370
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Applying quality by design approach for the determination of potent paclitaxel loaded poly(lactic acid) based implants for localized tumor drug delivery

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 968-983 | Received 10 Feb 2022, Accepted 13 Apr 2022, Published online: 26 Apr 2022

References

  • World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer (accessed Jul 20, 2020).
  • Başpınar, Y.; Erel-Akbaba, G.; Kotmakçı, M.; Akbaba, H. Development and Characterization of Nanobubbles Containing Paclitaxel and Survivin Inhibitor YM155 against Lung Cancer. Int. J. Pharm. 2019, 566, 149–156. DOI: 10.1016/j.ijpharm.2019.05.039.
  • Lin, H.; Hu, B.; He, X.; Mao, J.; Wang, Y.; Wang, J.; Zhang, T.; Zheng, J.; Peng, Y.; Zhang, F. Overcoming Taxol-Resistance in A549 Cells: A Comprehensive Strategy of Targeting P-Gp Transporter, AKT/ERK Pathways, and Cytochrome P450 Enzyme CYP1B1 by 4-Hydroxyemodin. Biochem. Pharmacol. 2020, 171, 113733. DOI: 10.1016/j.bcp.2019.113733.
  • Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primers 2019, 5, 66. DOI: 10.1038/s41572-019-0111-2.
  • Comşa, Ş.; Cîmpean, A. M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154.
  • Osborne, C. K.; Hobbs, K.; Trent, J. M. Biological Differences among MCF-7 Human Breast Cancer Cell Lines from Different Laboratories. Breast Cancer Res. Treat. 1987, 9, 111–121. DOI: 10.1007/BF01807363.
  • Amin, R.; Morita-fujimura, Y.; Tawarayama, H.; Semba, K.; Chiba, N.; Fukumoto, M.; Ikawa, S. Np63 a Induces Quiescence and Downregulates the BRCA1 Pathway in Estrogen Receptor-Positive Luminal Breast Cancer Cell Line MCF7 but Not in Other Breast Cancer Cell Lines. Mol. Oncol. 2016, 10, 575–593. DOI: 10.1016/j.molonc.2015.11.009.
  • Costa, B.; Amorim, I.; Gärtner, F.; Vale, N. Understanding Breast Cancer: From Conventional Therapies to Repurposed Drugs. Eur. J. Pharm. Sci. 2020, 151, 105401. DOI: 10.1016/j.ejps.2020.105401.
  • Dhanikula, A. B.; Panchagnula, R. Development and Characterization of Biodegradable Chitosan Films for Local Delivery of Paclitaxel. AAPS J. 2004, 6, 88–99. DOI: 10.1208/aapsj060327.
  • Rong, H.-J.; Chen, W.-L.; Guo, S.-R.; Lei, L.; Shen, Y.-Y. PCL Films Incorporated with Paclitaxel/5-Fluorouracil: Effects of Formulation and Spacial Architecture on Drug Release. Int. J. Pharm. 2012, 427, 242–251. DOI: 10.1016/j.ijpharm.2012.02.007.
  • Krukiewicz, K.; Zak, J. K. Biomaterial-Based Regional Chemotherapy: Local Anticancer Drug Delivery to Enhance Chemotherapy and Minimize Its Side-Effects. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 927–942. DOI: 10.1016/j.msec.2016.01.063.
  • Özcan Bülbül, E.; Mesut, B.; Cevher, E.; Öztaş, E.; Özsoy, Y. Product Transfer from Lab-Scale to Pilot-Scale of Quetiapine Fumarate Orodispersible Films Using Quality by Design Approach. J. Drug Deliv. Sci. Technol. 2019, 54, 101358. DOI: 10.1016/j.jddst.2019.101358.
  • Jani, R.; Patel, D. Hot Melt Extrusion: An Industrially Feasible Approach for Casting Orodispersible Film. Asian J. Pharm. Sci. 2015, 10, 292–305. DOI: 10.1016/j.ajps.2015.03.002.
  • ICH Q8(R2). ICH Harmonised Tripartite Guideline Pharmaceutical Development Q8(R2); 2009.
  • Mazumder, S.; Pavurala, N.; Manda, P.; Xu, X.; Cruz, C. N.; Krishnaiah, Y. S. R. Quality by Design Approach for Studying the Impact of Formulation and Process Variables on Product Quality of Oral Disintegrating Films. Int. J. Pharm. 2017, 527, 151–160. DOI: 10.1016/j.ijpharm.2017.05.048.
  • Krull, S. M.; Patel, H. V.; Li, M.; Bilgili, E.; Dave, R. N. Critical Material Attributes (CMAs) of Strip Films Loaded with Poorly Water-Soluble Drug Nanoparticles: I. Impact of Plasticizer on Film Properties and Dissolution. Eur. J. Pharm. Sci. 2016, 92, 146–155. DOI: 10.1016/j.ejps.2016.07.005.
  • Üstündağ Okur, N.; Filippousi, M.; Okur, M. E.; Ayla, Ş.; Çağlar, E. Ş.; Yoltaş, A.; Siafaka, P. I. A Novel Approach for Skin Infections: Controlled Release Topical Mats of Poly(Lactic Acid)/Poly(Ethylene Succinate) Blends Containing Voriconazole. J. Drug Deliv. Sci. Technol. 2018, 46, 74–86. DOI: 10.1016/j.jddst.2018.05.005.
  • Siafaka, P. I. P. I.; Barmbalexis, P.; Bikiaris, D. N. D. N. Novel Electrospun Nanofibrous Matrices Prepared from Poly(Lactic Acid)/Poly(Butylene Adipate) Blends for Controlled Release Formulations of an Anti-Rheumatoid Agent. Eur. J. Pharm. Sci. 2016, 88, 12–25. DOI: 10.1016/j.ejps.2016.03.021.
  • Üstündağ Okur, N.; Hökenek, N.; Okur, M. E.; Ayla, Ş.; Yoltaş, A.; Siafaka, P. I.; Cevher, E. An Alternative Approach to Wound Healing Field; New Composite Films from Natural Polymers for Mupirocin Dermal Delivery. Saudi Pharm. J. 2019, 27, 738–752. DOI: 10.1016/j.jsps.2019.04.010.
  • Pekoz, A. Y.; Erdal, M. S.; Okyar, A.; Ocak, M.; Tekeli, F.; Kaptan, E.; Sagirli, O.; Araman, A. Preparation and In-Vivo Evaluation of Dimenhydrinate Buccal Mucoadhesive Films with Enhanced Bioavailability. Drug Dev. Ind. Pharm. 2016, 42, 916–925. DOI: 10.3109/03639045.2015.1091470.
  • Kim, S. Y.; Hwang, J. Y.; Seo, J. W.; Shin, U. S. Production of CNT-Taxol-Embedded PCL Microspheres Using an Ammonium-Based Room Temperature Ionic Liquid: As a Sustained Drug Delivery System. J. Colloid Interface Sci. 2015, 442, 147–153. DOI: 10.1016/j.jcis.2014.11.044.
  • Feng, S. s.; Huang, G. Effects of Emulsifiers on the Controlled Release of Paclitaxel (Taxol®) from Nanospheres of Biodegradable Polymers. J. Control. Release 2001, 71, 53–69. DOI: 10.1016/S0168-3659(00)00364-3.
  • Mu, L.; Feng, S. S. A Novel Controlled Release Formulation for the Anticancer Drug Paclitaxel (Taxol®): PLGA Nanoparticles Containing Vitamin E TPGS. J. Control. Release 2003, 86, 33–48. DOI: 10.1016/S0168-3659(02)00320-6.
  • Hobzova, R.; Hampejsova, Z.; Cerna, T.; Hrabeta, J.; Venclikova, K.; Jedelska, J.; Bakowsky, U.; Bosakova, Z.; Lhotka, M.; Vaculin, S.; et al. Poly(D,L-Lactide)/Polyethylene Glycol Micro/Nanofiber Mats as Paclitaxel-Eluting Carriers: Preparation and Characterization of Fibers, In Vitro Drug Release, Antiangiogenic Activity and Tumor Recurrence Prevention. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 982–993. DOI: 10.1016/j.msec.2019.01.046.
  • Filippousi, M.; Papadimitriou, S. A.; Bikiaris, D. N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; Van Tendeloo, G. Novel Core-Shell Magnetic Nanoparticles for Taxol Encapsulation in Biodegradable and Biocompatible Block Copolymers: Preparation, Characterization and Release Properties. Int. J. Pharm. 2013, 448, 221–230. DOI: 10.1016/j.ijpharm.2013.03.025.
  • Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223.
  • Aksu, B.; Yurdasiper, A.; Ege, M. A.; Okur, N. Ü.; Yesim, H. Development and Comparative Evaluation of Extended Release Indomethacin Capsules. African J. Pharm. Pharmacol. 2013, 7, 2201–2209.
  • Costa, P.; Lobo, J. M. S. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. DOI: 10.1016/S0928-0987(01)00095-1.
  • Siafaka, P. I.; Barmpalexis, P.; Lazaridou, M.; Papageorgiou, G. Z.; Koutris, E.; Karavas, E.; Kostoglou, M.; Bikiaris, D. N. Controlled Release Formulations of Risperidone Antipsychotic Drug in Novel Aliphatic Polyester Carriers: Data Analysis and Modelling. Eur. J. Pharm. Biopharm. 2015, 94, 473–484. DOI: 10.1016/j.ejpb.2015.06.027.
  • Karavas, E.; Georgarakis, E.; Bikiaris, D. Adjusting Drug Release by Using Miscible Polymer Blends as Effective Drug Carries. J. Therm. Anal. Calorim. 2006, 84, 125–133. DOI: 10.1007/s10973-005-7193-7.
  • Lyu, S. P.; Sparer, R.; Hobot, C.; Dang, K. Adjusting Drug Diffusivity Using Miscible Polymer Blends. J. Control. Release 2005, 102, 679–687. DOI: 10.1016/j.jconrel.2004.11.007.
  • Kolbuk, D.; Sajkiewicz, P.; Denis, P.; Choinska, E. Investigations of Polycaprolactone/Gelatin Blends in Terms of Their Miscibility. Bull. Polish Acad. Sci. Tech. Sci. 2013, 61, 629–632.
  • Wagner, A.; Poursorkhabi, V.; Mohanty, A. K.; Misra, M. Analysis of Porous Electrospun Fibers from Poly(L-Lactic Acid)/Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Blends. ACS Sustain. Chem. Eng. 2014, 2, 1976–1982. DOI: 10.1021/sc5000495.
  • Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. The Effect of Poly(Ethylene Glycol) as Plasticizer in Blends of Poly(Lactic Acid) and Poly(Butylene Succinate). J. Appl. Polym. Sci. 2016, 43044, 1–10.
  • Qiu, Z.; Komura, M.; Ikehara, T.; Nishi, T. DSC and TMDSC Study of Melting Behaviour of Poly(Butylene Succinate) and Poly(Ethylene Succinate). Polymer 2003, 44, 7781–7785. DOI: 10.1016/j.polymer.2003.10.045.
  • Chieng, B. W.; Ibrahim, N. A.; Yunus, W. M. Z. W.; Hussein, M. Z. Poly(Lactic Acid)/Poly(Ethylene Glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 2013, 6, 93–104. DOI: 10.3390/polym6010093.
  • Siafaka, P. I.; Betsiou, M.; Tsolou, A.; Angelou, E.; Agianian, B.; Koffa, M.; Chaitidou, S.; Karavas, E.; Avgoustakis, K.; Bikiaris, D. Synthesis of Folate- Pegylated Polyester Nanoparticles Encapsulating Ixabepilone for Targeting Folate Receptor Overexpressing Breast Cancer Cells. J. Mater. Sci. Mater. Med. 2015, 26, 1–14.
  • Woo, E. M.; Hsieh, Y.-T.; Chen, W.-T.; Kuo, N.-T.; Wang, L.-Y. Immiscibility-Miscibility Phase Transformation in Blends of Poly(Ethylene Succinate) with Poly(L-Lactic Acid)s of Different Molecular Weights. J. Polym. Sci. B Polym. Phys. 2010, 48, 1135–1147. DOI: 10.1002/polb.21999.
  • Hiremath, J. G.; Khamar, N. S.; Palavalli, S. G.; Rudani, C. G.; Aitha, R.; Mura, P. Paclitaxel Loaded Carrier Based Biodegradable Polymeric Implants: Preparation and In Vitro Characterization. Saudi Pharm. J. 2013, 21, 85–91. DOI: 10.1016/j.jsps.2011.12.002.
  • Yang, F. H.; Zhang, Q.; Liang, Q. Y.; Wang, S. Q.; Zhao, B. X.; Wang, Y. T.; Cai, Y.; Li, G. F. Bioavailability Enhancement of Paclitaxel via a Novel Oral Drug Delivery System: Paclitaxel-Loaded Glycyrrhizic Acid Micelles. Molecules 2015, 20, 4337–4356. DOI: 10.3390/molecules20034337.
  • Nanaki, S.; Siafaka, P. I.; Zachariadou, D.; Nerantzaki, M.; Giliopoulos, D. J.; Triantafyllidis, K. S.; Kostoglou, M.; Nikolakaki, E.; Bikiaris, D. N. PLGA/SBA-15 Mesoporous Silica Composite Microparticles Loaded with Paclitaxel for Local Chemotherapy. Eur. J. Pharm. Sci. 2017, 99, 32–44. DOI: 10.1016/j.ejps.2016.12.010.
  • Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin Films as an Emerging Platform for Drug Delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. DOI: 10.1016/j.ajps.2016.05.004.
  • Nair, A. B.; Kumria, R.; Harsha, S.; Attimarad, M.; Al-Dhubiab, B. E.; Alhaider, I. A. In Vitro Techniques to Evaluate Buccal Films. J. Control. Release 2013, 166, 10–21. DOI: 10.1016/j.jconrel.2012.11.019.
  • Tong, Q.; Xiao, Q.; Lim, L. T. Preparation and Properties of Pullulan-Alginate-Carboxymethylcellulose Blend Films. Food Res. Int. 2008, 41, 1007–1014. DOI: 10.1016/j.foodres.2008.08.005.
  • Namdeo, A.; Garud, N.; Garud, A. Development and Evaluation of Transdermal Patches of Quetiapine Fumerate for the Treatment of Psychosis. Int. J. Drug Deliv. 2012, 4, 470–476.
  • Cilurzo, F.; Cupone, I. E.; Minghetti, P.; Buratti, S.; Gennari, C. G. M.; Montanari, L. Diclofenac Fast-Dissolving Film: Suppression of Bitterness by a Taste-Sensing System. Drug Dev. Ind. Pharm. 2011, 37, 252–259. DOI: 10.3109/03639045.2010.505928.
  • Gal, A.; Nussinovitch, A. Plasticizers in the Manufacture of Novel Skin-Bioadhesive Patches. Int. J. Pharm. 2009, 370, 103–109. DOI: 10.1016/j.ijpharm.2008.11.015.
  • Rahman, M.; Brazel, C. S. The Plasticizer Market: An Assessment of Traditional Plasticizers and Research Trends to Meet New Challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. DOI: 10.1016/j.progpolymsci.2004.10.001.
  • Güngör, S.; Erdal, M. S.; Özsoy, Y. Plastizers in Transdermal Drug Delivery Systems. In Recent Advances in Plastizers; Luqman, M., Ed.; In Tech: Croatia, 2012; pp 91–112.
  • Lu, J.; Qiu, Z.; Yang, W. Fully Biodegradable Blends of Poly (L-Lactide) and Poly (Ethylene Succinate): Miscibility, Crystallization, and Mechanical Properties. Polymer 2007, 48, 4196–4204. DOI: 10.1016/j.polymer.2007.05.035.
  • Miao, L.; Qiu, Z.; Yang, W.; Ikehara, T. Fully Biodegradable Poly (3-Hydroxybutyrate-Co-Hydroxyvalerate)/Poly (Ethylene Succinate) Blends: Phase Behavior, Crystallization and Mechanical Properties. React. Funct. Polym. 2008, 68, 446–457. DOI: 10.1016/j.reactfunctpolym.2007.11.001.
  • Cai, Q.; Bei, J.; Wang, S. In Vitro Study on the Drug Release Behavior from Polylactide-Based Blend Matrices. Polym. Adv. Technol. 2002, 13, 534–540. DOI: 10.1002/pat.222.
  • Fu, Y.; Kao, W. J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. DOI: 10.1517/17425241003602259.
  • Mathematical Models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M. L., Ed.; Woodhead Publishing: Cambridge, 2015; pp 63–86.
  • Alaee, M.; Moghadam, S. H.; Sayyar, P.; Atyabi, F.; Dinarvand, R. Preparation of a Reservoir Type Levonorgestrel Delivery System Using High Molecular Weight Poly L-Lactide. Iran. J. Pharm. Res. 2009, 8, 87–93.
  • Mostafavi, S.; Karkhane, R.; Riazi-Esfahani, M.; Dorkoosh, F.; Rafiee-Tehrani, M.; Tamaddon, L. Design and Development of Intraocular Polymeric Implant Systems for Long-Term Controlled-Release of Clindamycin Phosphate for Toxoplasmic Retinochoroiditis. Adv. Biomed. Res. 2015, 4, 32. DOI: 10.4103/2277-9175.150426.
  • Wojcik-Pastuszka, D.; Krzak, J.; Macikowski, B.; Berkowski, R.; Osiński, B.; Musiał, W. Evaluation of the Release Kinetics of a Pharmacologically Active Substance from Model Intra-Articular Implants Replacing the Cruciate Ligaments of the Knee. Materials 2019, 12, 1202. DOI: 10.3390/ma12081202.
  • Siafaka, P.; Okur, M. E.; Ayla, Ş.; Er, S.; Cağlar, E. Ş.; Okur, N. Ü. Design and Characterization of Nanocarriers Loaded with Levofloxacin for Enhanced Antimicrobial Activity; Physicochemical Properties, In Vitro Release and Oral Acute Toxicity. Braz. J. Pharm. Sci. 2019, 55, 1–13.
  • Üstündağ-Okur, N.; Gökçe, E. H.; Bozbıyık, D. İ.; Eğrilmez, S.; Ertan, G.; Özer, Ö. Novel Nanostructured Lipid Carrier-Based Inserts for Controlled Ocular Drug Delivery: Evaluation of Corneal Bioavailability and Treatment Efficacy in Bacterial Keratitis. Expert Opin. Drug Deliv. 2015, 12, 1791–1807. DOI: 10.1517/17425247.2015.1059419.
  • Ramyadevi, D.; Rajan, K. S. Interaction and Release Kinetics Study of Hybrid Polymer Blend Nanoparticles for PH Independent Controlled Release of an Anti-Viral Drug. J. Taiwan Inst. Chem. Eng. 2015, 50, 1–11. DOI: 10.1016/j.jtice.2014.12.036.
  • Fukuda, I. M.; Pinto, C. F. F.; Moreira, C. D. S.; Saviano, A. M.; Lourenço, F. R. Design of Experiments (DoE) Applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54, 1–16.
  • Amasya, G.; Badilli, U.; Aksu, B.; Tarimci, N. Quality by Design Case Study 1: Design of 5-Fl Uorouracil Loaded Lipid Nanoparticles by the W/O/W Double Emulsion — Solvent Evaporation Method. Eur. J. Pharm. Sci. 2016, 84, 92–102. DOI: 10.1016/j.ejps.2016.01.003.
  • Nashchekina, Y.; Nikonov, P.; Nashchekin, A.; Mikhailova, N. Functional Polylactide Blend Films for Controlling Mesenchymal Stem Cell Behaviour. Polymers 2020, 12, 1969. DOI: 10.3390/polym12091969.
  • Vasile, C.; Stoleru, E.; Darie-Niţa, R. N.; Dumitriu, R. P.; Pamfil, D.; Tarţau, L. Biocompatible Materials Based on Plasticized Poly(Lactic Acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(Lactic Acid) Materials. Polymers 2019, 11, 941. DOI: 10.3390/polym11060941.
  • Li, X.; Yang, B.; Ren, H.; Xiao, T.; Zhang, L.; Li, L.; Li, M.; Wang, X.; Zhou, H.; Zhang, W. Hsa_Circ_0002483 Inhibited the Progression and Enhanced the Taxol Sensitivity of Non-Small Cell Lung Cancer by Targeting MiR-182-5p. Cell Death Dis. 2019, 10, 953. DOI: 10.1038/s41419-019-2180-2.
  • Sparano, J. A.; Wang, M.; Martino, S.; Jones, V.; Perez, E. A.; Saphner, T.; Wolff, A. C.; Sledge, G. W.; Wood, W. C.; Davidson, N. E. Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2008, 358, 1663–1671. DOI: 10.1056/NEJMoa0707056.
  • Stefanowicz-hajduk, J.; Ochocka, J. R. Real-Time Cell Analysis System in Cytotoxicity Applications: Usefulness and Comparison with Tetrazolium Salt Assays. Toxicol. Rep. 2020, 7, 335–344. DOI: 10.1016/j.toxrep.2020.02.002.
  • Zubris, K. A. V.; Liu, R.; Colby, A.; Schulz, M. D.; Colson, Y. L.; Grinstaff, M. W. In Vitro Activity of Paclitaxel-Loaded Polymeric Expansile Nanoparticles in Breast Cancer Cells. Biomacromolecules 2013, 14, 2074–2082. DOI: 10.1021/bm400434h.
  • Foglietta, F.; Spagnoli, G. C.; Muraro, M. G.; Ballestri, M.; Guerrini, A.; Ferroni, C.; Aluigi, A.; Sotgiu, G.; Varchi, G. Anticancer Activity of Paclitaxel-Loaded Keratin Nanoparticles in Two-Dimensional and Perfused Three-Dimensional Breast Cancer Models. Int. J. Nanomedicine 2018, 13, 4847–4867. volumeDOI: 10.2147/IJN.S159942.
  • Xu, R.; Mao, Y.; Chen, K.; He, W.; Shi, W.; Han, Y. The Long Noncoding RNA ANRIL Acts as an Oncogene and Contributes to Paclitaxel Resistance of Lung Adenocarcinoma A549 Cells. Oncotarget 2017, 8, 39177–39184. DOI: 10.18632/oncotarget.16640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.