Cattò, C.; Villa, F.; Cappitelli, F. Recent Progress in Bio-Inspired Biofilm-Resistant Polymeric Surfaces. Crit. Rev. Microbiol. 2018, 44, 633–652. DOI: 10.1080/1040841X.2018.1489369.
  • Bollenl, C. M.; Lambrechts, P.; Quirynen, M. Comparison of Surface Roughness of Oral Hard Materials to the Threshold Surface Roughness for Bacterial Plaque Retention: A Review of the Literature. Dent. Mater. 1997, 13, 258–269. DOI: 10.1016/S0109-5641(97)80038-3.
  • Arnold, J. W.; Bailey, G. W. Surface Finishes on Stainless Steel Reduce Bacterial Attachment and Early Biofilm Formation: Scanning Electron and Atomic Force Microscopy Study. Poult. Sci. 2000, 79, 1839–1845. DOI: 10.1093/ps/79.12.1839.
  • Medilanski, E.; Kaufmann, K.; Wick, L. Y.; Wanner, O.; Harms, H. Influence of the Surface Topography of Stainless Steel on Bacterial Adhesion. Biofouling 2002, 18, 193–203. DOI: 10.1080/08927010290011370.
  • Cheng, Y.; Feng, G.; Moraru, C. I. Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front. Microbiol. 2019, 10, 191. DOI: 10.3389/fmicb.2019.00191.
  • Boulangé‐Petermann, L.; Rault, J.; Bellon‐Fontaine, M. N. Adhesion of Streptococcus thermophilus to Stainless Steel with Different Surface Topography and Roughness. Biofouling 1997, 11, 201–216. DOI: 10.1080/08927019709378331.
  • Flint, S. H.; Brooks, J. D.; Bremer, P. J. Properties of the Stainless Steel Substrate, Influencing the Adhesion of Thermo-Resistant Streptococci. J. Food Eng. 2000, 43, 235–242. DOI: 10.1016/S0260-8774(99)00157-0.
  • Tide, C.; Harkin, S. R.; Geesey, G. G.; Bremer, P. J.; Scholz, W. The Influence of Welding Procedures on Bacterial Colonization of Stainless Steel Weldments. J. Food Eng. 1999, 42, 85–96. DOI: 10.1016/S0260-8774(99)00109-0.
  • Vanhaecke, E.; Remon, J. P.; Moors, M.; Raes, F.; De Rudder, D.; Van Peteghem, A. Kinetics of Pseudomonas aeruginosa Adhesion to 304 and 316-L Stainless Steel: Role of Cell Surface Hydrophobicity. Appl. Environ. Microbiol. 1990, 56, 788–795. DOI: 10.1128/aem.56.3.788-795.1990.
  • Wade, S.; Ang, A.; Piola, R.; Neil, W. Microbiologically Influenced Corrosion of UNS N05500 in Seawater. Mater. Perform. 2018, 57, 66–69.
  • Hochbaum, A. I.; Aizenberg, J. Bacteria Pattern Spontaneously on Periodic Nanostructure Arrays. Nano Lett. 2010, 10, 3717–3721. DOI: 10.1021/nl102290k.
  • Epstein, A. K.; Hochbaum, A. I.; Kim, P.; Aizenberg, J. Control of Bacterial Biofilm Growth on Surfaces by Nanostructural Mechanics and Geometry. Nanotechnology 2011, 22, 494007. DOI: 10.1088/0957-4484/22/49/494007.
  • Friedlander, R. S.; Vlamakis, H.; Kim, P.; Khan, M.; Kolter, R.; Aizenberg, J. Bacterial Flagella Explore Microscale Hummocks and Hollows to Increase Adhesion. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 5624–5629. DOI: 10.1073/pnas.1219662110.
  • Scheuerman, T. R.; Camper, A. K.; Hamilton, M. A. Effects of Substratum Topography on Bacterial Adhesion. J. Colloid Interface Sci. 1998, 208, 23–33. DOI: 10.1006/jcis.1998.5717.
  • Reddy, S. T.; Chung, K. K.; McDaniel, C. J.; Darouiche, R. O.; Landman, J.; Brennan, A. B. Micropatterned Surfaces for Reducing the Risk of Catheter-Associated Urinary Tract Infection: An In Vitro Study on the Effect of Sharklet Micropatterned Surfaces to Inhibit Bacterial Colonization and Migration of Uropathogenic Escherichia coli. J. Endourol. 2011, 25, 1547–1552. DOI: 10.1089/end.2010.0611.
  • Boyd, R. D.; Verran, J.; Jones, M. V.; Bhakoo, M. Use of the Atomic Force Microscope to Determine the Effect of Substratum Surface Topography on Bacterial Adhesion. Langmuir 2002, 18, 2343–2346. DOI: 10.1021/la011142p.
  • Whitehead, K. A.; Colligon, J.; Verran, J. Retention of Microbial Cells in Substratum Surface Features of Micrometer and Sub-Micrometer Dimensions. Colloids Surf. B. 2005, 41, 129–138. DOI: 10.1016/j.colsurfb.2004.11.010.
  • Woodling, S. E.; Moraru, C. I. Influence of Surface Topography on the Effectiveness of Pulsed Light Treatment for the Inactivation of Listeria innocua on Stainless‐Steel Surfaces. J. Food Sci. 2005, 70, m345–m351. DOI: 10.1111/j.1365-2621.2005.tb11478.x.
  • Dalby, M. J.; Riehle, M. O.; Yarwood, S. J.; Wilkinson, C. D.; Curtis, A. S. Nucleus Alignment and Cell Signaling in Fibroblasts: Response to a Micro-Grooved Topography. Exp. Cell Res. 2003, 284, 272–280. DOI: 10.1016/S0014-4827(02)00053-8.
  • Balasundaram, G.; Webster, T. J. A Perspective on Nanophase Materials for Orthopedic Implant Applications. J. Mater. Chem. 2006, 16, 3737–3745. DOI: 10.1039/b604966b.
  • Popat, K. C.; Chatvanichkul, K. I.; Barnes, G. L.; Latempa, T. J.; Jr, Grimes, C. A.; Desai, T. A. Osteogenic Differentiation of Marrow Stromal Cells Cultured on Nanoporous Alumina Surfaces. J. Biomed. Mater. Res. A. 2007, 80, 955–964. DOI: 10.1002/jbm.a.31028.
  • Nikkhah, M.; Edalat, F.; Manoucheri, S.; Khademhosseini, A. Engineering Microscale Topographies to Control the Cell-Substrate Interface. Biomaterials 2012, 33, 5230–5246. DOI: 10.1016/j.biomaterials.2012.03.079.
  • Mitik-Dineva, N.; Wang, J.; Truong, V. K.; Stoddart, P. R.; Malherbe, F.; Crawford, R. J.; Ivanova, E. P. Differences in Colonisation of Five Marine Bacteria on Two Types of Glass Surfaces. Biofouling 2009, 25, 621–631. DOI: 10.1080/08927010903012773.
  • Díaz, C.; Schilardi, P. L.; dos Santos Claro, P. C.; Salvarezza, R. C.; Fernandez Lorenzo de Mele, M. A. Submicron Trenches Reduce the Pseudomonas fluorescens Colonization Rate on Solid Surfaces. ACS Appl. Mater. Interfaces 2009, 1, 136–143. DOI: 10.1021/am8000677.
  • Puckett, S. D.; Taylor, E.; Raimondo, T.; Webster, T. J. The Relationship between the Nanostructure of Titanium Surfaces and Bacterial Attachment. Biomaterials 2010, 31, 706–713. DOI: 10.1016/j.biomaterials.2009.09.081.
  • Qian, P. Y.; Xu, Y.; Fusetani, N. Natural Products as Antifouling Compounds: Recent Progress and Future Perspectives. Biofouling 2010, 26, 223–234. DOI: 10.1080/08927010903470815.
  • Villa, F.; Cappitelli, F. Plant-Derived Bioactive Compounds at Sub-Lethal Concentrations: Towards Smart Biocide-Free Antibiofilm Strategies. Phytochem. Rev. 2013, 12, 245–254. DOI: 10.1007/s11101-013-9286-4.
  • Sadekuzzaman, M.; Yang, S.; Mizan, M. F. R.; Ha, S. D. Current and Recent Advanced Strategies for Combating Biofilms. Compr. Rev. Food Sci. Food Saf. 2015, 14, 491–509. DOI: 10.1111/1541-4337.12144.
  • Qian, P. Y.; Li, Z.; Xu, Y.; Li, Y.; Fusetani, N. Mini-Review: Marine Natural Products and Their Synthetic Analogs as Antifouling Compounds: 2009–2014. Biofouling 2015, 31, 101–122. DOI: 10.1080/08927014.2014.997226.
  • Almeida, J. R.; Correia-da-Silva, M.; Sousa, E.; Antunes, J.; Pinto, M.; Vasconcelos, V.; Cunha, I. Antifouling Potential of Nature-Inspired Sulfated Compounds. Sci. Rep. 2017, 7, 1–11. DOI: 10.1038/srep42424.
  • Farber, B. F.; Wolff, A. G. The Use of Nonsteroidal Antiinflammatory Drugs to Prevent Adherence of Staphylococcus epidermidis to Medical Polymers. J. Infect. Dis. 1992, 166, 861–865. DOI: 10.1093/infdis/166.4.861.
  • Domenico, P.; Schwartz, S.; Cunha, B. A. Reduction of Capsular Polysaccharide Production in Klebsiella pneumoniae by Sodium Salicylate. Infect. Immun. 1989, 57, 3778–3782. DOI: 10.1128/iai.57.12.3778-3782.1989.
  • Muller, E.; Takeda, S.; Shiro, H.; Goldmann, D.; Pier, G. B. Occurrence of Capsular Polysaccharide/Adhesin among Clinical Isolates of Coagulase-Negative Staphylococci. J. Infect. Dis. 1993, 168, 1211–1218. DOI: 10.1093/infdis/168.5.1211.
  • Hussain, M.; Wilcox, M. H.; White, P. J. The Slime of Coagulase-Negative Staphylococci: biochemistry and Relation to Adherence. FEMS Microbiol. Rev. 1993, 10, 191–208. DOI: 10.1111/j.1574-6968.1993.tb05867.x.
  • Plaunt, M. R.; Patrick, C. C. Identification of the Innate Human Immune Response to Surface-Exposed Proteins of Coagulase-Negative Staphylococci. J. Clin. Microbiol. 1991, 29, 857–861. DOI: 10.1128/jcm.29.5.857-861.1991.
  • Fattom, A.; Shepherd, S.; Karakawa, W. Capsular Polysaccharide Serotyping Scheme for Staphylococcus epidermidis. J. Clin. Microbiol. 1992, 30, 3270–3273. DOI: 10.1128/jcm.30.12.3270-3273.1992.
  • Shiro, H.; Meluleni, G.; Groll, A.; Muller, E.; Tosteson, T. D.; Goldmann, D. A.; Pier, G. B. The Pathogenic Role of Staphylococcus epidermidis Capsular Polysaccharide/Adhesin in a Low-Inoculum Rabbit Model of Prosthetic Valve Endocarditis. Circulation 1995, 92, 2715–2722. DOI: 10.1161/01.CIR.92.9.2715.
  • Mack, D.; Fischer, W.; Krokotsch, A.; Leopold, K.; Hartmann, R.; Egge, H.; Laufs, R. The Intercellular Adhesin Involved in Biofilm Accumulation of Staphylococcus epidermidis is a Linear Beta-1, 6-Linked Glucosaminoglycan: Purification and Structural Analysis. J. Bacteriol. 1996, 178, 175–183. DOI: 10.1128/jb.178.1.175-183.1996.
  • Zita, A.; Hermansson, M. Effects of Ionic Strength on Bacterial Adhesion and Stability of Flocs in a Wastewater Activated Sludge System. Appl. Environ. Microbiol. 1994, 60, 3041–3048. DOI: 10.1128/aem.60.9.3041-3048.1994.
  • Deighton, M.; Borland, R. Regulation of Slime Production in Staphylococcus epidermidis by Iron Limitation. Infect. Immun. 1993, 61, 4473–4479. DOI: 10.1128/iai.61.10.4473-4479.1993.
  • Muller, E.; Al-Attar, J.; Wolff, A. G.; Farber, B. F. Mechanism of Salicylate-Mediated Inhibition of Biofilm in Staphylococcus epidermidis. J. Infect. Dis. 1998, 177, 501–503. DOI: 10.1086/517386.
  • Rosenberg, E.; Ron, E. Z. High- and Low-Molecular-Mass Microbial Surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. DOI: 10.1007/s002530051502.
  • Mukherjee, S.; Das, P.; Sen, R. Towards Commercial Production of Microbial Surfactants. Trends Biotechnol. 2006, 24, 509–515. DOI: 10.1016/j.tibtech.2006.09.005.
  • Sotirova, A. V.; Spasova, D. I.; Galabova, D. N.; Karpenko, E.; Shulga, A. Rhamnolipid-Biosurfactant Permeabilizing Effects on Gram-Positive and Gram-Negative Bacterial Strains. Curr. Microbiol. 2008, 56, 639–644. DOI: 10.1007/s00284-008-9139-3.
  • Rivardo, F.; Turner, R. J.; Allegrone, G.; Ceri, H.; Martinotti, M. G. Anti-Adhesion Activity of Two Biosurfactants Produced by Bacillus spp. prevents Biofilm Formation of Human Bacterial Pathogens. Appl. Microbiol. Biotechnol. 2009, 83, 541–553. DOI: 10.1007/s00253-009-1987-7.
  • Huang, X.; Lu, Z.; Zhao, H.; Bie, X.; Lü, F.; Yang, S. Antiviral Activity of Antimicrobial Lipopeptide from Bacillus subtilis Fmbj against Pseudorabies Virus, Porcine Parvovirus, Newcastle Disease Virus and Infectious Bursal Disease Virus In Vitro. Int. J. Pept. Res. Ther. 2006, 12, 373–377. DOI: 10.1007/s10989-006-9041-4.
  • Rodrigues, L.; Banat, I. M.; Teixeira, J.; Oliveira, R. Biosurfactants: Potential Applications in Medicine. J. Antimicrob. Chemother. 2006, 57, 609–618. DOI: 10.1093/jac/dkl024.
  • Vollenbroich, D.; Pauli, G.; Ozel, M.; Vater, J. Antimycoplasma Properties and Application in Cell Culture of Surfactin, a Lipopeptide Antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 1997, 63, 44–49. DOI: 10.1128/aem.63.1.44-49.1997.
  • Banat, I. M.; Makkar, R. S.; Cameotra, S. S. Potential Commercial Applications of Microbial Surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508. DOI: 10.1007/s002530051648.
  • Singh, P.; Cameotra, S. S. Potential Applications of Microbial Surfactants in Biomedical Sciences. Trends Biotechnol. 2004, 22, 142–146. DOI: 10.1016/j.tibtech.2004.01.010.
  • Velraeds, M. M.; Van de Belt-Gritter, B.; Van der Mei, H. C.; Reid, G.; Busscher, H. J. Interference in Initial Adhesion of Uropathogenic Bacteria and Yeasts to Silicone Rubber by a Lactobacillus acidophilus Biosurfactant. J. Med. Microbiol. 1998, 47, 1081–1085. DOI: 10.1099/00222615-47-12-1081.
  • Busscher, H. J.; Kuijl-Booij, M.; Mei, H. C. Biosurfactants from Thermophilic Dairy Streptococci and Their Potential Role in the Fouling Control of Heat Exchanger Plates. J. Ind. Microbiol. 1996, 16, 15–21. DOI: 10.1007/BF01569916.
  • Janek, T.; Łukaszewicz, M.; Krasowska, A. Antiadhesive Activity of the Biosurfactant Pseudofactin II Secreted by the Arctic Bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012, 12, 24–29. DOI: 10.1186/1471-2180-12-24.
  • Liu, F.; Grainger, D. W., Fluorinated Biomaterials. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, 2017; pp 648−663.
  • Kinnari, T. J.; Jero, J. Experimental and Clinical Experience of Albumin Coating of Tympanostomy Tubes. Otolaryngol. Head Neck Surg. 2005, 133, 596–600. DOI: 10.1016/j.otohns.2005.07.011.
  • Kinnari, T. J.; Salonen, E. M.; Jero, J. Durability of the Binding Inhibition of Albumin Coating on Tympanostomy Tubes. Int. J. Pediatr. Otorhinolaryngol. 2003, 67, 157–164. DOI: 10.1016/S0165-5876(02)00364-6.
  • Andrade, J. D.; Hlady, V. Protein Adsorption and Materials Biocompatibility: A Tutorial Review and Suggested Hypotheses. In Biopolymers/Non-Exclusion HPLC, Springer: Berlin, 1986; pp 1–63.
  • Leonard, E. F.; Vroman, L. Is the Vroman Effect of Importance in the Interaction of Blood with Artificial Materials? J. Biomater. Sci. Polym. Ed. 1991, 3, 95–107. DOI: 10.1163/156856292x00105.
  • Begovac, P. C.; Thomson, R. C.; Fisher, J. L.; Hughson, A.; Gällhagen, A. Improvements in GORE-TEX® Vascular Graft Performance by Carmeda® Bioactive Surface Heparin Immobilization. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 432–437. DOI: 10.1053/ejvs.2002.1909.
  • Lindholt, J. S.; Gottschalksen, B.; Johannesen, N.; Dueholm, D.; Ravn, H.; Christensen, E. D.; Viddal, B.; Flørenes, T.; Pedersen, G.; Rasmussen, M.; et al. The Scandinavian Propaten(®) Trial – 1-year Patency of PTFE Vascular Prostheses with Heparin-Bonded Luminal Surfaces Compared to Ordinary Pure PTFE Vascular Prostheses – A Randomised Clinical Controlled Multi-Centre Trial. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 668–673. DOI: 10.1016/j.ejvs.2011.01.021.
  • Nomura, S.; Lundberg, F.; Stollenwerk, M.; Nakamura, K.; Ljungh, Å. Adhesion of Staphylococci to Polymers with and without Immobilized Heparin in Cerebrospinal Fluid. J. Biomed. Mater. Res. 1997, 38, 35–42. DOI: 10.1002/(SICI)1097-4636(199721)38:1<35::AID-JBM5>3.0.CO;2-I.
  • Portoles, M.; Refojo, M. F.; Leong, F. L. Reduced Bacterial Adhesion to Heparin-Surface-Modified Intraocular Lenses. J. Cataract Refract. Surg. 1993, 19, 755–759. DOI: 10.1016/S0886-3350(13)80345-8.
  • Ruggieri, M. R.; Hanno, P. M.; Levin, R. M. Reduction of Bacterial Adherence to Catheter Surface with Heparin. J. Urol. 1987, 138, 423–426. DOI: 10.1016/S0022-5347(17)43177-6.
  • Han, D. K.; Park, K. D.; Ryu, G. H.; Kim, U. Y.; Min, B. G.; Kim, Y. H. Plasma Protein Adsorption to Sulfonated Poly (Ethylene Oxide)‐Grafted Polyurethane Surface. J. Biomed. Mater. Res. 1996, 30, 23–30. DOI: 10.1002/(SICI)1097-4636(199601)30:1<23::AID-JBM4>3.0.CO;2-T.
  • Park, K. D.; Kim, Y. S.; Han, D. K.; Kim, Y. H.; Lee, E. H. B.; Suh, H.; Choi, K. S. Bacterial Adhesion on PEG Modified Polyurethane Surfaces. Biomaterials 1998, 19, 851–859. DOI: 10.1016/S0142-9612(97)00245-7.
  • Razatos, A.; Ong, Y. L.; Sharma, M. M.; Georgiou, G. Molecular Determinants of Bacterial Adhesion Monitored by Atomic Force Microscopy. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11059–11064. DOI: 10.1073/pnas.95.19.11059.
  • Arciola, C. R.; Bustanji, Y.; Conti, M.; Campoccia, D.; Baldassarri, L.; Samorì, B.; Montanaro, L. Staphylococcus epidermidis-Fibronectin Binding and Its Inhibition by Heparin. Biomaterials 2003, 24, 3013–3019. DOI: 10.1016/s0142-9612(03)00133-9.
  • Weber, N.; Wendel, H. P.; Ziemer, G. Hemocompatibility of Heparin-Coated Surfaces and the Role of Selective Plasma Protein Adsorption. Biomaterials 2002, 23, 429–439. DOI: 10.1016/S0142-9612(01)00122-3.
  • Kubiak-Ossowska, K.; Jachimska, B.; Mulheran, P. A. How Negatively Charged Proteins Adsorb to Negatively Charged Surfaces: A Molecular Dynamics Study of BSA Adsorption on Silica. J. Phys. Chem. B 2016, 120, 10463–10468. DOI: 10.1021/acs.jpcb.6b07646.
  • Kubiak-Ossowska, K.; Tokarczyk, K.; Jachimska, B.; Mulheran, P. A. Bovine Serum Albumin Adsorption at a Silica Surface Explored by Simulation and Experiment. J. Phys. Chem. B 2017, 121, 3975–3986. DOI: 10.1021/acs.jpcb.7b01637.
  • Michael, K. E.; Vernekar, V. N.; Keselowsky, B. G.; Meredith, J. C.; Latour, R. A.; García, A. J. Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir 2003, 19, 8033–8040. DOI: 10.1021/la034810a.
  • Roosjen, A.; van der Mei, H. C.; Busscher, H. J.; Norde, W. Microbial Adhesion to Poly(Ethylene Oxide) Brushes: Influence of Polymer Chain Length and Temperature. Langmuir 2004, 20, 10949–10955. DOI: 10.1021/la048469l.
  • Jia, A.; Liu, H.; Sorkhishams, N.; Massoumi, B.; Sarvari, R.; Agbolaghi, S. Advanced Poly (Ethylene Glycol)/Polythiophene Globular Nanostructures in P3HT: PCBM Photovoltaics. Org. Electron. 2020, 81, 105676. DOI: 10.1016/j.orgel.2020.105676.
  • Agbolaghi, S.; Sorkhishams, N.; Sarvari, R.; Massoumi, B. Globular/Semiglobular Poly (Ethylene Glycol) Nanostructures Enveloped between Polythiophenes with/without Side Chains via Y-Shaped Copolymers. Polymer 2019, 183, 121853. DOI: 10.1016/j.polymer.2019.121853.
  • Mahmoudi, M.; Agbolaghi, S.; Mozaffari, Z.; Abbaspoor, S.; Massoumi, B.; Sarvari, R.; Hosseinzadeh, N. Star‐like Poly (N‐Isopropylacrylamide) and Poly (Ethylene Glycol) Copolymers Self‐Arranged in Newfound Single Crystals and Associated Novel Class of Polymer Brush Regimes with V‐Type Tethers. Macromol. Chem. Phys. 2018, 219, 1700638. DOI: 10.1002/macp.201700638.
  • Yang, C.; Ding, X.; Ono, R. J.; Lee, H.; Hsu, L. Y.; Tong, Y. W.; Hedrick, J.; Yang, Y. Y. Brush-Like Polycarbonates Containing Dopamine, Cations, and PEG Providing a Broad-Spectrum, Antibacterial, and Antifouling Surface via One-Step Coating. Adv. Mater. 2014, 26, 7346–7351. DOI: 10.1002/adma.201402059.
  • Garay, R. P.; El-Gewely, R.; Armstrong, J. K.; Garratty, G.; Richette, P. Antibodies against Polyethylene Glycol in Healthy Subjects and in Patients Treated with PEG-Conjugated Agents. Expert. Opin. Drug Deliv. 2012, 9, 1319–1323. DOI: 10.1517/17425247.2012.720969.
  • Hucknall, A.; Rangarajan, S.; Chilkoti, A. In Pursuit of Zero: Polymer Brushes That Resist the Adsorption of Proteins. Adv. Mater. 2009, 21, 2441–2446. DOI: 10.1002/adma.200900383.
  • Kim, K.; Ryu, J. H.; Lee, D. Y.; Lee, H. Bio-Inspired Catechol Conjugation Converts Water-Insoluble Chitosan into a Highly Water-Soluble, Adhesive Chitosan Derivative for Hydrogels and LbL Assembly. Biomater. Sci. 2013, 1, 783–790. DOI: 10.1039/c3bm00004d.
  • Park, J. P.; Choi, M. J.; Kim, S. H.; Lee, S. H.; Lee, H. Preparation of Sticky Escherichia coli through Surface Display of an Adhesive Catecholamine Moiety. Appl. Environ. Microbiol. 2014, 80, 43–53. DOI: 10.1128/AEM.02223-13.
  • Chin, W.; Yang, C.; Ng, V. W. L.; Huang, Y.; Cheng, J.; Tong, Y. W.; Coady, D. J.; Fan, W.; Hedrick, J. L.; Yang, Y. Y. Biodegradable Broad-Spectrum Antimicrobial Polycarbonates: Investigating the Role of Chemical Structure on Activity and Selectivity. Macromolecules 2013, 46, 8797–8807. DOI: 10.1021/ma4019685.
  • Ilker, M. F.; Nüsslein, K.; Tew, G. N.; Coughlin, E. B. Tuning the Hemolytic and Antibacterial Activities of Amphiphilic Polynorbornene Derivatives. J. Am. Chem. Soc. 2004, 126, 15870–15875. DOI: 10.1021/ja045664d.
  • Kim, Y. H.; Han, D. K.; Park, K. D. Negative Cilia Concept for Thromboresistance. Encycl. Handb. Biomater. Bioeng. B 1995, 2, 1071.
  • Han, D. K.; Park, K. D.; Jeong, S. Y.; Kim, Y. H.; Kim, U. Y.; Min, B. G. In Vivo Biostability and Calcification‐Resistance of Surface‐Modified PU‐PEO‐SO3. J. Biomed. Mater. Res. 1993, 27, 1063–1073. DOI: 10.1002/jbm.820270812.
  • Han, D. K.; Park, K. D.; Jeong, S. Y.; Kim, Y. H.; Lee, N. Y.; Cho, H. I.; Min, B. G. Anticoagulant Activity of Polyurethane Grafted with Sulfonated Polyethyleneoxide. Biomaterials 1995, 16, 467–471. DOI: 10.1016/0142-9612(95)98819-Z.
  • Lederer, J. W.; Jarvis, W. R.; Thomas, L.; Ritter, J. Multicenter Cohort Study to Assess the Impact of a Silver-Alloy and Hydrogel-Coated Urinary Catheter on Symptomatic Catheter-Associated Urinary Tract Infections. J. Wound Ostomy Cont. Nurs. 2014, 41, 473–480. DOI: 10.1097/WON.0000000000000056.
  • Chung, H. Y.; Wong, C. W.; Lai, C. K.; Siu, H. K.; Tsang, D. N.; Yeung, K. Y.; Ip, D. K.; Tam, P. K. A Prospective Interventional Study to Examine the Effect of a Silver Alloy and Hydrogel–Coated Catheter on the Incidence of Catheter-Associated Urinary Tract Infection. Hong Kong Med. J. 2017, 23, 239–245. DOI: 10.12809/hkmj164906.
  • Kazmierska, K. A.; Thompson, R.; Morris, N.; Long, A.; Ciach, T. In Vitro Multicompartmental Bladder Model for Assessing Blockage of Urinary Catheters: Effect of Hydrogel Coating on Dynamics of Proteus mirabilis Growth. Urology 2010, 76, 515.e15–515.e20. e15-e20). DOI: 10.1016/j.urology.2010.04.039.
  • Lowe, A. B.; McCormick, C. L. Synthesis and Solution Properties of Zwitterionic Polymers. Chem. Rev. 2002, 102, 4177–4190. DOI: 10.1021/cr020371t.
  • Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9, 1357–1361. DOI: 10.1021/bm701301s.
  • Russell, J. C. Bacteria, Biofilms, and Devices: The Possible Protective Role of Phosphorylcholine Materials. J. Endourol. 2000, 14, 39–42. DOI: 10.1089/end.2000.14.39.
  • Diaz Blanco, C.; Ortner, A.; Dimitrov, R.; Navarro, A.; Mendoza, E.; Tzanov, T. Building an Antifouling Zwitterionic Coating on Urinary Catheters Using an Enzymatically Triggered Bottom-up Approach. ACS Appl. Mater. Interfaces 2014, 6, 11385–11393. DOI: 10.1021/am501961b.
  • Mi, L.; Jiang, S. Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angew. Chem. Int. Ed. Engl. 2014, 53, 1746–1754. DOI: 10.1002/anie.201304060.
  • Kurowska, M.; Eickenscheidt, A.; Guevara-Solarte, D. L.; Widyaya, V. T.; Marx, F.; Al-Ahmad, A.; Lienkamp, K. A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network. Biomacromolecules 2017, 18, 1373–1386. DOI: 10.1021/acs.biomac.7b00100.
  • Vaterrodt, A.; Thallinger, B.; Daumann, K.; Koch, D.; Guebitz, G. M.; Ulbricht, M. Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly. Langmuir 2016, 32, 1347–1359. DOI: 10.1021/acs.langmuir.5b04303.
  • Koc, J.; Schönemann, E.; Amuthalingam, A.; Clarke, J.; Finlay, J. A.; Clare, A. S.; Laschewsky, A.; Rosenhahn, A. Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. Langmuir 2019, 35, 1552–1562. DOI: 10.1021/acs.langmuir.8b02799.
  • Wang, R.; Neoh, K. G.; Kang, E. T.; Tambyah, P. A.; Chiong, E. Antifouling Coating with Controllable and Sustained Silver Release for Long-Term Inhibition of Infection and Encrustation in Urinary Catheters. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 519–528. DOI: 10.1002/jbm.b.33230.
  • Hou, Z.; Wu, Y.; Xu, C.; Reghu, S.; Shang, Z.; Chen, J.; Pranantyo, D.; Marimuth, K.; De, P. P.; Ng, O. T.; et al. Precisely Structured Nitric-Oxide-Releasing Copolymer Brush Defeats Broad-Spectrum Catheter-Associated Biofilm Infections In Vivo. ACS Cent. Sci. 2020, 6, 2031–2045. DOI: 10.1021/acscentsci.0c00755.
  • Mandakhalikar, K. D.; Wang, R.; Rahmat, J. N.; Chiong, E.; Neoh, K. G.; Tambyah, P. A. Restriction of In Vivo Infection by Antifouling Coating on Urinary Catheter with Controllable and Sustained Silver Release: A Proof of Concept Study. BMC Infect. Dis. 2018, 18, 1–9. DOI: 10.1186/s12879-018-3296-1.
  • Thompson, V. C.; Adamson, P. J.; Dilag, J.; Liyanage, D.; Srikantharajah, K.; Blok, A.; Ellis, A. V.; Gordon, D. L.; Köper, I. Biocompatible Anti-Microbial Coatings for Urinary Catheters. RSC Adv. 2016, 6, 53303–53309. DOI: 10.1039/C6RA07678E.
  • Hayward, J. A.; Chapman, D. Biomembrane Surfaces as Models for Polymer Design: The Potential for Haemocompatibility. Biomaterials 1984, 5, 135–142. DOI: 10.1016/0142-9612(84)90047-4.
  • Williams, D. Biomimetic Surfaces: How Man-Made Becomes Man-Like. Med. Device Technol. 1995, 6, 6–8.
  • Campell, E. J.; O’Byrne, V.; Stratford, P. W. Biocompatible Surfaces Using Methylcryloyphosphorylcholine Lauryl Methacry Late Co-polymers. ASIO J. 1994, 40, 853–857.
  • Ishihara, K.; Iwasaki, Y. Reduced Protein Adsorption on Novel Phospholipid Polymers. J. Biomater. Appl. 1998, 13, 111–127. DOI: 10.1177/088532829801300203.
  • Stickler, D. J.; Evans, A.; Morris, N.; Hughes, G. Strategies for the Control of Catheter Encrustation. Int. J. Antimicrob. Agents 2002, 19, 499–506. DOI: 10.1016/S0924-8579(02)00091-2.
  • Andersson, P.; Engberg, I.; Lidin-Janson, G.; Lincoln, K.; Hull, R.; Hull, S.; Svanborg, C. Persistence of Escherichia coli Bacteriuria is Not Determined by Bacterial Adherence. Infect. Immun. 1991, 59, 2915–2921. DOI: 10.1128/iai.59.9.2915-2921.1991.
  • Darouiche, R. O.; Donovan, W. H.; Del Terzo, M.; Thornby, J. I.; Rudy, D. C.; Hull, R. A. Pilot Trial of Bacterial Interference for Preventing Urinary Tract Infection. Urology 2001, 58, 339–344. DOI: 10.1016/S0090-4295(01)01271-7.
  • Reid, G.; Howard, J.; Gan, B. S. Can Bacterial Interference Prevent Infection? Trends Microbiol. 2001, 9, 424–428. DOI: 10.1016/S0966-842X(01)02132-1.
  • Sundén, F.; Håkansson, L.; Ljunggren, E.; Wullt, B. Bacterial Interference—is Deliberate Colonization with Escherichia coli 83972 an Alternative Treatment for Patients with Recurrent Urinary Tract Infection? Int. J. Antimicrob. Agents 2006, 28, 26–29. DOI: 10.1016/j.ijantimicag.2006.05.007.
  • Trautner, B. W.; Hull, R. A.; Thornby, J. I.; Darouiche, R. O. Coating Urinary Catheters with an Avirulent Strain of Escherichia coli as a Means to Establish Asymptomatic Colonization. Infect. Control Hosp. Epidemiol. 2007, 28, 92–94. DOI: 10.1086/510872.
  • Prasad, A.; Cevallos, M. E.; Riosa, S.; Darouiche, R. O.; Trautner, B. W. A Bacterial Interference Strategy for Prevention of UTI in Persons Practicing Intermittent Catheterization. Spinal Cord 2009, 47, 565–569. DOI: 10.1038/sc.2008.166.
  • Preidis, G. A.; Versalovic, J. Targeting the Human Microbiome with Antibiotics, Probiotics, and Prebiotics: Gastroenterology Enters the Metagenomics Era. Gastroenterology 2009, 136, 2015–2031. DOI: 10.1053/j.gastro.2009.01.072.
  • Senok, A. C.; Ismaeel, A. Y.; Botta, G. A. Probiotics: Facts and Myths. Clin. Microbiol. Infect. 2005, 11, 958–966. DOI: 10.1111/j.1469-0691.2005.01228.x.
  • Ventura, M.; O'flaherty, S.; Claesson, M. J.; Turroni, F.; Klaenhammer, T. R.; Van Sinderen, D.; O'toole, P. W. Genome-Scale Analyses of Health-Promoting Bacteria: Probiogenomics. Nat. Rev. Microbiol. 2009, 7, 61–71. DOI: 10.1038/nrmicro2047.
  • Ferrieres, L.; Hancock, V.; Klemm, P. Biofilm Exclusion of Uropathogenic Bacteria by Selected Asymptomatic Bacteriuria Escherichia coli Strains. Microbiology 2007, 153, 1711–1719. DOI: 10.1099/mic.0.2006/004721-0.
  • Roos, V.; Ulett, G. C.; Schembri, M. A.; Klemm, P. The Asymptomatic Bacteriuria Escherichia coli Strain 83972 Outcompetes Uropathogenic E. coli Strains in Human Urine. Infect. Immun. 2006, 74, 615–624. DOI: 10.1128/IAI.74.1.615-624.2006.
  • Klemm, P.; Hancock, V.; Schembri, M. A. Mellowing out: Adaptation to Commensalism by Escherichia coli Asymptomatic Bacteriuria Strain 83972. Infect. Immun. 2007, 75, 3688–3695. DOI: 10.1128/IAI.01730-06.
  • Marcone, V.; Rocca, G.; Lichtner, M.; Calzolari, E. Long-Term Vaginal Administration of Lactobacillus rhamnosus as a Complementary Approach to Management of Bacterial Vaginosis. Int. J. Gynaecol. Obstet. 2010, 110, 223–226. DOI: 10.1016/j.ijgo.2010.04.025.
  • Saxelin, M.; Tynkkynen, S.; Mattila-Sandholm, T.; de Vos, W. M. Probiotic and Other Functional Microbes: From Markets to Mechanisms. Curr. Opin. Biotechnol. 2005, 16, 204–211. DOI: 10.1016/j.copbio.2005.02.003.
  • Falagas, M. E.; Makris, G. C. Probiotic Bacteria and Biosurfactants for Nosocomial Infection Control: A Hypothesis. J. Hosp. Infect. 2009, 71, 301–306. DOI: 10.1016/j.jhin.2008.12.008.
  • Sundén, F.; Håkansson, L.; Ljunggren, E.; Wullt, B. Escherichia coli 83972 Bacteriuria Protects against Recurrent Lower Urinary Tract Infections in Patients with Incomplete Bladder Emptying. J. Urol. 2010, 184, 179–185. DOI: 10.1016/j.juro.2010.03.024.
  • Hull, R.; Rudy, D.; Donovan, W.; Svanborg, C.; Wieser, I.; Stewart, C.; Darouiche, R. Urinary Tract Infection Prophylaxis Using Escherichia coli 83972 in Spinal Cord Injured Patients. J. Urol. 2000, 163, 872–877. DOI: 10.1016/S0022-5347(05)67823-8.
  • Marco, M. L.; Pavan, S.; Kleerebezem, M. Towards Understanding Molecular Modes of Probiotic Action. Curr. Opin. Biotechnol. 2006, 17, 204–210. DOI: 10.1016/j.copbio.2006.02.005.
  • Lopez, A. I.; Kumar, A.; Planas, M. R.; Li, Y.; Nguyen, T. V.; Cai, C. Biofunctionalization of Silicone Polymers Using Poly(Amidoamine) Dendrimers and a Mannose Derivative for Prolonged Interference against Pathogen Colonization. Biomaterials 2011, 32, 4336–4346. DOI: 10.1016/j.biomaterials.2011.02.056.
  • Williams, D. F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941–2953. DOI: 10.1016/j.biomaterials.2008.04.023.
  • Yoda, R. Elastomers for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 1998, 9, 561–626. DOI: 10.1163/156856298X00046.
  • Musolf, M. C. Altering the Physical Properties of Silicone Elastomers for Medical Device Applications. Med. Device Technol. 1990, 1, 26–29.
  • Ivanova, K.; Fernandes, M. M.; Mendoza, E.; Tzanov, T. Enzyme Multilayer Coatings Inhibit Pseudomonas aeruginosa Biofilm Formation on Urinary Catheters. Appl. Microbiol. Biotechnol. 2015, 99, 4373–4385. DOI: 10.1007/s00253-015-6378-7.
  • Chen, M.; Yu, Q.; Sun, H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int. J. Mol. Sci. 2013, 14, 18488–18501. DOI: 10.3390/ijms140918488.
  • Richards, J. J.; Melander, C. Controlling Bacterial Biofilms. ChemBioChem 2009, 10, 2287–2294. DOI: 10.1002/cbic.200900317.
  • Ivanova, K.; Fernandes, M. M.; Tzanov, T. Current Advances on Bacterial Pathogenesis Inhibition and Treatment Strategies. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Eds.; Formatex Research Center: Badajoz, 2013; Vol. 4, pp 322–336.
  • Rasko, D. A.; Sperandio, V. Anti-Virulence Strategies to Combat Bacteria-Mediated Disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. DOI: 10.1038/nrd3013.
  • Hong, K. W.; Koh, C. L.; Sam, C. K.; Yin, W. F.; Chan, K. G. Quorum Quenching Revisited-from Signal Decays to Signalling Confusion. Sensors 2012, 12, 4661–4696. DOI: 10.3390/s120404661.
  • Lin, Y. H.; Xu, J. L.; Hu, J.; Wang, L. H.; Ong, S. L.; Leadbetter, J. R.; Zhang, L. H. Acyl-Homoserine Lactone Acylase from Ralstonia Strain XJ12B Represents a Novel and Potent Class of Quorum-Quenching Enzymes. Mol. Microbiol. 2003, 47, 849–860. DOI: 10.1046/j.1365-2958.2003.03351.x.
  • Xu, F.; Byun, T.; Deussen, H.-J.; Duke, K. R.; Dussen, H.-J. Degradation of N-Acylhomoserine Lactones, the Bacterial Quorum-Sensing Molecules, by Acylase. J. Biotechnol. 2003, 101, 89–96. DOI: 10.1016/S0168-1656(02)00305-X.
  • Blosser, R. S.; Gray, K. M. Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J. Microbiol. Methods. 2000, 40, 47–55. DOI: 10.1016/S0167-7012(99)00136-0.
  • Thallinger, B.; Brandauer, M.; Burger, P.; Sygmund, C.; Ludwig, R.; Ivanova, K.; Kun, J.; Scaini, D.; Burnet, M.; Tzanov, T.; et al. Cellobiose Dehydrogenase Functionalized Urinary Catheter as Novel Antibiofilm System. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1448–1456. DOI: 10.1002/jbm.b.33491.
  • Lipovsky, A.; Thallinger, B.; Perelshtein, I.; Ludwig, R.; Sygmund, C.; Nyanhongo, G. S.; Guebitz, G. M.; Gedanken, A. Ultrasound Coating of Polydimethylsiloxanes with Antimicrobial Enzymes. J. Mater. Chem. B 2015, 3, 7014–7019. DOI: 10.1039/c5tb00671f.
  • Appel, W. Chymotrypsin: Molecular and Catalytic Properties. Clin. Biochem. 1986, 19, 317–322. DOI: 10.1016/S0009-9120(86)80002-9.
  • Cattò, C.; Secundo, F.; James, G.; Villa, F.; Cappitelli, F. α-Chymotrypsin Immobilized on a Low-Density Polyethylene Surface Successfully Weakens Escherichia coli Biofilm Formation. IJMS 2018, 19, 4003. DOI: 10.3390/ijms19124003.
  • Limoli, D. H.; Jones, C. J.; Wozniak, D. J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr. 2015, 3, 3. DOI: 10.1128/microbiolspec.MB-0011-2014.
  • Asker, D.; Awad, T. S.; Baker, P.; Howell, P. L.; Hatton, B. D. Non-Eluting, Surface-Bound Enzymes Disrupt Surface Attachment of Bacteria by Continuous Biofilm Polysaccharide Degradation. Biomaterials 2018, 167, 168–176. DOI: 10.1016/j.biomaterials.2018.03.016.
  • Baker, P.; Hill, P. J.; Snarr, B. D.; Alnabelseya, N.; Pestrak, M. J.; Lee, M. J.; Jennings, L. K.; Tam, J.; Melnyk, R. A.; Parsek, M. R.; et al. Exopolysaccharide Biosynthetic Glycoside Hydrolases Can Be Utilized to Disrupt and Prevent Pseudomonas aeruginosa Biofilms. Sci. Adv. 2016, 2, e1501632. DOI: 10.1126/sciadv.1501632.
  • Yang, L.; Hengzhuang, W.; Wu, H.; Damkiaer, S.; Jochumsen, N.; Song, Z.; Givskov, M.; Høiby, N.; Molin, S. Polysaccharides Serve as Scaffold of Biofilms Formed by Mucoid Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2012, 65, 366–376. DOI: 10.1111/j.1574-695X.2012.00936.x.
  • Billings, N.; Ramirez Millan, M.; Caldara, M.; Rusconi, R.; Tarasova, Y.; Stocker, R.; Ribbeck, K. The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms. PLOS Pathog. 2013, 9, e1003526. DOI: 10.1371/journal.ppat.1003526.
  • Mishra, M.; Byrd, M. S.; Sergeant, S.; Azad, A. K.; Parsek, M. R.; McPhail, L.; Schlesinger, L. S.; Wozniak, D. J. Pseudomonas aeruginosa Psl Polysaccharide Reduces Neutrophil Phagocytosis and the Oxidative Response by Limiting Complement-Mediated Opsonization. Cell Microbiol. 2012, 14, 95–106. DOI: 10.1111/j.1462-5822.2011.01704.x.
  • Colvin, K. M.; Gordon, V. D.; Murakami, K.; Borlee, B. R.; Wozniak, D. J.; Wong, G. C.; Parsek, M. R. The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa. PLOS Pathog. 2011, 7, e1001264. DOI: 10.1371/journal.ppat.1001264.
  • Khan, W.; Bernier, S. P.; Kuchma, S. L.; Hammond, J. H.; Hasan, F.; O’Toole, G. A. Aminoglycoside Resistance of Pseudomonas aeruginosa Biofilms Modulated by Extracellular Polysaccharide. Int. Microbiol. 2010, 13, 207.
  • Colvin, K. M.; Irie, Y.; Tart, C. S.; Urbano, R.; Whitney, J. C.; Ryder, C.; Howell, P. L.; Wozniak, D. J.; Parsek, M. R. The Pel and Psl Polysaccharides Provide Pseudomonas aeruginosa Structural Redundancy within the Biofilm Matrix. Environ. Microbiol. 2012, 14, 1913–1928. DOI: 10.1111/j.1462-2920.2011.02657.x.
  • Byrd, M. S.; Pang, B.; Hong, W.; Waligora, E. A.; Juneau, R. A.; Armbruster, C. E.; Weimer, K. E. D.; Murrah, K.; Mann, E. E.; Lu, H.; et al. Direct Evaluation of Pseudomonas aeruginosa Biofilm Mediators in a Chronic Infection Model. Infect. Immun. 2011, 79, 3087–3095. DOI: 10.1128/IAI.00057-11.
  • Colvin, K. M.; Alnabelseya, N.; Baker, P.; Whitney, J. C.; Howell, P. L.; Parsek, M. R. PelA Deacetylase Activity Is Required for Pel Polysaccharide Synthesis in Pseudomonas aeruginosa. J. Bacteriol. 2013, 195, 2329–2339. DOI: 10.1128/JB.02150-12.
  • Mazur, O.; Zimmer, J. Apo- and Cellopentaose-Bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ. J. Biol. Chem. 2011, 286, 17601–17606. DOI: 10.1074/jbc.M111.227660.
  • Spiers, A. J.; Bohannon, J.; Gehrig, S. M.; Rainey, P. B. Biofilm Formation at the Air-Liquid Interface by the Pseudomonas fluorescens SBW25 Wrinkly Spreader Requires an Acetylated Form of Cellulose. Mol. Microbiol. 2003, 50, 15–27. DOI: 10.1046/j.1365-2958.2003.03670.x.
  • Schiller, N. L.; Monday, S. R.; Boyd, C. M.; Keen, N. T.; Ohman, D. E. Characterization of the Pseudomonas aeruginosa Alginate Lyase Gene (algL): Cloning, Sequencing, and Expression in Escherichia coli. J. Bacteriol. 1993, 175, 4780–4789. DOI: 10.1128/jb.175.15.4780-4789.1993.
  • Köseoğlu, V. K.; Heiss, C.; Azadi, P.; Topchiy, E.; Güvener, Z. T.; Lehmann, T. E.; Miller, K. W.; Gomelsky, M. Listeria Monocytogenes Exopolysaccharide: Origin, Structure, Biosynthetic Machinery and c-di-GMP-Dependent Regulation. Mol. Microbiol. 2015, 96, 728–743. DOI: 10.1111/mmi.12966.
  • Wang, X.; Preston, J. F. III; Romeo, T. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation. J. Bacteriol. 2004, 186, 2724–2734. DOI: 10.1128/JB.186.9.2724-2734.2004.
  • Andersen, M. J.; Flores-Mireles, A. L. Urinary Catheter Coating Modifications: The Race against Catheter-Associated Infections. Coatings 2019, 10, 23. DOI: 10.3390/coatings10010023.
  • Snarr, B. D.; Baker, P.; Bamford, N. C.; Sato, Y.; Liu, H.; Lehoux, M.; Gravelat, F. N.; Ostapska, H.; Baistrocchi, S. R.; Cerone, R. P.; et al. Microbial Glycoside Hydrolases as Antibiofilm Agents with Cross-Kingdom Activity. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 7124–7129. DOI: 10.1073/pnas.1702798114.
  • Zhou, C.; Wu, Y.; Thappeta, K. R. V.; Subramanian, J. T. L.; Pranantyo, D.; Kang, E. T.; Duan, H.; Kline, K.; Chan-Park, M. B. In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Appl. Mater. Interfaces 2017, 9, 36269–36280. DOI: 10.1021/acsami.7b07053.
  • Francesko, A.; Fernandes, M. M.; Ivanova, K.; Amorim, S.; Reis, R. L.; Pashkuleva, I.; Mendoza, E.; Pfeifer, A.; Heinze, T.; Tzanov, T. Bacteria-Responsive Multilayer Coatings Comprising Polycationic Nanospheres for Bacteria Biofilm Prevention on Urinary Catheters. Acta Biomater. 2016, 33, 203–212. DOI: 10.1016/j.actbio.2016.01.020.
  • Strempel, N.; Strehmel, J.; Overhage, J. Potential Application of Antimicrobial Peptides in the Treatment of Bacterial Biofilm Infections. Curr. Pharm. Des. 2015, 21, 67–84. DOI: 10.2174/1381612820666140905124312.
  • Brogden, K. A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. DOI: 10.1038/nrmicro1098.
  • Takahashi, D.; Shukla, S. K.; Prakash, O.; Zhang, G. Structural Determinants of Host Defense Peptides for Antimicrobial Activity and Target Cell Selectivity. Biochimie 2010, 92, 1236–1241. DOI: 10.1016/j.biochi.2010.02.023.
  • Yeaman, M. R.; Yount, N. Y. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 2003, 55, 27–55. DOI: 10.1124/pr.55.1.2.
  • Bessalle, R.; Haas, H.; Goria, A.; Shalit, I.; Fridkin, M. Augmentation of the Antibacterial Activity of Magainin by Positive-Charge Chain Extension. Antimicrob. Agents Chemother. 1992, 36, 313–317. DOI: 10.1128/AAC.36.2.313.
  • Matsuzaki, K.; Harada, M.; Funakoshi, S.; Fujii, N.; Miyajima, K. Physicochemical Determinants for the Interactions of Magainins 1 and 2 with Acidic Lipid Bilayers. Biochim. Biophys. Acta 1991, 1063, 162–170. DOI: 10.1016/0005-2736(91)90366-G.
  • Dathe, M.; Nikolenko, H.; Meyer, J.; Beyermann, M.; Bienert, M. Optimization of the Antimicrobial Activity of Magainin Peptides by Modification of Charge. FEBS Lett. 2001, 501, 146–150. DOI: 10.1016/S0014-5793(01)02648-5.
  • da Silva, B. R.; de Freitas, V. A. A.; Nascimento-Neto, L. G.; Carneiro, V. A.; Arruda, F. V. S.; de Aguiar, A. S. W.; Cavada, B. S.; Teixeira, E. H. Antimicrobial Peptide Control of Pathogenic Microorganisms of the Oral Cavity: A Review of the Literature. Peptides 2012, 36, 315–321. DOI: 10.1016/j.peptides.2012.05.015.
  • Gorr, S. U.; Abdolhosseini, M. Antimicrobial Peptides and Periodontal Disease. J. Clin. Periodontol. 2011, 38, 126–141. DOI: 10.1111/j.1600-051X.2010.01664.x.
  • Gilmore, K.; Chen, P.; Leung, K. P. Anti-Microbial Peptides for Plaque Control and beyond. J. Calif. Dent. Assoc. 2009, 37, 779–788.
  • Huang, Y.; Wiradharma, N.; Xu, K.; Ji, Z.; Bi, S.; Li, L.; Yang, Y. Y.; Fan, W. Cationic Amphiphilic Alpha-Helical Peptides for the Treatment of Carbapenem-Resistant Acinetobacter baumannii Infection. Biomaterials 2012, 33, 8841–8847. DOI: 10.1016/j.biomaterials.2012.08.026.
  • Harris, F.; Dennison, S. R.; Phoenix, D. A. Anionic Antimicrobial Peptides from Eukaryotic Organisms. Curr. Protein Pept. Sci. 2009, 10, 585–606. DOI: 10.2174/138920309789630589.
  • Straus, S. K.; Hancock, R. E. Mode of Action of the New Antibiotic for Gram-Positive Pathogens Daptomycin: Comparison with Cationic Antimicrobial Peptides and Lipopeptides. Biochim. Biophys. Acta 2006, 1758, 1215–1223. DOI: 10.1016/j.bbamem.2006.02.009.
  • Jacobsen, A. S.; Jenssen, H. Human Cathelicidin LL-37 Prevents Bacterial Biofilm Formation. Future Med. Chem. 2012, 4, 1587–1599. DOI: 10.4155/fmc.12.97.
  • Vandamme, D.; Landuyt, B.; Luyten, W.; Schoofs, L. A Comprehensive Summary of LL-37, the Factotum Human Cathelicidin Peptide. Cell Immunol. 2012, 280, 22–35. DOI: 10.1016/j.cellimm.2012.11.009.
  • Duplantier, A. J.; van Hoek, M. L. The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds. Front. Immunol. 2013, 4, 143. DOI: 10.3389/fimmu.2013.00143.
  • Pompilio, A.; Scocchi, M.; Pomponio, S.; Guida, F.; Di Primio, A.; Fiscarelli, E.; Gennaro, R.; Di Bonaventura, G. Antibacterial and anti-Biofilm Effects of Cathelicidin Peptides against Pathogens Isolated from Cystic Fibrosis Patients. Peptides 2011, 32, 1807–1814. DOI: 10.1016/j.peptides.2011.08.002.
  • Pompilio, A.; Crocetta, V.; Scocchi, M.; Pomponio, S.; Di Vincenzo, V.; Mardirossian, M.; Gherardi, G.; Fiscarelli, E.; Dicuonzo, G.; Gennaro, R.; Di Bonaventura, G. Potential Novel Therapeutic Strategies in Cystic Fibrosis: Antimicrobial and Anti-Biofilm Activity of Natural and Designed α-Helical Peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol. 2012, 12, 145–110. DOI: 10.1186/1471-2180-12-145.
  • Cirioni, O.; Giacometti, A.; Ghiselli, R.; Bergnach, C.; Orlando, F.; Mocchegiani, F.; Silvestri, C.; Licci, A.; Skerlavaj, B.; Zanetti, M.; et al. Pre-Treatment of Central Venous Catheters with the Cathelicidin BMAP-28 Enhances the Efficacy of Antistaphylococcal Agents in the Treatment of Experimental Catheter-Related Infection. Peptides 2006, 27, 2104–2110. DOI: 10.1016/j.peptides.2006.03.007.
  • Overhage, J.; Campisano, A.; Bains, M.; Torfs, E. C.; Rehm, B. H.; Hancock, R. E. Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation. Infect. Immun. 2008, 76, 4176–4182. DOI: 10.1128/IAI.00318-08.
  • Mataraci, E.; Dosler, S. In Vitro Activities of Antibiotics and Antimicrobial Cationic Peptides Alone and in Combination against Methicillin-Resistant Staphylococcus aureus Biofilms. Antimicrob. Agents Chemother. 2012, 56, 6366–6371. DOI: 10.1128/AAC.01180-12.
  • Dean, S. N.; Bishop, B. M.; Van Hoek, M. L. Natural and Synthetic Cathelicidin Peptides with Anti-Microbial and Anti-Biofilm Activity against Staphylococcus aureus. BMC Microbiol. 2011, 11, 114–113. DOI: 10.1186/1471-2180-11-114.
  • Steinstraesser, L.; Tack, B. F.; Waring, A. J.; Hong, T.; Boo, L. M.; Fan, M. H.; Remick, D. I.; Su, G. L.; Lehrer, R. I.; Wang, S. C. Activity of Novispirin G10 against Pseudomonas aeruginosa In Vitro and in Infected Burns. Antimicrob. Agents Chemother. 2002, 46, 1837–1844. DOI: 10.1128/AAC.46.6.1837-1844.2002.
  • Jacobsen, F.; Mohammadi-Tabrisi, A.; Hirsch, T.; Mittler, D.; Mygind, P. H.; Sonksen, C. P.; Raventos, D.; Kristensen, H. H.; Gatermann, S.; Lehnhardt, M.; et al. Antimicrobial Activity of the Recombinant Designer Host Defence Peptide P-Novispirin G10 in Infected Full-Thickness Wounds of Porcine Skin. J. Antimicrob. Chemother. 2007, 59, 493–498. DOI: 10.1093/jac/dkl513.
  • Song, Z.; Wu, H.; Mygind, P.; Raventos, D.; Sonksen, C.; Kristensen, H. H.; Høiby, N. Effects of Intratracheal Administration of Novispirin G10 on a Rat Model of Mucoid Pseudomonas aeruginosa Lung Infection. Antimicrob. Agents Chemother. 2005, 49, 3868–3874. DOI: 10.1128/AAC.49.9.3868-3874.2005.
  • Hwang, I. S.; Hwang, J. S.; Hwang, J. H.; Choi, H.; Lee, E.; Kim, Y.; Lee, D. G. Synergistic Effect and Antibiofilm Activity between the Antimicrobial Peptide Coprisin and Conventional Antibiotics against Opportunistic Bacteria. Curr. Microbiol. 2013, 66, 56–60. DOI: 10.1007/s00284-012-0239-8.
  • Minardi, D.; Ghiselli, R.; Cirioni, O.; Giacometti, A.; Kamysz, W.; Orlando, F.; Silvestri, C.; Parri, G.; Kamysz, E.; Scalise, G.; et al. The Antimicrobial Peptide Tachyplesin III Coated Alone and in Combination with Intraperitoneal Piperacillin-Tazobactam Prevents Ureteral Stent Pseudomonas Infection in a Rat Subcutaneous Pouch Model. Peptides 2007, 28, 2293–2298. DOI: 10.1016/j.peptides.2007.10.001.
  • Schillaci, D.; Arizza, V.; Parrinello, N.; Di Stefano, V.; Fanara, S.; Muccilli, V.; Cunsolo, V.; Haagensen, J. J. A.; Molin, S. Antimicrobial and Antistaphylococcal Biofilm Activity from the Sea Urchin Paracentrotus lividus. J. Appl. Microbiol. 2010, 108, 17–24. DOI: 10.1111/j.1365-2672.2009.04394.x.
  • Cirioni, O.; Giacometti, A.; Ghiselli, R.; Kamysz, W.; Orlando, F.; Mocchegiani, F.; Silvestri, C.; Licci, A.; Chiodi, L.; Lukasiak, J.; et al. Citropin 1.1-Treated Central Venous Catheters Improve the Efficacy of Hydrophobic Antibiotics in the Treatment of Experimental Staphylococcal Catheter-Related Infection. Peptides 2006, 27, 1210–1216. DOI: 10.1016/j.peptides.2005.10.007.
  • Zhang, R.; Zhou, M.; Wang, L.; McGrath, S.; Chen, T.; Chen, X.; Shaw, C. Phylloseptin-1 (PSN-1) from Phyllomedusa sauvagei Skin Secretion: A Novel Broad-Spectrum Antimicrobial Peptide with Antibiofilm Activity. Mol. Immunol. 2010, 47, 2030–2037. DOI: 10.1016/j.molimm.2010.04.010.
  • Dennison, S. R.; Morton, L. H.; Shorrocks, A. J.; Harris, F.; Phoenix, D. A. A Study on the Interactions of Aurein 2.5 with Bacterial Membranes. Colloids Surf. B 2009, 68, 225–230. DOI: 10.1016/j.colsurfb.2008.10.007.
  • Choi, H.; Lee, D. G. Antimicrobial Peptide Pleurocidin Synergizes with Antibiotics through Hydroxyl Radical Formation and Membrane Damage, and Exerts Antibiofilm Activity. Biochim. Biophys. Acta 2012, 1820, 1831–1838. DOI: 10.1016/j.bbagen.2012.08.012.
  • De Smet, K.; Contreras, R. Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins. Biotechnol. Lett. 2005, 27, 1337–1347. DOI: 10.1007/s10529-005-0936-5.
  • Zhu, C.; Tan, H.; Cheng, T.; Shen, H.; Shao, J.; Guo, Y.; Shi, S.; Zhang, X. Human β-Defensin 3 Inhibits Antibiotic-Resistant Staphylococcus Biofilm Formation. J. Surg. Res. 2013, 183, 204–213. DOI: 10.1016/j.jss.2012.11.048.
  • Huang, Q.; Yu, H. J.; Liu, G. D.; Huang, X. K.; Zhang, L. Y.; Zhou, Y. G.; Chen, J. Y.; Lin, F.; Wang, Y.; Fei, J. Comparison of the Effects of Human β-Defensin 3, Vancomycin, and Clindamycin on Staphylococcus aureus Biofilm Formation. Orthopedics 2012, 35, e53–e60. DOI: 10.3928/01477447-20111122-11.
  • Lim, K.; Chua, R. R. Y.; Ho, B.; Tambyah, P. A.; Hadinoto, K.; Leong, S. S. J. Development of a Catheter Functionalized by a Polydopamine Peptide Coating with Antimicrobial and Antibiofilm Properties. Acta Biomater. 2015, 15, 127–138. DOI: 10.1016/j.actbio.2014.12.015.
  • Yu, K.; Lo, J. C.; Yan, M.; Yang, X.; Brooks, D. E.; Hancock, R. E.; Lange, D.; Kizhakkedathu, J. N. Anti-Adhesive Antimicrobial Peptide Coating Prevents Catheter Associated Infection in a Mouse Urinary Infection Model. Biomaterials 2017, 116, 69–81. DOI: 10.1016/j.biomaterials.2016.11.047.
  • Pinese, C.; Jebors, S.; Echalier, C.; Licznar‐Fajardo, P.; Garric, X.; Humblot, V.; Calers, C.; Martinez, J.; Mehdi, A.; Subra, G. Simple and Specific Grafting of Antibacterial Peptides on Silicone Catheters. Adv. Healthc. Mater. 2016, 5, 3067–3073. DOI: 10.1002/adhm.201600757.
  • Wang, L.; Zhang, S.; Keatch, R.; Corner, G.; Nabi, G.; Murdoch, S.; Davidson, F.; Zhao, Q. In-Vitro Antibacterial and Anti-Encrustation Performance of Silver-Polytetrafluoroethylene Nanocomposite Coated Urinary Catheters. J. Hosp. Infect. 2019, 103, 55–63. DOI: 10.1016/j.jhin.2019.02.012.
  • Kunin, C. M.; Chin, Q. F.; Chambers, S. Formation of Encrustations on Indwelling Urinary Catheters in the Elderly: A Comparison of Different Types of Catheter Materials in “Blockers” and “Nonblockers”. J. Urol. 1987, 138, 899–902. DOI: 10.1016/S0022-5347(17)43412-4.
  • Murakami, S.; Igarashi, T.; Tanaka, M.; Tobe, T.; Mikami, K. Adherence of Bacteria to Various Urethral Catheters and Occurrence of Catheter-Induced Urethritis. Hinyokika Kiyo 1993, 39, 107–111.
  • Kilonzo, M.; Vale, L.; Pickard, R.; Lam, T.; N'Dow, J.; Catheter Trial Group. Cost Effectiveness of Antimicrobial Catheters for Adults Requiring Short-Term Catheterisation in Hospital. Eur. Urol. 2014, 66, 615–618. DOI: 10.1016/j.eururo.2014.05.035.
  • Pickard, R.; Lam, T.; MacLennan, G.; Starr, K.; Kilonzo, M.; McPherson, G.; Gillies, K.; McDonald, A.; Walton, K.; Buckley, B.; et al. Antimicrobial Catheters for Reduction of Symptomatic Urinary Tract Infection in Adults Requiring Short-Term Catheterisation in Hospital: A Multicentre Randomised Controlled Trial. Lancet 2012, 380, 1927–1935. DOI: 10.1016/S0140-6736(12)61380-4.
  • Zhang, S.; Liang, X.; Gadd, G. M.; Zhao, Q. Superhydrophobic Coatings for Urinary Catheters to Delay Bacterial Biofilm Formation and Catheter-Associated Urinary Tract Infection. ACS Appl. Bio Mater. 2020, 3, 282–291. DOI: 10.1021/acsabm.9b00814.
  • Dai, T.; Wang, C.; Wang, Y.; Xu, W.; Hu, J.; Cheng, Y. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity. ACS Appl. Mater. Interfaces 2018, 10, 15163–15173. DOI: 10.1021/acsami.8b02527.
  • Qu, J.; Zhao, X.; Ma, P. X.; Guo, B. Injectable Antibacterial Conductive Hydrogels with Dual Response to an Electric Field and pH for Localized “Smart” Drug Release. Acta Biomater. 2018, 72, 55–69. DOI: 10.1016/j.actbio.2018.03.018.
  • Liu, Z.; Zhu, Y.; Liu, X.; Yeung, K. W. K.; Wu, S. Construction of Poly (Vinyl Alcohol)/Poly (Lactide-Glycolide Acid)/Vancomycin Nanoparticles on Titanium for Enhancing the Surface Self-Antibacterial Activity and Cytocompatibility. Colloids Surf. B Biointerfaces 2017, 151, 165–177. DOI: 10.1016/j.colsurfb.2016.12.016.
  • Zheng, L.; Sundaram, H. S.; Wei, Z.; Li, C.; Yuan, Z. Applications of Zwitterionic Polymers. React. Funct. Polym. 2017, 118, 51–61. DOI: 10.1016/j.reactfunctpolym.2017.07.006.
  • Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S. A Switchable Biocompatible Polymer Surface with Self‐Sterilizing and Nonfouling Capabilities. Angew. Chem. 2008, 120, 8963–8966. DOI: 10.1002/ange.200803570.
  • Cao, Z.; Mi, L.; Mendiola, J.; Ella‐Menye, J. R.; Zhang, L.; Xue, H.; Jiang, S. Reversibly Switching the Function of a Surface between Attacking and Defending against Bacteria. Angew. Chem. Int. Ed. Engl. 2012, 51, 2602–2605. DOI: 10.1002/anie.201106466.
  • Cao, B.; Li, L.; Tang, Q.; Cheng, G. The Impact of Structure on Elasticity, Switchability, Stability and Functionality of an All-in-One Carboxybetaine Elastomer. Biomaterials 2013, 34, 7592–7600. DOI: 10.1016/j.biomaterials.2013.06.063.
  • Cao, B.; Lee, C. J.; Zeng, Z.; Cheng, F.; Xu, F.; Cong, H.; Cheng, G. Electroactive Poly(Sulfobetaine-3,4-Ethylenedioxythiophene) (PSBEDOT) with Controllable Antifouling and Antimicrobial Properties. Chem. Sci. 2016, 7, 1976–1981. DOI: 10.1039/c5sc03887a.
  • Liu, Z.; Wang, W.; Xie, R.; Ju, X. J.; Chu, L. Y. Stimuli-Responsive Smart Gating Membranes. Chem. Soc. Rev. 2016, 45, 460–475. DOI: 10.1039/c5cs00692a.
  • Schild, H. G. Poly (N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163–249. DOI: 10.1016/0079-6700(92)90023-R.
  • Kim, Y. J.; Matsunaga, Y. T. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321. DOI: 10.1039/c7tb00157f.
  • Ghamkhari, A.; Sarvari, R.; Ghorbani, M.; Hamishehkar, H. Novel Thermoresponsive Star-Liked Nanomicelles for Targeting of Anticancer Agent. Eur. Polym. J. 2018, 107, 143–154. DOI: 10.1016/j.eurpolymj.2018.08.008.
  • Sarvari, R.; Agbolaghi, S.; Beygi-Khosrowshahi, Y.; Massoumi, B.; Bahadori, A. 3D Scaffold Designing Based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering. J. Ultrafine Grain. Nanostruct. Mater. 2018, 51, 101–114.
  • Sarvari, R.; Agbolaghi, S.; Beygi-Khosrowshahi, Y.; Massoumi, B. Towards Skin Tissue Engineering Using Poly (2-Hydroxy Ethyl Methacrylate)-co-Poly (N-Isopropylacrylamide)-co-Poly (ε-Caprolactone) Hydrophilic Terpolymers. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 691–700. DOI: 10.1080/00914037.2018.1493682.
  • Saraei, M.; Sarvari, R.; Massoumi, B.; Agbolaghi, S. Co‐Delivery of Methotrexate and Doxorubicin via Nanocarriers of Star‐like Poly (DMAEMA‐Block‐HEMA‐Block‐AAc) Terpolymers. Polym. Int. 2019, 68, 1795–1803. DOI: 10.1002/pi.5890.
  • Khanizadeh, L.; Sarvari, R.; Massoumi, B.; Agbolaghi, S.; Beygi-Khosrowshahi, Y. Dual Nano-Carriers Using Polylactide-Block-Poly (n-Isopropylacrylamide-Random-Acrylic Acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications. J. Ultrafine Grain. Nanostruct. Mater. 2020, 53, 60–70.
  • Sarvari, R.; Keyhanvar, P.; Agbolaghi, S.; Gholami Farashah, M. S.; Sadrhaghighi, A.; Nouri, M.; Roshangar, L. Shape-Memory Materials and Their Clinical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 315–321. DOI: 10.1080/00914037.2020.1833010.
  • Sarvari, R.; Nouri, M.; Agbolaghi, S.; Roshangar, L.; Sadrhaghighi, A.; Seifalian, A. M.; Keyhanvar, P. A Summary on Non-Viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 246–220. DOI: 10.1080/00914037.2020.1825081.
  • Keyhanvar, N.; Zarghami, N.; Seifalian, A.; Keyhanvar, P.; Sarvari, R.; Salehi, R.; Rahbarghazi, R.; Ranjkesh, M.; Akbarzadeh, M.; Mahdipour, M.; Nouri, M. The Combined Thermoresponsive Cell-Imprinted Substrate, Induced Differentiation, and “KLC Sheet” Formation. Adv. Pharm. Bull. 2021. DOI: 10.34172/apb.2022.034.
  • Abbaspoor, S.; Agbolaghi, S.; Mahmoudi, M.; Jahanbani, Y.; Abbasi, F.; Sarvari, R. Effect of Miscibility on Migration of Third Component in Star‐Like Co‐continuous and Disperse‐within‐Disperse Mixed Brushes. Polym. Int. 2018, 67, 141–150. DOI: 10.1002/pi.5495.
  • Matvienko, T.; Sokolova, V.; Prylutska, S.; Harahuts, Y.; Kutsevol, N.; Kostjukov, V.; Evstigneev, M.; Prylutskyy, Y.; Epple, M.; Ritter, U. In Vitro Study of the Anticancer Activity of Various Doxorubicin-Containing Dispersions. Bioimpacts 2019, 9, 57–63. DOI: 10.15171/bi.2019.07.
  • Sattari, M.; Fathi, M.; Daei, M.; Erfan-Niya, H.; Barar, J.; Entezami, A. A. Thermoresponsive Graphene Oxide – Starch Micro/Nanohydrogel Composite as Biocompatible Drug Delivery System. Bioimpacts 2017, 7, 167–175. DOI: 10.15171/bi.2017.20.
  • Mahkam, M.; Zeynabad, F. B.; Alizadeh, E.; Rahimi, M.; Rahimi, F.; Salehi, R. Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial Co-drug Delivery System. Adv. Pharm. Bull. 2020, 11, 477–489. DOI: 10.34172/apb.2021.055.
  • Abbasian, M.; Mahmoodzadeh, F.; khalili, A.; Salehi, R. Chemotherapy of Breast Cancer Cells Using Novel pH-Responsive Cellulose-Based Nanocomposites. Adv. Pharm. Bull. 2019, 9, 122–131. DOI: 10.15171/apb.2019.015.
  • Ista, L. K.; Mendez, S.; Lopez, G. P. Attachment and Detachment of Bacteria on Surfaces with Tunable and Switchable Wettability. Biofouling 2010, 26, 111–118. DOI: 10.1080/08927010903383455.
  • Yu, Q.; Cho, J.; Shivapooja, P.; Ista, L. K.; López, G. P. Nanopatterned Smart Polymer Surfaces for Controlled Attachment, Killing, and Release of Bacteria. ACS Appl. Mater. Interfaces 2013, 5, 9295–9304. DOI: 10.1021/am4022279.
  • Yu, Q.; Ista, L. K.; López, G. P. Nanopatterned Antimicrobial Enzymatic Surfaces Combining Biocidal and Fouling Release Properties. Nanoscale 2014, 6, 4750–4757. DOI: 10.1039/c3nr06497b.
  • Ista, L. K.; Yu, Q.; Parthasarathy, A.; Schanze, K. S.; López, G. P. Reusable Nanoengineered Surfaces for Bacterial Recruitment and Decontamination. Biointerphases 2016, 11, 019003. DOI: 10.1116/1.4939239.
  • Wang, X.; Yan, S.; Song, L.; Shi, H.; Yang, H.; Luan, S.; Huang, Y.; Yin, J.; Khan, A. F.; Zhao, J. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS Appl. Mater. Interfaces 2017, 9, 40930–40939. DOI: 10.1021/acsami.7b09968.
  • Huang, C. J.; Chen, Y. S.; Chang, Y. Counterion-Activated Nanoactuator: Reversibly Switchable Killing/Releasing Bacteria on Polycation Brushes. ACS Appl. Mater. Interfaces 2015, 7, 2415–2423. DOI: 10.1021/am507105r.
  • Xiao, S.; Ren, B.; Huang, L.; Shen, M.; Zhang, Y.; Zhong, M.; Yang, J.; Zheng, J. Salt-Responsive Zwitterionic Polymer Brushes with Anti-Polyelectrolyte Property. Curr. Opin. Chem. Eng. 2018, 19, 86–93. DOI: 10.1016/j.coche.2017.12.008.
  • Wu, B.; Zhang, L.; Huang, L.; Xiao, S.; Yang, Y.; Zhong, M.; Yang, J. Salt-Induced Regenerative Surface for Bacteria Killing and Release. Langmuir 2017, 33, 7160–7168. DOI: 10.1021/acs.langmuir.7b01333.
  • Wei, T.; Yu, Q.; Chen, H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv. Healthc. Mater. 2019, 8, 1801381. DOI: 10.1002/adhm.201801381.
  • Wang, X.; Yuan, S.; Guo, Y.; Shi, D.; Jiang, T.; Yan, S.; Ma, J.; Shi, H.; Luan, S.; Yin, J. Facile Fabrication of Bactericidal and Antifouling Switchable Chitosan Wound Dressing through a ‘Click’-Type Interfacial Reaction. Colloids Surf. B Biointerfaces 2015, 136, 7–13. DOI: 10.1016/j.colsurfb.2015.08.051.
  • Yuan, S.; Li, Y.; Luan, S.; Shi, H.; Yan, S.; Yin, J. Infection-Resistant Styrenic Thermoplastic Elastomers That Can Switch from Bactericidal Capability to Anti-Adhesion. J. Mater. Chem. B 2016, 4, 1081–1089. DOI: 10.1039/c5tb02138c.
  • Wei, T.; Tang, Z.; Yu, Q.; Chen, H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511–37523. DOI: 10.1021/acsami.7b13565.
  • Sobolčiak, P.; Špírek, M.; Katrlík, J.; Gemeiner, P.; Lacík, I.; Kasák, P. Light-Switchable Polymer from Cationic to Zwitterionic Form: Synthesis, Characterization, and Interactions with DNA and Bacterial Cells. Macromol. Rapid Commun. 2013, 34, 635–639. DOI: 10.1002/marc.201200823.
  • Kumar, R.; Münstedt, H. Silver Ion Release from Antimicrobial Polyamide/Silver Composites. Biomaterials 2005, 26, 2081–2088. DOI: 10.1016/j.biomaterials.2004.05.030.
  • Lansdown, A. B. Silver I: Its Antibacterial Properties and Mechanism of Action. J. Wound Care 2002, 11, 125–130. DOI: 10.12968/jowc.2002.11.4.26389.
  • Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. DOI: 10.1038/nrmicro3028.
  • Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. DOI: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
  • Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine 2007, 3, 95–101. DOI: 10.1016/j.nano.2006.12.001.
  • Carithers, H. A. The First Use of an Antibiotic in America. Am. J. Dis. Child 1974, 128, 207–211. DOI: 10.1001/archpedi.1974.02110270081016.
  • Kimang’a, A. N. A Situational Analysis of Antimicrobial Drug Resistance in Africa: Are We Losing the Battle? Ethiop. J. Health Sci. 2012, 22, 135–143.
  • Johnson, J. R.; Johnston, B.; Kuskowski, M. A. In Vitro Comparison of Nitrofurazone- and Silver Alloy-Coated Foley Catheters for Contact-Dependent and Diffusible Inhibition of Urinary Tract Infection-Associated Microorganisms. Antimicrob. Agents Chemother. 2012, 56, 4969–4972. DOI: 10.1128/AAC.00733-12.
  • Kowalczuk, D.; Ginalska, G.; Piersiak, T.; Miazga‐Karska, M. Prevention of Biofilm Formation on Urinary Catheters: Comparison of the Sparfloxacin‐Treated Long‐Term Antimicrobial Catheters with Silver‐Coated Ones. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1874–1882.
  • Salvarci, A.; Koroglu, M.; Gurpinar, T. Evaluation of Antimicrobial Activities of Minocycline and Rifampin-Impregnated Silicone Surfaces in an In Vitro Urinary System Model. J. Pak. Med. Assoc. 2015, 65, 114–119.
  • Noimark, S.; Dunnill, C. W.; Wilson, M.; Parkin, I. P. The Role of Surfaces in Catheter-Associated Infections. Chem. Soc. Rev. 2009, 38, 3435–3448. DOI: 10.1039/b908260c.
  • Reid, G.; Sharma, S.; Advikolanu, K.; Tieszer, C.; Martin, R. A.; Bruce, A. W. Effects of Ciprofloxacin, Norfloxacin, and Ofloxacin on In Vitro Adhesion and Survival of Pseudomonas aeruginosa AK1 on Urinary Catheters. Antimicrob. Agents Chemother. 1994, 38, 1490–1495. DOI: 10.1128/AAC.38.7.1490.
  • Dave, R. N.; Joshi, H. M.; Venugopalan, V. P. Novel Biocatalytic Polymer-Based Antimicrobial Coatings as Potential Ureteral Biomaterial: preparation and In Vitro Performance Evaluation. Antimicrob. Agents Chemother. 2011, 55, 845–853. DOI: 10.1128/AAC.00477-10.
  • Sileika, T. S.; Kim, H. D.; Maniak, P.; Messersmith, P. B. Antibacterial Performance of Polydopamine-Modified Polymer Surfaces Containing Passive and Active Components. ACS Appl. Mater. Interfaces 2011, 3, 4602–4610. DOI: 10.1021/am200978h.
  • Hoque, J.; Akkapeddi, P.; Ghosh, C.; Uppu, D. S.; Haldar, J. A Biodegradable Polycationic Paint That Kills Bacteria In Vitro and In Vivo. ACS Appl. Mater. Interfaces 2016, 8, 29298–29309. DOI: 10.1021/acsami.6b09804.
  • Hoque, J.; Ghosh, S.; Paramanandham, K.; Haldar, J. Charge-Switchable Polymeric Coating Kills Bacteria and Prevents Biofilm Formation In Vivo. ACS Appl. Mater. Interfaces 2019, 11, 39150–39162. DOI: 10.1021/acsami.9b11453.
  • Hetrick, E. M.; Schoenfisch, M. H. Reducing Implant-Related Infections: Active Release Strategies. Chem. Soc. Rev. 2006, 35, 780–789. DOI: 10.1039/b515219b.
  • Charville, G. W.; Hetrick, E. M.; Geer, C. B.; Schoenfisch, M. H. Reduced Bacterial Adhesion to Fibrinogen-Coated Substrates via Nitric Oxide Release. Biomaterials 2008, 29, 4039–4044. DOI: 10.1016/j.biomaterials.2008.07.005.
  • Ona, K. R.; Courcelle, C. T.; Courcelle, J. Nucleotide Excision Repair is a Predominant Mechanism for Processing Nitrofurazone-Induced DNA Damage in Escherichia coli. J. Bacteriol. 2009, 191, 4959–4965. DOI: 10.1128/JB.00495-09.
  • Greenhalgh, R.; Dempsey-Hibbert, N. C.; Whitehead, K. A. Antimicrobial Strategies to Reduce Polymer Biomaterial Infections and Their Economic Implications and Considerations. Int. Biodeterior. Biodegrad. 2019, 136, 1–14. DOI: 10.1016/j.ibiod.2018.10.005.
  • Wongsuwan, N.; Dwivedi, A.; Tancharoen, S.; Nasongkla, N. Development of Dental Implant Coating with Minocycline-Loaded Niosome for Antibacterial Application. J. Drug Deliv. Sci. Technol. 2020, 56, 101555. DOI: 10.1016/j.jddst.2020.101555.
  • Wehrli, W. Rifampin: mechanisms of Action and Resistance. Rev. Infect. Dis. 1983, 5, S407–S411. DOI: 10.1093/clinids/5.Supplement_3.S407.
  • Stewart, P. S.; Costerton, J. W. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. DOI: 10.1016/S0140-6736(01)05321-1.
  • Jayaraman, R. Antibiotic Resistance: An Overview of Mechanisms and a Paradigm Shift. Curr. Sci. 2009, 96, 1475–1484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.