267
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of a pH-responsive drug delivery system based on the super-paramagnetic metal-organic framework for targeted delivery of oxaliplatin

, ORCID Icon, ORCID Icon &
Pages 1083-1092 | Received 27 Dec 2021, Accepted 23 May 2022, Published online: 11 Jun 2022

References

  • Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, 2020. https://gco.iarc.fr/today (accessed Feb 2021).
  • Brown, J. J.; Asumeng, C. K.; Greenwald, D.; Weissman, M.; Zauber, A.; Striplin, J.; Weng, O.; List, J. M.; Farley, S. M.; Winawer, S. J. Decreased Colorectal Cancer Incidence and Mortality in a Diverse Urban Population with Increased Colonoscopy Screening. BMC Public Health 2021, 21, 1280. DOI: 10.1186/s12889-021-11330-6.
  • Tanaka, K.; Sobue, T.; Zha, L.; Kitamura, T.; Sawada, N.; Iwasaki, M.; Inoue, M.; Yamaji, T.; Tsugane, S. Effectiveness of Screening Using Fecal Occult Blood Test and Colonoscopy on the Risk of Colorectal Cancer: The Japan Public Health Center-Based Prospective Study. J. Epidemiol. 2021. DOI: 10.2188/jea.JE20210057.
  • Miller, E.; Pinsky, P. F.; Schoen, R. E.; Prorok, P. C.; Church, T. R. Effect of Flexible Sigmoidoscopy Screening on Colorectal Cancer Incidence and Mortality: Long-Term Follow-Up of the Randomised US PLCO Cancer Screening Trial. Lancet Gastroenterol. Hepatol. 2019, 4, 101–110. DOI: 10.1016/S2468-1253(18)30358-3.
  • Zhang, D.; Zhang, J.; Jiang, K.; Li, K.; Cong, Y.; Pu, S.; Jin, Y.; Lin, J. Preparation, Characterisation and Antitumour Activity of β-, γ- and HP-β-Cyclodextrin Inclusion Complexes of Oxaliplatin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 501–508. DOI: 10.1016/j.saa.2015.07.088.
  • Nagourney, R. A.; Evans, S.; Tran, P. H.; Nagourney, A. J.; Sugarbaker, P. H. Colorectal Cancer Cells from Patients Treated with FOLFOX or CAPOX Are Resistant to Oxaliplatin. Eur. J. Surg. Oncol. 2021, 47, 738–742. DOI: 10.1016/j.ejso.2020.09.017.
  • Lurvink, R.; Rovers, K.; TajzaI, R.; Wassenaar, E.; Mols, F.; Moes, D.; Pluimakers, G.; Wiezer, M.; Burger, J.; Nienhuijs, S.; et al. P-384 Quality of Life and the Systemic Pharmacokinetics of Oxaliplatin in Patients with Unresectable Peritoneal Metastases from Colorectal Cancer Treated with Repetitive Electrostatic Pressurized Intraperitoneal Aerosol Chemotherapy (Epipac): The CRC-PIPAC Trial. Ann. Oncol. 2021, 31, 211. DOI: 10.1016/j.annonc.2020.04.469.
  • Yeo, J.; Yoon, S.; Kwon, S.; Kim, S.; Lee, J.; Beitz, A.-J.; Roh, D. Repetitive Acupuncture Point Treatment with Diluted Bee Venom Relieves Mechanical Allodynia and Restores Intraepidermal Nerve Fiber Loss in Oxaliplatin-Induced Neuropathic Mice. J. Pain 2016, 17, 298–309. DOI: 10.1016/j.jpain.2015.10.018.
  • Zhang, B.; Wang, T.; Yang, S.; Xiao, Y.; Song, Y.; Zhang, N.; Garg, S. Development and Evaluation of Oxaliplatin and Irinotecan co-Loaded Liposomes for Enhanced Colorectal Cancer Therapy. J. Control. Release 2016, 238, 10–21. DOI: 10.1016/j.jconrel.2016.07.022.
  • Yamamoto, S.; Ono, H.; Kume, K.; Ohsawa, M. Oxaliplatin Treatment Changes the Function of Sensory Nerves in Rats. J. Pharmacol. Sci. 2016, 130, 189–193. DOI: 10.1016/j.jphs.2015.12.004.
  • Flatmark, K.; Saelen, M.-G.; Hole, K.-H.; Abrahamsen, T.-W.; Fleten, K.-G.; Hektoen, H.-H.; Redalen, K.-R.; Seierstad, T.; Dueland, S.; Ree, A.-H. Individual Tumor Volume Responses to Short-Course Oxaliplatin-Containing Induction Chemotherapy in Locally Advanced Rectal Cancer – Targeting the Tumor for Radiation Sensitivity? Radiother. Oncol. 2016, 119, 505–511. DOI: 10.1016/j.radonc.2016.02.020.
  • Chen, W.; Lian, W.; Yuan, Y.; LI, M. The Synergistic Effects of Oxaliplatin and Piperlongumine on Colorectal Cancer Are Mediated by Oxidative Stress. Cell Death Dis. 2019, 10, 10. DOI: 10.1038/s41419-019-1824-6.
  • Zhang, P.; Shi, L.; Zhang, T.; Hong, L.; He, W.; Cao, P.; Shen, X.; Zheng, P.; Xia, Y.; Zou, P. Piperlongumine Potentiates the Antitumor Efficacy of Oxaliplatin through ROS Induction in Gastric Cancer Cells. Cell Oncol. 2019, 42, 847–860. DOI: 10.1007/s13402-019-00471-x.
  • Valerio Branca, J. J.; Carrino, D.; Gulisano, M.; Ghelardini, C.; Cesare Mannelli, L. D.; Pacini, A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front. Mol. Biosci. 2021, 8, 643824. DOI: 10.3389/fmolb.2021.643824.
  • Chen, S. H.; Chang, J. Y. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. IJMS 2019, 20, 4136. DOI: 10.3390/ijms20174136.
  • Rezayan, A. H.; Mousavi, M.; Kheirjou, S.; Amoabediny, G.; Ardestani, M. S.; Mohammadnejad, J. Monodisperse Magnetite (Fe3O4) Nanoparticles Modified with Water Soluble Polymers for the Diagnosis of Breast Cancer by MRI Method. J. Magn. Magn. Mater. 2016, 420, 210–217. DOI: 10.1016/j.jmmm.2016.07.003.
  • Ahmad Panahi, H.; Nourbakhsh, S.; Siami, F. Synthesis of Functionalized Magnetic Nanoparticles as a Nanocarrier for Targeted Drug Delivery. Adv. Polym. Technol. 2018, 37, 3659–3664. DOI: 10.1002/adv.22150.
  • Shahverdi, N.; Heydarinasab, A.; Ahmad Panahi, H.; Moniri, E. Synthesis and Evaluation of Enalapril‐Loaded PVA/PMC Modified Magnetic Nanoparticles as a Novel Efficient Nano‐Carrier. ChemistrySelect 2019, 4, 5246–5250. DOI: 10.1002/slct.201900697.
  • Ahmad Panahi, H.; Nasrollahi, S. Polymer Brushes Containing Thermosensitive and Functional Groups Grafted onto Magnetic Nano-Particles for Interaction and Extraction of Famotidine in Biological Samples. Int. J. Pharm. 2014, 476, 70–76. DOI: 10.1016/j.ijpharm.2014.09.043.
  • Zhang, W.; Si, X.; Liu, B.; Bian, G.; Qi, Y.; Yang, X.; Li, C. Synthesis of 1D Fe3O4/P(MBAAm-Co-MAA) Nanochains as Stabilizers for Ag Nanoparticles and Templates for Hollow Mesoporous Structure, and Their Applications in Catalytic Reaction and Drug Delivery. J. Colloid Interface Sci. 2015, 456, 145–154. DOI: 10.1016/j.jcis.2015.06.028.
  • Yu, L.; Hao, G.; Gu, J.; Zhou, S.; Zhang, N.; Jiang, W. Fe3O4/PS Magnetic Nanoparticles: Synthesis, Characterization and Their Application as Sorbents of Oil from Waste Water. J. Magn. Magn. Mater. 2015, 394, 14–21. DOI: 10.1016/j.jmmm.2015.06.045.
  • Chen, J. B.; Cui, T. J.; Lin, G.; Wang, F.; Zhang, J. Sodalite-Type Metal-Organic Zeolite with Uncoordinated N-Sites as Potential Anticancer Drug 5-Fluorouracil (5-FU) Delivery Platform. Inorg. Chem. Commun. 2019, 109, 107560. DOI: 10.1016/j.inoche.2019.107560.
  • Farmanbar, N.; Mohseni, S.; Darroudi, M. Green Synthesis of Chitosan-Coated Magnetic Nanoparticles for Drug Delivery of Oxaliplatin and Irinotecan against Colorectal Cancer Cells. Polym. Bull. 2022. DOI: 10.1007/s00289-021-04066-1.
  • Alijani, H.; Noori, A.; Faridi, N.; Bathaie, S. Z.; Mousavi, M. F. Aptamer-Functionalized Fe3O4@MOF Nanocarrier for Targeted Drug Delivery and Fluorescence Imaging of the Triple-Negative MDA-MB-231 Breast Cancer Cells. J. Solid State Chem. 2020, 292, 121680. DOI: 10.1016/j.jssc.2020.121680.
  • Shahabadi, N.; Razlansari, M.; Zhaleh, H.; Mansouri, K. Antiproliferative Effects of New Magnetic pH-Responsive Drug Delivery System Composed of Fe3O4, CaAl Layered Double Hydroxide and Levodopa on Melanoma Cancer Cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 472–486. DOI: 10.1016/j.msec.2019.04.004.
  • Tabasi, H.; Mosavian, M. T. H.; Sabouri, Z.; Khazaei, M.; Darroudi, M. pH-Responsive and CD44-Targeting by Fe3O4/MSNs-NH2 Nanocarriers for Oxaliplatin Loading and Colon Cancer Treatment. Inorg. Chem. Commun. 2021, 125, 108430. DOI: 10.1016/j.inoche.2020.108430.
  • El-Shahawy, A. G. E.; Elnagar, N.; Zohery, M.; Abd Elhafeez, M. S.; El-Dek, S. I. Smart Nanocarrier-Based Chitosan @ Silica Coated Carbon Nanotubes Composite for Breast Cancer Treatment Approach. Int. J. Polym. Mater. Polym. Biomater. 2021, 1–13. DOI: 10.1080/00914037.2021.1925277.
  • Ma, J. Y.; Han, J.; Sun, J.; Fan, L.; Bai, S.; Jiao, Y. pH-Sensitive Controlled Release In Vitro and Pharmacokinetics of Ibuprofen from Hybrid Nanocomposite Using Amine-Modified Bimodal Mesopores Silica as Core and Poly (Methylacrylic Acid) as Shell. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1023–1033. DOI: 10.1080/00914037.2019.1655747.
  • Samiei Foroushani, M.; Zahmatkeshan, A.; Arkaban, H.; Karimi Shervedani, R.; Kefayat, A. A Drug Delivery System Based on Nanocomposites Constructed from Metal-Organic Frameworks and Mn3O4 Nanoparticles: Preparation and Physicochemical Characterization for BT-474 and MCF-7 Cancer Cells. Colloids Surf. B Biointerfaces 2021, 202, 111712. DOI: 10.1016/j.colsurfb.2021.111712.
  • Meng, Z.; Huang, H.; Huang, D.; Zhang, F.; Mi, P. Functional Metal-Organic Framework-Based Nanocarriers for Accurate Magnetic Resonance Imaging and Effective Eradication of Breast Tumor and Lung Metastasis. J. Colloid Interface Sci. 2021, 581, 31–43. DOI: 10.1016/j.jcis.2020.07.072.
  • Samiei Foroushani, M.; Niroumand, N.; Karimi Shervedani, R.; Yaghoobi, F.; Kefayat, A.; Torabi, M. A Theranostic System Based on Nanocomposites of Manganese Oxide Nanoparticles and a pH Sensitive Polymer: Preparation, and Physicochemical Characterization. Bioelectrochemistry 2019, 130, 107347. DOI: 10.1016/j.bioelechem.2019.107347.
  • Kumaraguru, S.; Nivetha, R.; Gopinath, K.; Sundaravadivel, E.; Almutairi, B. O.; Almutairi, M. H.; Mahboob, S.; Kavipriya, M. R.; Nicoletti, M.; Govindarajan, M. Synthesis of Cu-MOF/CeO2 Nanocomposite and Their Evaluation of Hydrogen Production and Cytotoxic Activity. J. Mater. Res. Technol. 2022, 18, 1732–1745. DOI: 10.1016/j.jmrt.2022.03.028.
  • Li, Y.; Church, J.-S.; Woodhead, A.-L. Infrared and Raman Spectroscopic Studies on Iron Oxide Magnetic Nano-Particles and Their Surface Modification. J. Magn. Magn. Mater. 2012, 324, 1543–1550. [Database] DOI: 10.1016/j.jmmm.2011.11.065.
  • Xie, Y.-M. A New Zinc-1, 3, 5-Benzenetricarboxylate Framework Integrated Three Distinct Subunits (Sbus). J. Solid State Chem. 2013, 202, 116–120. DOI: 10.1016/j.jssc.2013.03.043.
  • Villa, S.; Riani, P.; Locardi, F.; Canepa, F. Functionalization of Fe3O4 NPs by Silanization: Use of Amine (APTES) and Thiol (MPTMS) Silanes and Their Physical Characterization. Materials 2016, 9, 826. DOI: 10.3390/ma9100826.
  • Aghdam, K.; Ahmad Panahi, H.; Alaei, E.; Hasani, A. H.; Moniri, E. Preparation of Functionalized Graphene Oxide and Its Application as a Nanoadsorbent for Hg(2+) Removal from Aqueous Solution. Environ. Monit. Assess. 2016, 188, 223. DOI: 10.1007/s10661-016-5226-2.
  • Chen, Y.; Huang, W.; Chen, K.; Zhang, T.; Wang, T.; Wang, J. A Novel Electrochemical Sensor Based on Core-Shell-Structured Metal-Organic Frameworks: The Outstanding Analytical Performance towards Chlorogenic Acid. Talanta 2019, 196, 85–91. DOI: 10.1016/j.talanta.2018.12.033.
  • Ragheb, E.; Shamsipur, M.; Jalali, F.; Sadeghi, M.; Babajani, N.; Mafakheri, N. Magnetic Solid-Phase Extraction Using Metal–Organic Framework-Based Biosorbent Followed by Ligandless Deep-Eutectic Solvent-Ultrasounds-Assisted Dispersive Liquid–Liquid Microextraction (DES-USA-DLLME) for Preconcentration of Mercury (II). Microchem. J. 2021, 166, 106209. DOI: 10.1016/j.microc.2021.106209.
  • Javanbakht, S.; Nezhad-Mokhtari, P.; Shaabani, A.; Arsalani, N.; Ghorbani, M. Incorporating Cu-Based Metal-Organic Framework/Drug Nanohybrids into Gelatin Microsphere for Ibuprofen Oral Delivery. Mater. Sci. Eng. C 2019, 96, 302–309. DOI: 10.1016/j.msec.2018.11.028.
  • Khajeh Ebrahimi, A.; Barani, M.; Sheikhshoaie, I. Fabrication of a New Superparamagnetic Metal-Organic Framework with Core-Shell Nanocomposite Structures: Characterization, Biocompatibility, and Drug Release Study. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 349–355. DOI: 10.1016/j.msec.2018.07.010.
  • Langmuir, I. The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1368. DOI: 10.1021/ja02242a004.
  • Freundlich, H.-M. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–390.
  • Dutta, R.-J.; Sahu, S. Development of Oxaliplatin Encapsulated in Magnetic Nanocarriers of Pectin as a Potential Targeted Drug Delivery for Cancer Therapy. Results Pharma Sci. 2012, 2, 38–45. DOI: 10.1016/j.rinphs.2012.05.001.
  • Garcia-Pinel, B.; Ortega-Rodríguez, A.; Porras-Alcalá, C.; Cabeza, L.; Contreras-Cáceres, R.; Ortiz, R.; Díaz, A.; Moscoso, A.; Sarabia, F.; Prados, J.; et al. Magnetically Active pNIPAM Nanosystems as Temperature-Sensitive Biocompatible Structures for Controlled Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1022–1035. DOI: 10.1080/21691401.2020.1773488.
  • Lee, P.-C.; Lin, C.-Y.; Peng, C.-L.; Shieh, M.-J. Development of a Controlled-Release Drug Delivery System by Encapsulating Oxaliplatin into SPIO/MWNT Nanoparticles for Effective Colon Cancer Therapy and Magnetic Resonance Imaging. Biomater. Sci. 2016, 4, 1742–1753. DOI: 10.1039/C6BM00444J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.