420
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Biodegradable polyphosphazene – hydroxyapatite composites for bone tissue engineering

, & ORCID Icon
Pages 1093-1111 | Received 02 May 2021, Accepted 13 May 2022, Published online: 11 Jun 2022

References

  • Arslan-Yildiz, A.; Assal, R. E.; Chen, P.; Guven, S.; Inci, F.; Demirci, U. Towards Artificial Tissue Models: Past, Present, and Future of 3D Bioprinting. Biofabrication. 2016, 8, 014103.
  • Badhe, Y.; Balasubramanian, K.; Singh, M.; Aswathy, A. Nano-Engineered Hybrid Hydroxyapatite-Grafted Biocomposites for Euspria Pulchella Mimicking through Chaotic Flow Regimes. RSC Adv. 2015, 5, 14712–14719.
  • Rastogi, P.; Kandasubramanian, B. Review of Alginate-Based Hydrogel Bioprinting for Application in Tissue Engineering. Biofabrication. 2019, 11, 042001.
  • Varma, M. V.; Kandasubramanian, B.; Ibrahim, S. M. 3D Printed Scaffolds for Biomedical Applications. Mater. Chem. Phys. 2020, 255, 123642.
  • Korde, J. M.; Kandasubramanian, B. Naturally Biomimicked Smart Shape Memory Hydrogels for Biomedical Functions. Chem. Eng. J. 2020, 379, 122430.
  • Sonatkar, J.; Kandasubramanian, B. Bioactive Glass with Biocompatible Polymers for Bone Applications. Eur. Polym. J. 2021, 160, 110801.
  • Dzobo, K.; Thomford, N. E.; Senthebane, D. A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Shirley, K.; Motaung, C. M. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int. 2018, 2018, 1–24.
  • Almouemen, N.; Kelly, H. M.; O'Leary, C. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality through Computational and Structural Biotechnology Analytical Methods. Comput. Struct. Biotechnol. J. 2019, 17, 591–598.
  • Suhail, K. S.; Raj, R. B. A.; Hudlikar, M.; Balasubramanian, K. Fabrication of Bioactive Nano Assimilated Polymeric Scaffold for the Metamorphosis of Organs or Tissues: Triumph, Confrontation and Prospective. J Bionanosci. 2015, 9, 167–180.
  • Davis, A.; K, B. Bioactive Hybrid Composite Membrane with Enhanced Antimicrobial Properties for Biomedical Applications. Def. Sc. Jl. 2016, 66, 434.
  • George, S. M.; Kandasubramanian, B. Advancements in MXene-Polymer Composites for Various Biomedical Applications. Ceram. Int. 2020, 46, 8522–8535.
  • Patil, N. A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for Biomedical Applications: Performance and Functionalization. Eur. Polym. J. 2020, 125, 109529.
  • Mayilswamy, N.; Jaya Prakash, N.; Kandasubramanian, B. Design and Fabrication of Biodegradable Electrospun Nanofibers Loaded with Biocidal Agents. Int. J. Polym. Mater. Polym. Biomater. 2022, 0, 1–27.
  • Amini, A. R.; Laurencin, C. T.; Nukavarapu, S. P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408.
  • Manhas, N.; Balasubramanian, K.; Prajith, P.; Rule, P.; Nimje, S. PCL/PVA Nanoencapsulated Reinforcing Fillers of Steam Exploded/Autoclaved Cellulose Nanofibrils for Tissue Engineering Applications. RSC Adv. 2015, 5, 23999–24008.
  • Prasad, A.; Kandasubramanian, B. Fused Deposition Processing Polycaprolactone of Composites for Biomedical Applications. Polym. Technol. Mater. 2019, 58, 1365–1398.
  • Awad, H. A.; O’Keefe, R. J.; Lee, C. H.; Mao, J. J. Bone Tissue Engineering: Clinical Challenges and Emergent Advances in Orthopedic and Craniofacial Surgery, Fourth Edi; Elsevier: Netherlands, 2013.
  • Ambekar, R. S.; Kandasubramanian, B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind. Eng. Chem. Res. 2019, 58, 6163–6194.
  • Tandon, S.; Kandasubramanian, B.; Ibrahim, S. M. Silk-Based Composite Scaffolds for Tissue Engineering Applications. Ind. Eng. Chem. Res. 2020, 59, 17593–17611.
  • Zhu, H.; Guo, D.; Zang, H.; Hanaor, D. A. H.; Yu, S.; Schmidt, F.; Xu, K. Enhancement of Hydroxyapatite Dissolution through Krypton Ion Irradiation. ArXiv. 2020, 38, 148–158.
  • Morozowich, N. L.; Nichol, J. L.; Allcock, H. R. Investigation of Apatite Mineralization on Antioxidant Polyphosphazenes for Bone Tissue Engineering. Chem. Mater. 2012, 24, 3500–3509.
  • Blair, H. C.; Larrouture, Q. C.; Li, Y.; Lin, H.; Beer-Stoltz, D.; Liu, L.; Tuan, R. S.; Robinson, L. J.; Schlesinger, P. H.; Nelson, D. J. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. Tissue Eng. Part B Rev. 2017, 23, 268–280.
  • Iqbal, N.; Khan, A. S.; Asif, A.; Yar, M.; John, W. Recent Concepts in Biodegradable Polymers for Tissue Engineering Paradigms: A Critical Review. Int. Mater. Rev. 2018, 64, 91–126.
  • Tamada, J.; Langer, R. The Development of Polyanhydrides for Drug Delivery Applications. J Biomater. Sci. Polym. Ed. 1992, 3, 315–353.
  • Basanth, A.; Mayilswamy, N. Bone Regeneration by Biodegradable Polymers. Polym. Technol. Mater. 2022, 00, 1–30.
  • Allcock, H. R. Recent Advances in Phosphazene (Phosphonitrilic) Chemistry. Chem. Rev. 1972, 72, 315–356.
  • Allcock, H. R.; Kugel, R. L. Phosphonitrilic Compounds. VII. High Molecular Weight Poly(Diaminophosphazenes). Inorg. Chem. 1966, 5, 1716–1718.
  • Allcock, H. R.; Pucher, S. R. Polyphosphazenes with Glucosyl and Methylamino, Trifluoroethoxy, Phenoxy, or (Methoxyethoxy)Ethoxy Side Groups. Macromolecules. 1991, 24, 23–34.
  • Niaounakis, M. Medical, Dental, and Pharmaceutical Applications, Biopolymers: Applications and Trends; Elsevier: Netherlands, 2015; 291–405.
  • Chand, D. J.; Magiri, R. B.; Wilson, H. L.; Mutwiri, G. K. Polyphosphazenes as Adjuvants for Animal Vaccines and Other Medical Applications. Front Bioeng. Biotechnol. 2021, 9, 625482–625411.
  • Yui, N.; Ooya, T. Biodegrdable Polymers. Supramolecular Design for Biological Applications; CRC Press: Boca Raton, 2002; 169–190.
  • Allcock, H. R.; Fuller, T. J.; Mack, D. P.; Matsumura, K.; Smeltz, K. M. Synthesis of Poly [(Amino Acid Alkyl Ester)Phosphazenes]1 ∼ 3. Macromolecules. 1977, 10, 824–830.
  • Allcock, H. R.; Pucher, S. R.; Scopelianos, A. G. Poly[(Amino Acid Ester)Phosphazenes] as Substrates for the Controlled Release of Small Molecules. Biomaterials. 1994, 15, 563–569.
  • Lakshmi, S.; Katti, D. S.; Laurencin, C. T. Biodegradable Polyphosphazenes for Drug Delivery Applications. Adv. Drug Deliv. Rev. 2003, 55, 467–482.
  • Hsu, W. H.; Csaba, N.; Alexander, C.; Garcia-Fuentes, M. Polyphosphazenes for the Delivery of Biopharmaceuticals. J. Appl. Polym. Sci. 2020, 137, 48688–48611.
  • Laurencin, C. T.; Norman, M. E.; Elgendy, H. M.; El‐Amin, S. F.; Allcock, H. R.; Pucher, S. R.; Ambrosio, A. A. Use of Polyphosphazenes for Skeletal Tissue Regeneration. J. Biomed. Mater. Res. 1993, 27, 963–973.
  • Deng, M.; Kumbar, S. G.; Wan, Y.; Toti, U. S.; Allcock, H. R.; Laurencin, C. T. Polyphosphazene Polymers for Tissue Engineering: An Analysis of Material Synthesis, Characterization and Applications. Soft Matter. 2010, 6, 3119–3132.
  • Baillargeon, A. L.; Mequanint, K. Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics. Biomed. Res. Int. 2014, 2014, 761373.
  • Laurencin, C. T.; Morris, C. D.; Pierre‐Jacques, H.; Schwartz, E. R.; Keaton, A. R.; Zou, L. Osteoblast Culture on Bioerodible Polymers: Studies of Initial Cell Adhesion and Spread. Polym. Adv. Technol. 1992, 3, 359–364.
  • Sethuraman, S.; Nair, L. S.; El-Amin, S.; Nguyen, M. T.; Singh, A.; Krogman, N.; Greish, Y. E.; Allcock, H. R.; Brown, P. W.; Laurencin, C. T. Mechanical Properties and Osteocompatibility of Novel Biodegradable Alanine Based Polyphosphazenes: Side Group Effects. Acta Biomater. 2010, 6, 1931–1937.
  • Nguyen, N.Q. Biodegradable Polyphosphazenes; The Pennsylvania State University, 2008.
  • James, R.; Deng, M.; Kumbar, S. G.; Laurencin, C. T. Polyphosphazenes, 1st ed.; Elsevier Inc.: Netherlands, 2014, 193–206.
  • Allcock, H. R. Hybrids of Hybrids: Nano-Scale Combinations of Polyphosphazenes with Other Materials. Appl. Organometal. Chem. 2010, 24, 600–607.
  • Aydın, M.; Aydın, E. B.; Sezgintürk, M. K. Electrochemical Immunosensor for CDH22 Biomarker Based on Benzaldehyde Substituted Poly(Phosphazene) Modified Disposable ITO Electrode: A New Fabrication Strategy for Biosensors. Biosens. Bioelectron. 2019, 126, 230–239.
  • Andrianov, A. K.; Langer, R. Polyphosphazene Immunoadjuvants: Historical Perspective and Recent Advances. J. Control. Release. 2021, 329, 299–315.
  • Bilge, S. Studies on the Mechanism of Phosphazene Ring-Opening Polymerization (ROP). Turkish J. Chem. 2011, 35, 745–756.
  • Wu, Z.; Zhao, Y.; Zhang, L.; Wang, X. Dynamic Polyphosphazene Networks with Modulating Shape Memory and Self-Healing Capacity by Double Coordination Interactions. Macromol. Mater. Eng. 2021, 306, 2100349–2100348.
  • Mathieu, L. M.; Mueller, T. L.; Bourban, P. E.; Pioletti, D. P.; Müller, R.; Månson, J. A. E. Architecture and Properties of Anisotropic Polymer Composite Scaffolds for Bone Tissue Engineering. Biomaterials. 2006, 27, 905–916.
  • Ogueri, K. S.; Ivirico, J. L. E.; Nair, L. S.; Allcock, H. R.; Laurencin, C. T. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regen. Eng. Transl. Med. 2017, 3, 15–31.
  • Ding, J.; Wang, L.; Yu, H.; Yang, Q.; Deng, L. Progress in Synthesis of Polyphosphazenes. Des. Monomers Polym. 2008, 11, 215–222.
  • Zhang, Y.; Huynh, K.; Manners, I.; Reed, C. A. Ambient Temperature Ring-Opening Polymerisation (ROP) of Cyclic Chlorophosphazene Trimer [N3P3Cl6] Catalyzed by Silylium Ions. Chem. Commun. 2008, 8, 494–496.
  • Ogueri, K. S.; Ogueri, K. S.; Ude, C. C.; Allcock, H. R.; Laurencin, C. T. Biomedical Applications of Polyphosphazenes. Med. Devices Sensors. 2020, 3, 1–7.
  • Allcock, H. R.; Pucher, S. R.; Scopelianos, A. G. Synthesis of Poly(Orgnaophosphazenes) with Glycolic Acid Ester and Lactic Acid Ester Side Groups: Prototypes for New Bioerodible Polymers. Macromolecules. 1994, 27, 1–4.
  • Allcock, H. R.; Kugel, R. L. Synthesis of High Polymeric Alkoxy-and Aryloxyphosphonitriles. J. Am. Chem. Soc. 1965, 87, 4216–4217.
  • Kang, G. D.; Cheon, S. H.; Khang, G.; Song, S. C. Thermosensitive Poly(Organophosphazene) Hydrogels for a Controlled Drug Delivery. Eur. J. Pharm. Biopharm. 2006, 63, 340–346.
  • Honeyman, C. H.; Manners, I.; Morrissey, C. T.; Allcock, H. R. Ambient Temperature Synthesis of Poly(Dichlorophosphazene) with Molecular Weight Control. J. Am. Chem. Soc. 1995, 117, 7035–7036.
  • Allcock, H. R.; Crane, C. A.; Morrissey, C. T.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. Living Cationic Polymerization of Phosphoranimines as an Ambient Temperature Route to Polyphosphazenes with Controlled Molecular Weights. Macromolecules. 1996, 29, 7740–7747.
  • Bi, Y.; Gong, X.; He, F.; Xu, L.; Chen, L.; Zeng, X.; Yu, L. Polyphosphazenes Containing Lactic Acid Ester and Methoxyethoxyethoxy Side groups - Thermosensitive Properties and, in Vitro Degradation, and Biocompatibility. Can. J. Chem. 2011, 89, 1249–1256.
  • Lin, Y.; Deng, Q.; Jin, R. Effects of Processing Variables on the Morphology and Diameter of Electrospun Poly(Amino Acid Ester) Phosphazene Nanofibers. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2012, 27, 207–211.
  • Nelson, J. M.; Allcock, H. R. Synthesis of Triarmed-Star Polyphosphazenes via the “Living” Cationic Polymerization of Phosphoranimines at Ambient Temperatures. Macromolecules. 1997, 30, 1854–1856.
  • Allcock, H. R.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. Ambient-Temperature Direct Synthesis of Poly(Organophosphazenes) via the “Living” Cationic Polymerization of Organo-Substituted Phosphoranimines. Macromolecules. 1997, 30, 50–56.
  • Allcock, H. R.; Reeves, S. D.; Nelson, J. M.; Crane, C. A.; Manners, I. Polyphoephazene Block Copolymera via the Controlled Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules. 1997, 30, 2213–2215.
  • Allcock, H. R.; Reeves, S. D.; Nelson, J. M.; Manners, I. Synthesis and Characterization of Phosphazene di- and Triblock Copolymers via the Controlled Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules. 2000, 33, 3999–4007.
  • Rothemund, S.; Teasdale, I. Preparation of Polyphosphazenes: A Tutorial Review. Chem. Soc. Rev. 2016, 45, 5200–5215.
  • Andrianov, A. K. Polyphosphazenes for Biomedical Applications; John Wiley & Sons, Inc.: Hoboken, NJ, 2009, 1–462.
  • Allcock, H. R.; Morozowich, N. L. Bioerodible Polyphosphazenes and Their Medical Potential. Polym. Chem. 2012, 3, 578–590.
  • Wilfert, S.; Iturmendi, A.; Schoefberger, W.; Kryeziu, K.; Heffeter, P.; Berger, W.; Brüggemann, O.; Teasdale, I. Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior. J Polym Sci A Polym Chem. 2014, 52, 287–294.
  • Teasdale, I.; Brüggemann, O. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. Polymers. 2013, 5, 161–187.
  • Allcock, H. R. The Background and Scope of Polyphosphazenes as Biomedical Materials. Regen. Eng. Transl. Med. 2021, 7, 66–75.
  • Crommen, J. H. L.; Schacht, E. H.; Mense, E. H. G. Biodegradable Polymers I. Synthesis of Hydrolysis-Sensitive Poly[(Organo)Phosphazenes]. Biomaterials. 1992, 13, 511–520.
  • Qiu, L. Y.; Zhu, K. J. Ethyl Ester and Benzyl Ester of Amino Acethydroxamic Acid as Cosubstituents : Syntheses. J. Appl. Polym. Sci. 2000, 77, 2987–2995.
  • Krogman, N. R.; Singh, A.; Nair, L. S.; Laurencin, C. T.; Allcock, H. R. Miscibility of Bioerodible Polyphosphazene/Poly(Lactide-co-Glycolide) Blends. Biomacromolecules. 2007, 8, 1306–1312.
  • Deng, M.; Nair, L. S.; Nukavarapu, S. P.; Kumbar, S. G.; Brown, J. L.; Krogman, N. R.; Weikel, A. L.; Allcock, H. R.; Laurencin, C. T. Biomimetic, Bioactive Etheric Polyphosphazene-Poly(Lactide-Co-Glycolide) Blends for Bone Tissue Engineering. J Biomed Mater Res A. 2010, 92, 114–125.
  • Chlupác, J.; Filová, E.; Bačáková, L. Blood Vessel Replacement: 50 Years of Development and Tissue Engineering Paradigms in Vascular Surgery. Physiol. Res. 2009, 58, 119–140.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864.
  • Raghavendra, G. M.; Varaprasad, K.; Jayaramudu, T. Biomaterials: Design, Development and Biomedical Applications. Nanotechnology Applications for Tissue Engineering; Elsevier Inc., Netherlands, 2015, 21–44.
  • Smallman, R. E.; BiShop, R. J. Chapter 13 – Biomaterials. Mod. Phys. Metall. Mater. Eng. (Sixth Ed.); Butterworth-Heinemann: Oxford, 1999, 394–405.
  • Kulinets, I Biomaterial and Their Applications in Medicine. Regulatory Affairs for Biomaterials and Medical Devices; Woodhead Publishing Limited: Sawston, UK, 2015, 1–10.
  • Minnath, M. A. Metals and Alloys for Biomedical Applications. Fundamental Biomaterials: Metals; Elsevier, 2018, 167–174.
  • Abbott, R. D.; Kaplan, D. L. Engineering Biomaterials for Enhanced Tissue Regeneration. Curr. Stem Cell Rep. 2016, 2, 140–146.
  • Subash, A.; Kandasubramanian, B. 4D Printing of Shape Memory Polymers. Eur. Polym. J. 2020, 134, 109771.
  • Patadiya, J.; Gawande, A.; Joshi, G.; Kandasubramanian, B. Additive Manufacturing of Shape Memory Polymer Composites for Futuristic Technology. Ind. Eng. Chem. Res. 2021, 60, 15885–15912.
  • Rastogi, P.; Kandasubramanian, B. Breakthrough in the Printing Tactics for Stimuli-Responsive Materials: 4D Printing. Chem. Eng. J. 2019, 366, 264–304.
  • Nair, L. S.; Lee, D. A.; Bender, J. D.; Barrett, E. W.; Greish, Y. E.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Synthesis, Characterization, and Osteocompatibility Evaluation of Novel Alanine-Based Polyphosphazenes. J. Biomed. Mater. Res. A. 2006, 76, 206–213.
  • Andrianov, A. K.; Marin, A. Degradation of Polyaminophosphazenes: Effects of Hydrolytic Environment and Polymer Processing. Biomacromolecules. 2006, 7, 1581–1586.
  • Allcock, H. R.; Pucher, S. R.; Scopelianos, A. G. Poly[(Amino Acid Ester)Phosphazenes]: Synthesis, Crystallinity, and Hydrolytic Sensitivity in Solution and the Solid State. Macromolecules. 1994, 27, 1071–1075.
  • Ma, P. X.; Eyster, T. W.; Doleyres, Y. Scaffolding In Tissue Engineering. In Encyclopedia of Polymer Science and Technology: CRC Press, Boca Raton, 2005, 12, 1–639.
  • Singh, A.; Krogman, N. R.; Sethuraman, S.; Nair, L. S.; Sturgeon, J. L.; Brown, P. W.; Laurencin, C. T.; Allcock, H. R. Effect of Side Group Chemistry on the Properties of Biodegradable l-Alanine Cosubstituted Polyphosphazenes. Biomacromolecules. 2006, 7, 914–918.
  • Li, M.; Mondrinos, M. J.; Chen, X.; Gandhi, M. R.; Ko, F. K.; Lelkes, P. I. Elastin Blends for Tissue Engineering Scaffolds. J. Biomed. Mater. Res. Part A. 2006, 79, 963–973.
  • Gümüşderelioǧlu, M.; Gür, A. Synthesis, Characterization, in Vitro Degradation and Cytotoxicity of Poly [Bis (Ethyl 4-Aminobutyro) Phosphazene]. 2002, 52, 71–80.
  • Allcock, H. R.; Scopelianos, A. G. Synthesis of Sugar-Substituted Cyclic and Polymeric Phosphazenes and Their Oxidation, Reduction, and Acetylation Reactions. Macromolecules. 1983, 16, 715–719.
  • Altman, G. H.; Horan, R. L.; Lu, H. H.; Moreau, J.; Martin, I.; Richmond, J. C.; Kaplan, D. L. Silk Matrix for Tissue Engineered Anterior Cruciate Ligaments. Biomaterials. 2002, 23, 4131–4141.
  • Katti, K. S. Biomaterials in Total Joint Replacement. Colloids Surf. B Biointerfaces. 2004, 39, 133–142.
  • Konig, G.; McAllister, T. N.; Dusserre, N.; Garrido, S. A.; Iyican, C.; Marini, A.; Fiorillo, A.; Avila, H.; Wystrychowski, W.; Zagalski, K.; et al. Mechanical Properties of Completely Autologous Human Tissue Engineered Blood Vessels Compared to Human Saphenous Vein and Mammary Artery. Biomaterials. 2009, 30, 1542–1550.
  • Legeros, R. Z.; Legeros, J. P. Hydroxyapatite, Bioceram. Their Clin. Appl. 2008, 367–394.
  • Mukherjee, S.; Kundu, B.; Sen, S.; Chanda, A. Improved Properties of Hydroxyapatite-Carbon Nanotube Biocomposite: Mechanical, In Vitro Bioactivity and Biological Studies. Ceram. Int. 2014, 40, 5635–5643.
  • Mobasherpour, I.; Solati Hashjin, M.; Razavi Toosi, S. S.; Kamachali, R. D. Effect of the Addition ZrO2-Al2O3 on Nanocrystalline Hydroxyapatite Bending Strength and Fracture Toughness. Ceram. Int. 2009, 35, 1569–1574.
  • Khalid, H.; Chaudhry, A. A. Basics of Hydroxyapatite-Structure, Synthesis, Properties, and Clinical Applications; Elsevier Ltd.: Netherlands, 2019.
  • Sobczak-Kupiec, A.; Wzorek, Z. The Influence of Calcination Parameters on Free Calcium Oxide Content in Natural Hydroxyapatite. Ceram. Int. 2012, 38, 641–647.
  • Hench, L. L. Bioceramics: From Concept to Clinic. J Am. Ceram. Soc. 1991, 74, 1487–1510.
  • Wu, C.; Chang, J. A Novel Akermanite Bioceramic: Preparation and Characteristics. J. Biomater. Appl. 2006, 21, 119–129.
  • Ducheyne, P.; Cuckler, J. M. Bioactive Ceramic Prosthetic Coatings, Clin. Orthop. Relat. Res. 1992, 276, 102–114.
  • Bezzi, G.; Celotti, G.; Landi, E.; La Torretta, T. M.; Sopyan, I.; Tampieri, A. A Novel Sol–Gel Technique for Hydroxyapatite Preparation. Mater. Chem. Phys. 2003, 78, 816–824.
  • Cahyanto, A.; Kosasih, E.; Aripin, D.; Hasratiningsih, Z. Fabrication of Hydroxyapatite from Fish Bones Waste Using Reflux Method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 172, 012006.
  • Drouet, C.; Bosc, F.; Banu, M.; Largeot, C.; Combes, C.; Dechambre, G.; Estournès, C.; Raimbeaux, G.; Rey, C. Nanocrystalline Apatites: From Powders to Biomaterials. Powder Technol. 2009, 190, 118–122.
  • Xin, R.; Leng, Y.; Chen, J.; Zhang, Q. A Comparative Study of Calcium Phosphate Formation on Bioceramics in Vitro and In Vivo. Biomaterials. 2005, 26, 6477–6486.
  • Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. Recent Advances in the Synthesis, Functionalization and Biomedical Applications of Hydroxyapatite: A Review. RSC Adv. 2017, 7, 7442–7458.
  • Gomes, D. S.; Santos, A. M. C.; Neves, G. A.; Menezes, R. R. A Brief Review on Hydroxyapatite Production and Use in Biomedicine. Ceramica. 2019, 65, 282–302.
  • Barakat, N. A. M.; Khil, M. S.; Omran, A. M.; Sheikh, F. A.; Kim, H. Y. Extraction of Pure Natural Hydroxyapatite from the Bovine Bones Bio Waste by Three Different Methods. J. Mater. Process. Technol. 2009, 209, 3408–3415.
  • Sun, R.-X.; Lv, Y.; Niu, Y.-R.; Zhao, X.-H.; Cao, D.-S.; Tang, J.; Sun, X.-C.; Chen, K.-Z. Physicochemical and Biological Properties of Bovine-Derived Porous Hydroxyapatite/Collagen Composite and Its Hydroxyapatite Powders. Ceram. Int. 2017, 43, 16792–16798.
  • Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone. Curr. Appl. Phys. 2008, 8, 270–272.
  • Esmaeilkhanian, A.; Sharifianjazi, F.; Abouchenari, A.; Rouhani, A.; Parvin, N.; Irani, M. Synthesis and Characterization of Natural Nano-Hydroxyapatite Derived from Turkey Femur-Bone Waste. Appl. Biochem. Biotechnol. 2019, 189, 919–932.
  • Jaber, H. L.; Hammood, A. S.; Parvin, N. Synthesis and Characterization of Hydroxyapatite Powder from Natural Camelus Bone. J. Aust. Ceram. Soc. 2018, 54, 1–10.
  • Vương, B. X.; Hoai Linh, T. The Extraction of Pure Hydroxyapatite from Porcine Bone by Thermal Process. Metall. Mater. Eng. 2019, 25, 47–58.
  • Barua, E.; Deoghare, A. B.; Deb, P.; Das Lala, S.; Chatterjee, S. Effect of Pre-Treatment and Calcination Process on Micro-Structural and Physico-Chemical Properties of Hydroxyapatite Derived from Chicken Bone Bio-Waste, Mater. Today Proc. 2019, 15, 188–198.
  • Rahavi, S. S.; Ghaderi, O.; Monshi, A.; Fathi, M. H. A Comparative Study on Physicochemical Properties of Hydroxyapatite Powders Derived from Natural and Synthetic Sources. Russ. J. Non-Ferrous Metals. 2017, 58, 276–286.
  • Sharifianjazi, F.; Esmaeilkhanian, A.; Moradi, M.; Pakseresht, A.; Asl, M. S.; Karimi-Maleh, H.; Jang, H. W.; Shokouhimehr, M.; Varma, R. S. Biocompatibility and Mechanical Properties of Pigeon Bone Waste Extracted Natural Nano-Hydroxyapatite for Bone Tissue Engineering. Mater. Sci. Eng. B. 2021, 264, 114950.
  • Pon-On, W.; Suntornsaratoon, P.; Charoenphandhu, N.; Thongbunchoo, J.; Krishnamra, N.; Tang, I. M. Hydroxyapatite from Fish Scale for Potential Use as Bone Scaffold or Regenerative Material. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 183–189.
  • Nam, P. V.; Van Hoa, N.; Trung, T. S. Properties of Hydroxyapatites Prepared from Different Fish Bones: A Comparative Study. Ceram. Int. 2019, 45, 20141–20147.
  • Venkatesan, J.; Qian, Z. J.; Ryu, B.; Thomas, N. V.; Kim, S. K. A Comparative Study of Thermal Calcination and an Alkaline Hydrolysis Method in the Isolation of Hydroxyapatite from Thunnus Obesus Bone. Biomed. Mater. 2011, 6, 035003.
  • Jamarun, N.; Azharman, Z.; Arief, S.; Sari, T. P.; Asril, A.; Elfina, S. Effect of Temperature on Synthesis of Hydroxyapatite from Limestone. Rasayan J. Chem. 2015, 8, 133–137.
  • Mohd Pu'ad, N. A. S.; Koshy, P.; Abdullah, H. Z.; Idris, M. I.; Lee, T. C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon. 2019, 5, e01588.
  • Klinkaewnarong, J.; Utara, S. Ultrasonic-Assisted Conversion of Limestone into Needle-like Hydroxyapatite Nanoparticles. Ultrason. Sonochem. 2018, 46, 18–25.
  • Govindaraj, D.; Rajan, M. Synthesis and Spectral Characterization of Novel nano-Hydroxyapatite from Moringaoleifera Leaves. Mater. Today Proc. 2016, 3, 2394–2398.
  • Monballiu, A.; Desmidt, E.; Ghyselbrecht, K.; Meesschaert, B. Phosphate Recovery as Hydroxyapatite from Nitrified UASB Effluent at Neutral pH in a CSTR. J. Environ. Chem. Eng. 2018, 6, 4413–4422.
  • Mohd Pu'ad, N. A. S.; Abdul Haq, R. H.; Mohd Noh, H.; Abdullah, H. Z.; Idris, M. I.; Lee, T. C. Synthesis Method of Hydroxyapatite: A Review, Mater. Today Proc. 2020, 29, 233–239.
  • Sadat-Shojai, M.; Khorasani, M. T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomater. 2013, 9, 7591–7621.
  • Cox, S. C. Synthesis Method of Hydroxyapatite Author: Sophie Cox. Ceram. 2015, 1–7.
  • Sharifah, A.; Iis, S.; Mohd, H.; Singh, R. Mechanochemical Synthesis of Nanosized Hydroxyapatite Powder and Its Conversion to Dense Bodies. MSF. 2011, 694, 118–122.
  • Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of Hydroxyapatite for Biomedical Applications. Adv. Colloid Interface Sci. 2017, 249, 321–330.
  • MASUDA, Y.; MATUBARA, K.; SAKKA, S. Synthesis of Hydroxyapatite from Metal Alkoxides through Sot-Gel Technique. J. Ceram. Soc. Japan. 1990, 98, 1255–1266.
  • Deptuła, A.; Łada, W.; Olczak, T.; Borello, A.; Alvani, C.; di Bartolomeo, A. Preparation of Spherical Powders of Hydroxyapatite by Sol-Gel Process. J. Non. Cryst. Solids. 1992, 147–148, 537–541.
  • Kimura, I. Synthesis of Hydroxyapatite by Interfacial Reaction in a Multiple Emulsion. Res. Lett. Mater. Sci. 2007, 2007, 1–4.
  • Yelten, A.; Yilmaz, S. Various Parameters Affecting the Synthesis of the Hydroxyapatite Powders by the Wet Chemical Precipitation Technique. Mater. Today Proc. 2016, 3, 2869–2876.
  • Catros, S.; Guillemot, F.; Lebraud, E.; Chanseau, C.; Perez, S.; Bareille, R.; Amédée, J.; Fricain, J. C. Physico-Chemical and Biological Properties of a Nano-Hydroxyapatite Powder Synthesized at Room Temperature. IRBM. 2010, 31, 226–233.
  • Huang, Y. H.; Shih, Y. J.; Cheng, F. J. Novel KMnO4-Modified Iron Oxide for Effective Arsenite Removal. J. Hazard Mater. 2011, 198, 1–6.
  • Fihri, A.; Len, C.; Varma, R. S.; Solhy, A. Hydroxyapatite: A Review of Syntheses, Structure and Applications in Heterogeneous Catalysis. Coord. Chem. Rev. 2017, 347, 48–76.]
  • Yang, S.; Leong, K. F.; Du, Z.; Chua, C. K. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng. 2001, 7, 679–689.
  • Ogueri, K. S.; Allcock, H. R.; Laurencin, C. T. Polyphosphazene Polymer. Encycl. Polym. Sci. Technol. 2019, 1–23.
  • Bhattacharyya, S.; Nair, L. S.; Singh, A.; Krogman, N. R.; Bender, J.; Greish, Y. E.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Development of Biodegradable polyphosphazene- Nanohydroxyapatlte Composite Nanofibers via Electrospinning. Mater. Res. Soc. Symp. Proc. 2005, 845, 91–96.
  • Greish, Y. E.; Bender, J. D.; Lakshmi, S.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Low Temperature Formation of Hydroxyapatite-Poly(Alkyl Oxybenzoate)Phosphazene Composites for Biomedical Applications. Biomaterials. 2005, 26, 1–9.
  • Bhattacharyya, S.; Kumbar, S. G.; Khan, Y. M.; Nair, L. S.; Singh, A.; Krogman, N. R.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering. J. Biomed. Nanotechnol. 2009, 5, 69–75.
  • Ambrosio, A. M. A.; Sahota, J. S.; Runge, C.; Kurtz, S. M.; Lakshmi, S.; Allcock, H. R.; Laurencin, C. T. Novel Polyphosphazene-Hydroxyapatite Composites as Biomaterials. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–26.
  • Greish, Y. E.; Bender, J. D.; Singh, A.; Nair, L. S.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Hydrolysis of Ca-Deficient Hydroxyapatite Precursors in the Presence of Alanine-Functionalized Polyphosphazene Nanofibers. Ceram. Int. 2013, 39, 519–528.
  • Greish, Y. E.; Bender, J. D.; Lakshmi, S.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Formation of Hydroxyapatite-Polyphosphazene Polymer Composites at Physiologic Temperature. J. Biomed. Mater. Res. A. 2006, 77, 416–425.
  • Greish, Y. E.; Brown, P. W.; Bender, J. D.; Allcock, H. R.; Lakshmi, S.; Laurencin, C. T. Hydroxyapatite-Polyphosphazane Composites Prepared at Low Temperatures. J. Am. Ceram. Soc. 2007, 90, 2728–2734.
  • Laurencin, C. T.; El-Amin, S. F.; Ibim, S. E.; Willoughby, D. A.; Attawia, M.; Allcock, H. R.; Ambrosio, A. A. A Highly Porous 3-Dimensional Polyphosphazene Polymer Matrix for Skeletal Tissue Regeneration. J. Biomed. Mater. Res. 1996, 30, 133–138.
  • Nukavarapu, S. P.; Kumbar, S. G.; Brown, J. L.; Krogman, N. R.; Weikel, A. L.; Hindenlang, M. D.; Nair, L. S.; Allcock, H. R.; Laurencin, C. T. Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering. Biomacromolecules. 2008, 9, 1818–1825.
  • Sobhani, A.; Rafienia, M.; Ahmadian, M.; Naimi-Jamal, M.-R. Fabrication and Characterization of Polyphosphazene/Calcium Phosphate Scaffolds Containing Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in Bone Tissue Engineering. Tissue Eng. Regen. Med. 2017, 14, 525–538.
  • Brown, J. L.; Nair, L. S.; Laurencin, C. T. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds for Tissue Regeneration. J. Biomed. Mater. Res. B. Appl. Biomater. 2008, 86, 396–406.
  • El-Amin, S. F.; Kwon, M. S.; Starnes, T.; Allcock, H. R.; Laurencin, C. T. The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative Study in Bone. J. Inorg. Organomet. Polym. 2007, 16, 387–396.
  • Stevens, M. M. Biomaterials for Bone Materials That Enhance Bone Regeneration Have a Wealth of Potential. Bone. 2008, 11, 18–25.
  • Murr, L. E. Handbook of Materials Structures, Properties, Processing and Performance. Handb. Mater. Struct. Prop. Process. Perform. Springer: Cham, Switzerland, 2015, 14, 1–1152.
  • Weatherholt, A. M.; Fuchs, R. K.; Warden, S. J. Specialized Connective Tissue: Bone, the Structural Framework of the Upper Extremity. J. Hand. Ther. 2012, 25, 123–132.
  • Khalid, Z.; Ali, S.; Akram, M. Review on Polyphosphazenes-Based Materials for Bone and Skeleton Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 693–701.
  • Khan, Y.; Yaszemski, M. J.; Mikos, A. G.; Laurencin, C. T. Tissue Engineering of Bone: Material and Matrix Considerations. J. Bone Jt. Surg. Ser. A. 2008, 90, 36–42.
  • Chan, B. P.; Leong, K. W. Scaffolding in Tissue Engineering: General Approaches and Tissue-Specific Considerations. Eur. Spine J. 2008, 17, 467–479.
  • Tariverdian, T.; Sefat, F.; Gelinsky, M.; Mozafari, M. Scaffold for bone tissue engineering; Elsevier Ltd.: Netherlands, 2019.
  • Varma, M. V.; Kandasubramanian, B. The Tactics of Thermoelectric Scaffolds with Its Advancements in Engineering Applications. Polym. Technol. Mater. 2021, 60, 1–24.
  • Rezzadeh, K. S.; Angeles, L.; Lee, J. C.; Angeles, L. U. S. Department of Veterans Affairs. Washington, D.C., 2018.
  • Williams, D. F. On the Mechanisms of Biocompatibility. Biomaterials. 2008, 29, 2941–2953.
  • Keun Kwon, I.; Kidoaki, S.; Matsuda, T. Electrospun Nano- to Microfiber Fabrics Made of Biodegradable Copolyesters: Structural Characteristics, Mechanical Properties and Cell Adhesion Potential. Biomaterials. 2005, 26, 3929–3939.
  • Rahman, M.; Beg, S.; Anwar, F.; Al-Abbasi, F. A.; Kumar, V. Nanotechnology-Based Nano-Bullets in Antipsoriatic Drug Delivery: State of the Art; Elsevier Inc.: Netherlands, 2016.
  • Borden, M.; Attawia, M.; Khan, Y.; Laurencin, C. T. Tissue Engineered Microsphere-Based Matrices for Bone Repair: Design and Evaluation. Biomaterials. 2002, 23, 551–559.
  • Nikolova, M. P.; Chavali, M. S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019, 4, 271–292.
  • Wilson, C. J.; Clegg, R. E.; Leavesley, D. I.; Pearcy, M. J. Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review. Tissue Eng. 2005, 11, 1–18.
  • Allcock, H. R.; Steely, L. B.; Kim, S. H.; Kim, J. H.; Kang, B. K. Plasma Surface Functionalization of Poly[Bis(2,2,2-Trifluoroethoxy)Phosphazene] Films and Nanofibers. Langmuir. 2007, 23, 8103–8107.
  • Greish, Y. E.; Sturgeon, J. L.; Singh, A.; Krogman, N. R.; Touny, A. H.; Sethuraman, S.; Nair, L. S.; Laurencin, C. T.; Allcock, H. R.; Brown, P. W. Formation and Properties of Composites Comprised of Calcium-Deficient Hydroxyapatites and Ethyl Alanate Polyphosphazenes. J. Mater. Sci. Mater. Med. 2008, 19, 3153–3160.
  • Sethuraman, S.; Nair, L. S.; El-Amin, S.; Nguyen, M. T.; Singh, A.; Greish, Y. E.; Allcock, H. R.; Brown, P. W.; Laurencin, C. T. Development and Characterization of Biodegradable Nanocomposite Injectables for Orthopaedic Applications Based on Polyphosphazenes. J. Biomater. Sci. Polym. Ed. 2011, 22, 733–752.
  • Potta, T.; Chun, C. J.; Song, S. C. Chemically Crosslinkable Thermosensitive Polyphosphazene Gels as Injectable Materials for Biomedical Applications. Biomaterials. 2009, 30, 6178–6192.
  • Yahaya Khan, M.; Abdul Karim, Z. A.; Hagos, F. Y.; Aziz, A. R. A.; Tan, I. M. Current Trends in Water-in-Diesel Emulsion as a Fuel. ScientificWorldJournal. 2014, 2014, 527472.
  • Tenhuisen, K. S.; Brown, P. W.; Reed, C. S.; Allcock, H. R.; Pennsylvania, T.; Pennsylvania, T. Low Temperature Synthesis ofa Self-Assembling Composite: Hydroxyapatite-Poly[bis(sodium carboxylatophenoxy) phosphazene]. J. Mater. Sci. Mater Med. 1996, 7, 673–682.
  • Greish, Y. E.; Bender, J. D.; Lakshmi, S.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Composite Formation from Hydroxyapatite with Sodium and Potassium Salts of Polyphosphazene. J. Mater. Sci. Mater. Med. 2005, 16, 613–620.
  • Ogueri, K. S.; Ogueri, K. S.; Allcock, H. R.; Laurencin, C. T. Polyphosphazene Polymers: The Next Generation of Biomaterials for Regenerative Engineering and Therapeutic Drug Delivery Polyphosphazene Polymers: The Next Generation of Biomaterials for Regenerative Engineering and Therapeutic Drug Delivery. J. Vac. Sci. Technol. B. Nanotechnol. Microelectron. 2020, 38, 030801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.