191
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Polymeric nanofiber dressings with incorporated rifampicin for transdermal administration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1032-1041 | Received 03 Mar 2022, Accepted 06 May 2022, Published online: 15 Jun 2022

References

  • Laxminarayan, R.; Van Boeckel, T.; Frost, I.; Kariuki, S.; Khan, E. A.; Limmathurotsakul, D.; Larsson, D. G. J.; Levy-Hara, G.; Mendelson, M.; Outterson, K.; et al. The Lancet Infectious Diseases Commission on Antimicrobial Resistance: 6 Years Later. Lancet Infect. Dis. 2020, 20, e51–e60. DOI: 10.1016/S1473-3099(20)30003-7.
  • Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial Resistance in the Context of the Sustainable Development Goals: A Brief Review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. DOI: 10.3390/ejihpe11010006.
  • Micoli, F.; Bagnoli, F.; Rappuoli, R.; Serruto, D. The Role of Vaccines in Combatting Antimicrobial Resistance. Nat. Rev. Microbiol. 2021, 19, 287–302. DOI: 10.1038/s41579-020-00506-3.
  • Wellington, E. M. H.; Boxall, A. B. A.; Cross, P.; Feil, E. J.; Gaze, W. H.; Hawkey, P. M.; Johnson-Rollings, A. S.; Jones, D. L.; Lee, N. M.; Otten, W.; et al. The Role of the Natural Environment in the Emergence of Antibiotic Resistance in Gram-Negative Bacteria. Lancet Infect. Dis. 2013, 13, 155–165. DOI: 10.1016/S1473-3099(12)70317-1.
  • Primo, M. G. B.; Guilarde, A. O.; Martelli, C. M. T.; Batista, L. J.; de, A.; Turchi, M. D. Healthcare-Associated Staphylococcus aureus Bloodstream Infection: Length of Stay, Attributable Mortality, and Additional Direct Costs. Braz. J. Infect. Dis. 2012, 16, 503–509. DOI: 10.1016/j.bjid.2012.10.001.
  • Yu, G.; Baeder, D. Y.; Regoes, R. R.; Rolff, J. Predicting Drug Resistance Evolution: Insights from Antimicrobial Peptides and Antibiotics. Proc. R. Soc. B 2018, 285, 20172687. DOI: 10.1098/rspb.2017.2687.
  • Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310–1314. DOI: 10.3390/pathogens10101310.
  • Ramey, A. M.; Ahlstrom, C. A. Antibiotic Resistant Bacteria in Wildlife: Perspectives on Trends, Acquisition and Dissemination, Data Gaps, and Future Directions. J. Wildl. Dis. 2020, 56, 1–15. DOI: 10.7589/2019-04-099.
  • Spellberg, B. The Future of Antibiotics. Crit. Care 2014, 18, 228–227. DOI: 10.1186/cc13948.
  • Buehrle, D. J.; Decker, B. K.; Wagener, M. M.; Adalja, A.; Singh, N.; McEllistrem, M. C.; Nguyen, M. H.; Clancy, C. J. Antibiotic Consumption and Stewardship at a Hospital Outside of an Early Coronavirus Disease. Epicenter. Antimicrob. Agents Chemother. 2019, 2020, 64. DOI: 10.1128/AAC.01011-20.
  • Goldstein, B. P. Resistance to Rifampicin: A Review. J. Antibiot. 2014, 67, 625–630. DOI: 10.1038/ja.2014.107.
  • Peñata, A.; Salazar, R.; Castaño, T.; Bustamante, J.; Ospina, S. Molecular Diagnosis of Extrapulmonary Tuberculosis and Sensitivity to Rifampicin with an Automated Real-Time Method. Biomedica 2016, 36, 78–89. DOI: 10.7705/biomedica.v36i3.3088.
  • Mebis, J.; Goossens, H.; Berneman, Z. N. Antibiotic Management of Febrile Neutropenia: Current Developments and Future Directions. J. Chemother. 2010, 22, 5–12. DOI: 10.1179/joc.2010.22.1.5.
  • Karande, P.; Mitragotri, S. Enhancement of Transdermal Drug Delivery via Synergistic Action of Chemicals. Biochim. Biophys. Acta 2009, 1788, 2362–2373. DOI: 10.1016/j.bbamem.2009.08.015.
  • Bhise, S. B.; More, A. B.; Malayandi, R. Formulation and In Vitro Evaluation of Rifampicin Loaded Porous Microspheres. Sci. Pharm. 2010, 78, 291–302. DOI: 10.3797/scipharm.0910-09.
  • Gupta, H.; Bhandari, D.; Sharma, A. Recent Trends in Oral Drug Delivery: A Review. Recent Pat. Drug Deliv. Formul. 2009, 3, 162–173. DOI: 10.2174/187221109788452267.
  • Talevi, A.; Quiroga, P. A. M. ADME Processes in Pharmaceutical Sciences, Springer: Switzerland, 2018. DOI: 10.1007/978-3-319-99593-9.
  • Agarwal, S.; Wendorff, J. H.; Greiner, A. Use of Electrospinning Technique for Biomedical Applications. Polymer 2008, 49, 5603–5621. DOI: 10.1016/j.polymer.2008.09.014.
  • Topcu, B.; Gultekinoglu, M.; Timur, S. S.; Eroglu, I.; Ulubayram, K.; Eroglu, H. Current Approaches and Future Prospects of Nanofibers: A Special Focus on Antimicrobial Drug Delivery. J. Drug Targeting 2021, 29, 563–575. DOI: 10.1080/1061186X.2020.1867991.
  • Hamdan, N.; Yamin, A.; Hamid, S. A.; Khodir, W. K. W. A.; Guarino, V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. JFB 2021, 12, 59. DOI: 10.3390/jfb12040059.
  • Altun, E.; Yuca, E.; Ekren, N.; Kalaskar, D. M.; Ficai, D.; Dolete, G.; Ficai, A.; Gunduz, O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics 2021, 13, 613. DOI: 10.3390/pharmaceutics13050613.
  • Topuz, F.; Kilic, M. E.; Durgun, E.; Szekely, G. Fast-Dissolving Antibacterial Nanofibers of Cyclodextrin/Antibiotic Inclusion Complexes for Oral Drug Delivery. J. Colloid Interface Sci. 2021, 585, 184–194. DOI: 10.1016/j.jcis.2020.11.072.
  • Rahmani, M.; Bidgoli, S. A.; Rezayat, S. M. Electrospun Polymeric Nanofibers for Transdermal Drug Delivery. Nanomedicine J. 2017, 4, 61–70. DOI: 10.22038/nmj.2017.21210.1224.
  • Kataria, K.; Gupta, A.; Rath, G.; Mathur, R. B.; Dhakate, S. R. In Vivo Wound Healing Performance of Drug Loaded Electrospun Composite Nanofibers Transdermal Patch. Int. J. Pharm. 2014, 469, 102–110. DOI: 10.1016/j.ijpharm.2014.04.047.
  • Nematpour, N.; Farhadian, N.; Ebrahimi, K. S.; Arkan, E.; Seyedi, F.; Khaledian, S.; Shahlaei, M.; Moradi, S. Sustained Release Nanofibrous Composite Patch for Transdermal Antibiotic Delivery. Colloids Surf. A 2020, 586, 124267. DOI: 10.1016/j.colsurfa.2019.124267.
  • Kenry; Lim, C. T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. DOI: 10.1016/j.progpolymsci.2017.03.002.
  • Alghoraibi, I.; Alomari, S. Different Methods for Nanofiber Design and Fabrication. In Handbook of Nanofibers, Springer: Switzerland, 2018, pp 1–46. DOI: 10.1007/978-3-319-42789-8_11-2.
  • Abdul Khodir, W.; Abdul Razak, A.; Ng, M.; Guarino, V.; Susanti, D. Encapsulation and Characterization of Gentamicin Sulfate in the Collagen Added Electrospun Nanofibers for Skin Regeneration. JFB 2018, 9, 36. DOI: 10.3390/jfb9020036.
  • Fathi, H. A.; Abdelkader, A.; AbdelKarim, M. S.; Abdelaziz, A. A.; el Mokhtar, M. A.; Allam, A.; Fetih, G.; el Badry, M.; Elsabahy, M. Electrospun Vancomycin-Loaded Nanofibers for Management of Methicillin-Resistant Staphylococcus aureus-Induced Skin Infections. Int. J. Pharm. 2020, 586, 119620. DOI: 10.1016/j.ijpharm.2020.119620.
  • Zheng, F.; Wang, S.; Wen, S.; Shen, M.; Zhu, M.; Shi, X. Characterization and Antibacterial Activity of Amoxicillin-Loaded Electrospun Nano-Hydroxyapatite/Poly(Lactic-Co-Glycolic Acid) Composite Nanofibers. Biomaterials 2013, 34, 1402–1412. DOI: 10.1016/j.biomaterials.2012.10.071.
  • Zhang, Y. Z.; Venugopal, J.; Huang, Z. M.; Lim, C. T.; Ramakrishna, S. Crosslinking of the Electrospun Gelatin Nanofibers. Polymer 2006, 47, 2911–2917. DOI: 10.1016/j.polymer.2006.02.046.
  • Moreno-Exebio, L.; Grande-Ortiz, M. Validación de Un Método de Cromatografía Líquida Para La Determinación de Rifampicina En Plasma Humano. Rev. Peru. Med. Exp. Salud Publica 2014, 31, 56–61. DOI: 10.17843/rpmesp.2014.311.8.
  • Liu, Y.; Li, C.; Chen, J.; Han, Y.; Wei, M.; Liu, J.; Yu, X.; Li, F.; Hu, P.; Fu, L.; Liu, Y. Electrospun High Bioavailable Rifampicin–Isoniazid-Polyvinylpyrrolidone Fiber Membranes. Appl. Nanosci. 2021, 11, 2271–2280. DOI: 10.1007/s13204-021-01957-7.
  • Guo, N.; Hou, B.; Wang, N.; Xiao, Y.; Huang, J.; Guo, Y.; Zong, S.; Hao, H. In Situ Monitoring and Modeling of the Solution-Mediated Polymorphic Transformation of Rifampicin: From Form II to Form I. J. Pharm. Sci. 2018, 107, 344–352. DOI: 10.1016/j.xphs.2017.10.004.
  • Bachhav, S. S.; Dighe, V. D.; Kotak, D.; Devarajan, P. V. Rifampicin Lipid-Polymer Hybrid Nanoparticles (LIPOMER) for Enhanced Peyer’s Patch Uptake. Int. J. Pharm. 2017, 532, 612–622. DOI: 10.1016/j.ijpharm.2017.09.040.
  • Achmad, F.; Yamane, K.; Quan, S.; Kokugan, T. Synthesis of Polylactic Acid by Direct Polycondensation under Vacuum without Catalysts, Solvents and Initiators. Chem. Eng. J. 2009, 151, 342–350. DOI: 10.1016/j.cej.2009.04.014.
  • Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. DOI: 10.1023/A:1020200822435.
  • Venkatesan, K. Pharmacokinetic Drug Interactions with Rifampicin. Clin. Pharmacokinet. 1992, 22, 47–65. DOI: 10.2165/00003088-199222010-00005.
  • Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Electrospinning of Nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. DOI: 10.1002/app.21481.
  • Sill, T. J.; von Recum, H. A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29, 1989–2006. DOI: 10.1016/j.biomaterials.2008.01.011.
  • Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes. Polymer 2002, 43, 4403–4412. DOI: 10.1016/S0032-3861(02)00275-6.
  • Pillay, V.; Dott, C.; Choonara, Y. E.; Tyagi, C.; Tomar, L.; Kumar, P.; du Toit, L. C.; Ndesendo, V. M. K. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013, 2013, 1–22. DOI: 10.1155/2013/789289.
  • Henwood, S. Q.; Liebenberg, W.; Tiedt, L. R.; Lötter, A. P.; de Villiers, M. M. Characterization of the Solubility and Dissolution Properties of Several New Rifampicin Polymorphs, Solvates, and Hydrates. Drug Dev. Ind. Pharm. 2001, 27, 1017–1030. DOI: 10.1081/ddc-100108364.
  • Lacerda, L.; Parize, A. L.; Fávere, V.; Laranjeira, M. C. M.; Stulzer, H. K. Development and Evaluation of PH-Sensitive Sodium Alginate/Chitosan Microparticles Containing the Antituberculosis Drug Rifampicin. Mater. Sci. Eng. C 2014, 39, 161–167. DOI: 10.1016/j.msec.2014.01.054.
  • Ljungberg, N.; Wesslén, B. The Effects of Plasticizers on the Dynamic Mechanical and Thermal Properties of Poly(Lactic Acid). J. Appl. Polym. Sci. 2002, 86, 1227–1234. DOI: 10.1002/app.11077.
  • Espinoza, S. M.; Patil, H. I.; San Martin Martinez, E.; Casañas Pimentel, R.; Ige, P. P. Poly-ε-Caprolactone (PCL), a Promising Polymer for Pharmaceutical and Biomedical Applications: Focus on Nanomedicine in Cancer. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 85–126. DOI: 10.1080/00914037.2018.1539990.
  • Park, J. Y.; Lee, I. H. Controlled Release of Ketoprofen from Electrospun Porous Polylactic Acid (PLA) Nanofibers. J. Polym. Res. 2011, 18, 1287–1291. DOI: 10.1007/s10965-010-9531-0.
  • Ferri, J. M.; Fenollar, O.; Jorda-Vilaplana, A.; García-Sanoguera, D.; Balart, R. Effect of Miscibility on Mechanical and Thermal Properties of Poly(Lactic Acid)/Polycaprolactone Blends. Polym. Int. 2016, 65, 453–463. DOI: 10.1002/pi.5079.
  • Frone, A. N.; Berlioz, S.; Chailan, J. F.; Panaitescu, D. M. Morphology and Thermal Properties of PLA-Cellulose Nanofibers Composites. Carbohydr. Polym. 2013, 91, 377–384. DOI: 10.1016/j.carbpol.2012.08.054.
  • Junkasem, J.; Rujiravanit, R.; Grady, B. P.; Supaphol, P. X-Ray Diffraction and Dynamic Mechanical Analyses of α-Chitin Whisker-Reinforced Poly(Vinyl Alcohol) Nanocomposite Nanofibers. Polym. Int. 2010, 59, 85–91. DOI: 10.1002/pi.2693.
  • Cao, D.; Fu, Z.; Li, C. Heat and Compression Molded Electrospun Poly(l-Lactide) Membranes: Preparation and Characterization. Mater. Sci. Eng. B 2011, 176, 900–905. DOI: 10.1016/j.mseb.2011.05.015.
  • Jia, L.; Qin, X. H. The Effect of Different Surfactants on the Electrospinning Poly(Vinyl Alcohol) (PVA) Nanofibers. J. Therm. Anal. Calorim. 2013, 112, 595–605. DOI: 10.1007/s10973-012-2607-9.
  • Chakrapani, V. Y.; Gnanamani, A.; Giridev, V. R.; Madhusoothanan, M.; Sekaran, G. Electrospinning of Type I Collagen and PCL Nanofibers Using Acetic Acid. J. Appl. Polym. Sci. 2012, 125, 3221–3227. DOI: 10.1002/app.36504.
  • Chellini, P. R.; Lages, E. B.; Franco, P. H. C.; Nogueira, F. H. A.; César, I. C.; Pianetti, G. A. Development and Validation of an HPLC Method for Simultaneous Determination of Rifampicin, Isoniazid, Pyrazinamide, and Ethambutol Hydrochloride in Pharmaceutical Formulations. J. AOAC Int. 2015, 98, 1234–1239. DOI: 10.5740/jaoacint.14-237.
  • Sutradhar, I.; Zaman, M. H. Evaluation of the Effect of Temperature on the Stability and Antimicrobial Activity of Rifampicin Quinone. J. Pharm. Biomed. Anal. 2021, 197, 113941. DOI: 10.1016/j.jpba.2021.113941.
  • Seng, K. Y.; Hee, K. H.; Soon, G. H.; Chew, N.; Khoo, S. H.; Lee, L. S. U. Population Pharmacokinetics of Rifampicin and 25-Deacetyl-Rifampicin in Healthy Asian Adults. J. Antimicrob. Chemother. 2015, 70, 3298–3306. DOI: 10.1093/jac/dkv268.
  • Casañas Pimentel, Rocio Guadalupe; Gama Castañeda, Ningel Omar; Franco Colin, Margarita; Aguilar Méndez, Miguel Angel; San Martin Martinez, Eduardo; Cano Europa, Edgar. Data – Polymeric Nanofiber Dressings with Rifampicin; Mendeley Data, V1, Elsevier: New York, 2022. DOI: 10.17632/h5w65pmzw5.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.