492
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Gelatin hydrogel reinforced by graphene oxide grafted chitosan for cartilage tissue engineering application

, , ORCID Icon, &
Pages 1120-1131 | Received 14 Jul 2021, Accepted 27 May 2022, Published online: 15 Jun 2022

References

  • Hunziker, E. B.; Lippuner, K.; Keel, M. J. B.; Shintani, N. An Educational Review of Cartilage Repair: Precepts & Practice-Myths & Misconceptions-Progress & Prospects. Osteoarthr. Cartil. 2015, 23, 334–350. DOI: 10.1016/j.joca.2014.12.011.
  • Shamekhi, M. A.; Mirzadeh, H.; Mahdavi, H.; Rabiee, A.; Mohebbi-Kalhori, D.; Baghaban Eslaminejad, M. Graphene Oxide Containing Chitosan Scaffolds for Cartilage Tissue Engineering. Int. J. Biol. Macromol. 2019, 127, 396–405. DOI: 10.1016/j.ijbiomac.2019.01.020.
  • Huang, B. J.; Hu, J. C.; Athanasiou, K. A. Cell-Based Tissue Engineering Strategies Used in the Clinical Repair of Articular Cartilage. Biomaterials 2016, 98, 1–22. DOI: 10.1016/j.biomaterials.2016.04.018.
  • Han, M. E.; Kang, B. J.; Kim, S. H.; Kim, H. D.; Hwang, N. S. Gelatin-Based Extracellular Matrix Cryogels for Cartilage Tissue Engineering. J. Ind. Eng. Chem. 2017, 45, 421–429. DOI: 10.1016/j.jiec.2016.10.011.
  • Kudva, A. K.; Luyten, F. P.; Patterson, J. In-Vitro Screening of Molecularly Engineered Polyethylene Glycol Hydrogels for Cartilage Tissue Engineering Using Periosteum-Derived and ATDC5 Cells. Int. J. Mol. Sci. 2018, 19, 3341. DOI: 10.3390/ijms19113341.
  • Shen, H.; Lin, H.; Sun, A. X.; Song, S.; Wang, B.; Yang, Y.; Dai, J.; Tuan, R. S. Acceleration of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Sustained Growth Factor Release in 3D Graphene Oxide Incorporated Hydrogels. Acta Biomater. 2020, 105, 44–55. DOI: 10.1016/j.actbio.2020.01.048.
  • Zeinali, K.; Khorasani, M. T.; Rashidi, A. Preparation and Characterization of Graphene Oxide Aerogel/Gelatin as a Hybrid Scaffold for Application in Nerve Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 1–10.
  • Su, K.; Wang, C. Recent Advances in the Use of Gelatin in Biomedical Research. Biotechnol. Lett. 2015, 37, 2139–2145. DOI: 10.1007/s10529-015-1907-0.
  • Olad, A.; Bakht Khosh Hagh, H.; Mirmohseni, A.; Azhar, F. F. Graphene Oxide and Montmorillonite Enriched Natural Polymeric Scaffold for Bone Tissue Engineering. Ceram. Int. 2019, 45, 15609–15619. DOI: 10.1016/j.ceramint.2019.05.071.
  • Kirchmajer, D. M.; Watson, C. A.; Ranson, M.; In Het Panhuis, M. Gelapin, a Degradable Genipin Cross-Linked Gelatin Hydrogel. RSC Adv. 2013, 3, 1073–1081. DOI: 10.1039/C2RA22859A.
  • Entekhabi, E.; Haghbin Nazarpak, M.; Sedighi, M.; Kazemzadeh, A. Predicting Degradation Rate of Genipin Cross-Linked Gelatin Scaffolds with Machine Learning. Mater. Sci. Eng. C 2020, 107, 110362. nooctober 2019, DOI: 10.1016/j.msec.2019.110362.
  • Chang, W.; Chang, Y.; Lai, P.; Sung, H. A Genipin-Crosslinked Gelatin Membrane as Wound-Dressing Material: In-Vitro and In Vivo Studies. J. Biomater. Sci. Polym. Ed. 2003, 14, 481–495. DOI: 10.1163/156856203766652084.
  • Lien, S. M.; Te Li, W.; Huang, T. J. Genipin-Crosslinked Gelatin Scaffolds for Articular Cartilage Tissue Engineering with a Novel Crosslinking Method. Mater. Sci. Eng. C 2008, 28, 36–43. DOI: 10.1016/j.msec.2006.12.015.
  • Hsan, N.; Dutta, P. K.; Kumar, S.; Bera, R.; Das, N. Chitosan Grafted Graphene Oxide Aerogel: Synthesis, Characterization and Carbon Dioxide Capture Study. Int. J. Biol. Macromol. 2019, 125, 300–306. DOI: 10.1016/j.ijbiomac.2018.12.071.
  • Sivashankari, P. R.; Moorthi, A.; Abudhahir, K. M.; Prabaharan, M. Preparation and Characterization of Three-Dimensional Scaffolds Based on Hydroxypropyl Chitosan-Graft-Graphene Oxide. Int. J. Biol. Macromol. 2018, 110, 522–530. DOI: 10.1016/j.ijbiomac.2017.11.033.
  • Tavakoli, M.; Karbasi, S.; Soleymani Eil Bakhtiari, S. Evaluation of Physical, Mechanical, and Biodegradation of Chitosan/Graphene Oxide Composite as Bone Substitutes. Polym. Technol. Mater. 2020, 59, 430–440. DOI: 10.1080/25740881.2019.1653467.
  • Sasikala, K.; Hee, C.; Cheol, P.; Kim, S.; Kim, C. S.; Unnithan, A. R. A Unique Scaffold for Bone Tissue Engineering: An Osteogenic Combination of Graphene oxide-Hyaluronic acid-Chitosan with Simvastatin. J. Ind. Eng. Chem. 2017, 46, 182–191.
  • Zhang, B.; Wang, Y.; Zhai, G. Biomedical Applications of the Graphene-Based Materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 953–964. DOI: 10.1016/j.msec.2015.12.073.
  • Saravanan, S.; Chawla, A.; Vairamani, M.; Sastry, T. P.; Subramanian, K. S.; Selvamurugan, N. Scaffolds Containing Chitosan, Gelatin and Graphene Oxide for Bone Tissue Regeneration In Vitro and In Vivo. Int. J. Biol. Macromol. 2017, 104, 1975–1985. DOI: 10.1016/j.ijbiomac.2017.01.034.
  • Pourjavadi, A.; et al. Both Tough and Soft Double Network Hydrogel Nanocomposite Based on O-Carboxymethyl Chitosan/Poly(Vinyl Alcohol) and Graphene Oxide: A Promising Alternative for Tissue Engineering. Polym. Eng. Sci. 2020, 60, 1–11.
  • Hosseini, M. G.; Shahryari, E. Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor. J. Mater. Sci. Technol. 2016, 32, 763–773. DOI: 10.1016/j.jmst.2016.05.008.
  • Unal, S.; Arslan, S.; Gokce, T.; Atasoy, B. M.; Karademir, B.; Oktar, F. N.; Gunduz, O. Design and Characterization of Polycaprolactone-Gelatin-Graphene Oxide Scaffolds for Drug Influence on Glioblastoma Cells. Eur. Polym. J. 2019, 115, 157–165. DOI: 10.1016/j.eurpolymj.2019.03.027.
  • Kashi, M.; Baghbani, F.; Moztarzadeh, F.; Mobasheri, H.; Kowsari, E. Green Synthesis of Degradable Conductive Thermosensitive Oligopyrrole/Chitosan Hydrogel Intended for Cartilage Tissue Engineering. Int. J. Biol. Macromol. 2018, 107, 1567–1575. DOI: 10.1016/j.ijbiomac.2017.10.015.
  • Ghasem Hosseini, M.; Shahryari, E. A Novel High-Performance Supercapacitor Based on Chitosan/Graphene Oxide-MWCNT/Polyaniline. J. Colloid Interface Sci. 2017, 496, 371–381. DOI: 10.1016/j.jcis.2017.02.027.
  • Yang, J.; Shi, G.; Bei, J.; Wang, S.; Cao, Y.; Shang, Q.; Yang, G.; Wang, W. Fabrication and Surface Modification of Macroporous Poly(L-Lactic Acid) and Poly(L-Lactic-co-Glycolic Acid) (70/30) Cell Scaffolds for Human Skin Fibroblast Cell Culture. J. Biomed. Mater. Res. 2002, 62, 438–446. DOI: 10.1002/jbm.10318.
  • Li, H.; Chang, J. Preparation and Characterization of Bioactive and Biodegradable Wollastonite/Poly(D,L-Lactic Acid) Composite Scaffolds. J. Mater. Sci. Mater. Med. 2004, 15, 1089–1095. DOI: 10.1023/B:JMSM.0000046390.09540.c2.
  • Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. Fabrication of Novel Magnetic Chitosan Grafted with Graphene Oxide to Enhance Adsorption Properties for Methyl Blue. J. Hazard Mater. 2012, 215-216, 272–279. DOI: 10.1016/j.jhazmat.2012.02.068.
  • Muzzarelli, R. A. A.; Mehtedi, M. E.; Bottegoni, C.; Aquili, A.; Gigante, A. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone. Mar. Drugs 2015, 13, 7314–7338. DOI: 10.3390/md13127068.
  • Chiono, V.; Pulieri, E.; Vozzi, G.; Ciardelli, G.; Ahluwalia, A.; Giusti, P. Genipin-Crosslinked Chitosan/Gelatin Blends for Biomedical Applications. J. Mater. Sci. Mater. Med. 2008, 19, 889–898. DOI: 10.1007/s10856-007-3212-5.
  • Lu, H. T.; Lu, T. W.; Chen, C. H.; Mi, F. L. Development of Genipin-Crosslinked and Fucoidan-Adsorbed Nano-Hydroxyapatite/Hydroxypropyl Chitosan Composite Scaffolds for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 128, 973–984. DOI: 10.1016/j.ijbiomac.2019.02.010.
  • Zhao, Y.; Tan, K.; Zhou, Y.; Ye, Z.; Tan, W. S. A Combinatorial Variation in Surface Chemistry and Pore Size of Three-Dimensional Porous Poly(ε-Caprolactone) Scaffolds Modulates the Behaviors of Mesenchymal Stem Cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 193–202. DOI: 10.1016/j.msec.2015.10.017.
  • Kumar, A.; Zo, S. M.; Kim, J. H.; Kim, S. C.; Han, S. S. Enhanced Physical, Mechanical, and Cytocompatibility Behavior of Polyelectrolyte Complex Hydrogels by Reinforcing Halloysite Nanotubes and Graphene Oxide. Compos. Sci. Technol. 2019, 175, 35–45. DOI: 10.1016/j.compscitech.2019.03.008.
  • Narimani, M.; Teimouri, A.; Shahbazarab, Z. Synthesis, Characterization And Biocompatible Properties Of Novel Silk Fibroin/Graphene Oxide Nanocomposite Scaffolds for Bone Tissue Engineering Application. Polym. Bull. 2018, 76, 725–745.
  • Purohit, S. D.; Bhaskar, R.; Singh, H.; Yadav, I.; Gupta, M. K.; Mishra, N. C. Development of a Nanocomposite Scaffold of Gelatin-Alginate-Graphene Oxide for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 133, 592–602. DOI: 10.1016/j.ijbiomac.2019.04.113.
  • Vlasceanu, G. M.; Crica, L. E.; Pandele, A. M.; Ionita, M. Graphene Oxide Reinforcing Genipin Crosslinked Chitosan-Gelatin Blend Films. Coatings 2020, 10, 189. DOI: 10.3390/coatings10020189.
  • Wang, W.; Wang, Z.; Liu, Y.; Li, N.; Wang, W.; Gao, J. Preparation of Reduced Graphene Oxide/Gelatin Composite Films with Reinforced Mechanical Strength. Mater. Res. Bull. 2012, 47, 2245–2251. DOI: 10.1016/j.materresbull.2012.05.060.
  • Kocen, R.; Gasik, M.; Gantar, A.; Novak, S. Viscoelastic Behaviour of Hydrogel-Based Composites for Tissue Engineering under Mechanical Load. Biomed. Mater. 2017, 12, 025004. DOI: 10.1088/1748-605X/aa5b00.
  • Deng, M.; Han, J.; Liu, H.; Qin, M.; Liang, X. Analysis of Compressive Toughness and Deformability of High Ductile Fiber Reinforced Concrete. Adv. Mater. Sci. Eng. 2015, 2015, 1–7. DOI: 10.1155/2015/384902.
  • Hu, Y.; Ran, J.;Zheng, Z.; Jin, Z.; Chen, X.; Yin, Z.; Tang, C.; Chen, Y.; Huang, Y.; Le, Y.; Yan, R.; et al. Exogenous Stromal Derived Factor-1 Releasing Silk Scaffold Combined with Intra-Articular Injection of Progenitor Cells Promotes Bone-Ligament-Bone Regeneration. Acta Biomater. 2018, 71, 168–183. DOI: 10.1016/j.actbio.2018.02.019.
  • Makris, E. A.; Gomoll, A. H.; Malizos, K. N.; Hu, J. C.; Athanasiou, K. A. Repair and Tissue Engineering Techniques for Articular Cartilage. Nat. Rev. Rheumatol. 2015, 11, 21–34. DOI: 10.1038/nrrheum.2014.157.
  • Piao, Y.; Chen, B. Self-Assembled Graphene Oxide-Gelatin Nanocomposite Hydrogels: Characterization, Formation Mechanisms, and pH-Sensitive Drug Release Behavior. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 356–367. DOI: 10.1002/polb.23636.
  • Afshar, S.; Baniasadi, H. Investigation the Effect of Graphene Oxide and Gelatin/Starch Weight Ratio on the Properties of Starch/Gelatin/GO Nanocomposite Films: The RSM Study. Int. J. Biol. Macromol. 2018, 109, 1019–1028. DOI: 10.1016/j.ijbiomac.2017.11.083.
  • International Standard, ISO10993-5. Biokhimiya 1975, 40, 984–989.
  • International Organization for Standardization. 2012. Biological Evaluation of Medical Devices - Part 12: Sample Preparation and Reference Materials (ISO 10993–12). https://www.iso.org/standard/53468.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.