104
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Interaction between adipoderivated mesenchymal stem cells and PLGA/PIepox scaffold with possible use in tissue engineering: in vitro study

, , , , , , , , , , & show all
Pages 1132-1141 | Received 23 Dec 2021, Accepted 04 Jun 2022, Published online: 05 Jul 2022

References

  • Rodrigues, I. C. P.; Kaasi, A.; Rubens, M. R.; Jardini, A. L.; Gabriel, L. P. Engenharia de tecidos cardíacos: atual estado da arte a respeito de materiais, células e formação tecidual. Einstein (São Paulo) [online] 2018, 16, 1–9. DOI: 10.1590/s1679-45082018rb4538.
  • Manoukian, O. S.; Sardashti, N.; Stedman, T.; Gailiunas, K.; Ojha, A.; Penalosa, A.; Mancuso, C.; Hobert, M.; Kumbar, S. G. Biomaterials for Tissue Engineering and Regenerative Medicine. In Encyclopedia of Biomedical Engineering: Reference Module in Biomedical Science, Elsevier Inc., 2019, pp 1–21. DOI: 10.1016/B978-0-12-801238-3.64098-9.
  • Hassan, W. U.; Greiser, U.; Wang, W. Role of Adipose-Derived Stem Cells in Wound Healing. Wound Repair Regen. 2014, 22, 313–325. DOI: 10.1111/wrr.12173.
  • Tsuji, W.; Rubin, J. P.; Marra, K. G. Adipose-Derived Stem Cells: Implications in Tissue Regeneration. World J. Stem Cells. 2014, 6, 312–321. DOI: 10.4252/wjsc.v6.i3.312.
  • Amorin, B.; Valim, V. S.; Lemos, N. E.; Júnior, L. M.; Da Silva, A. M. P.; Da Silva, M. A. L.; Silla, L. Immunological Properties and Clinical Applications. Revista HCPA 2012, 32, 71–81.
  • Cheng, K.-H.; Kuo, T.-L.; Kuo, K.-K.; Hsiao, C.-C. Human Adipose-Derived Stem Cells: Isolation, Characterization and Current Application in Regeneration Medicine. Genomic Med. Biomarkers Health Sci. 2011, 3, 53–62. DOI: 10.1016/j.gmbhs.2011.08.003.
  • Kobolak, J.; Dinnyes, A.; Memic, A.; Khademhosseini, A.; Mobasheri, A. Mesenchymal Stem Cells: Identification, Phenotypic Characterization, Biological Properties and Potential for Regenerative Medicine Through Biomaterial Micro-Engineering of Their Niche. Methods 2016, 99, 62–68. DOI: 10.1016/j.ymeth.2015.09.016.
  • Hiwatashi, N.; Hirano, S.; Mizuta, H.; Tateya, I.; Kanemaru, S.; Nakamura, T.; Ito, J. Adipose-Derived Stem Cells Versus Bone Marrow-Derived Stem Cells for Vocal Fold Regeneration. Laryngoscope 2014, 124, 461–469. DOI: 10.1002/lary.24816.
  • McLaughlin, M. M.; Marra, K. G. The Use of Adipose-Derived Stem Cells as Sheets for Wound Healing. Organogenesis 2013, 9, 79–81. DOI: 10.4161/org.24946.
  • McCarthy, M. E.; Brown, T. A.; Bukowska, J.; Bunnell, B. A.; Frazier, T.; Wu, X.; Gimble, J. M. Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. Curr. Stem Cell Rep. 2018, 4, 127–137. DOI: 10.1007/s40778-018-0125-9.
  • Wagers, A. J. The Stem Cell Niche in Regenerative Medicine. Cell Stem Cell. 2012, 10, 362–369. DOI: 10.1016/j.stem.2012.02.018.
  • Braghirolli, D. I., 2012. Produção de scaffolds contendo células-tronco para uso na engenharia de tecidos através da associação das técnicas de electrospinning e bio-electrospraying. Dissertação, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS).
  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 1–19. DOI: 10.1155/2011/290602.
  • Kramschuster, A.; Turng, L. Handbook of Biopolymers and Biodegradable Plastics: properties, Processing and Applications, 1st ed. Pennsylvania: Elsevier Science, 2013.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Pol. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Marques, D. R.; Santos, L. A.; Schopf, L. F.; Fraga, J. C. Analysis of Poly (Lactic-co-Glycolic Acid)/Poly(Isoprene) Polymeric Blend for Application as Biomaterial. Polímeros 2013, 23, 579–584. DOI: 10.4322/polimeros.2013.099.
  • Guerra, N. B.; Cassel, J. B.; Henckes, N. A. C.; Oliveira, F. S.; Cirne-Lima, E. O.; Dos Santos, L. A. L. Chemical and in Vitro Characterization of Epoxidized Natural Rubber Blends for Biomedical Application. J. Polym. Res. 2018, 25, 1–9. DOI: 10.1007/s10965-018-1542-2.
  • Carazzai, R.; Guerra, N. B.; Henckes, N. A. C.; De Oliveira, F. S.; Cirne-Lima, E. O.; Dos Santos, L. A. L. Electrospun Natural Rubber Látex Biocomposite for Scaffolds in Tissue Engineering. J. Bioact. Compat. Polym. 2021, 36, 351–564. DOI: 10.1177/08839115211046415.
  • Henckes, N.A.C.; Festa, J.C.D.; Faleiro, D.; Medeiros, H.R.; Guerra, N.B.; Dos Santos L.A.L.; Terraciano P.B.; Passos, E.P.; De Oliveira, F.S.; Cirne-Lima, E.O.; 2019. Tissue-engineering solution containing cells and biomaterials-na in vitro study: A perspective as a novel therapeutic application. Int J Artif Org. 42:307–314. doi:10.1177/0391398819833383.
  • Badrossamay, M. R.; McIlwee, H. A.; Goss, J. A.; Parker, K. K. Nanofiber Assembly by Rotary Jet-Spinning. Nano Lett. 2010, 10, 2257–2261. DOI: 10.1021/nl101355x.
  • Muniz, N. O.; Vechietti, F. A.; Anesi, G. R.; Guinea, G. V.; dos Santos, L. A. L. Blend-Based Fibers Produced via Centrifugal Spinning and Electrospinning Processes: Physical and Rheological Properties. J. Mater. Res. 2020, 35, 2905–2916. DOI: 10.1557/jmr.2020.189.
  • Guerra, N. B.; Cassel, J. B.; Muniz, N. O.; Henckes, N. A. C.; De Oliveira, F. S.; Cirne-Lima, E. O.; Dos Santos, L. A. L. Dense and Fibrous Membranes of Poly(Lactic-co-Glycolic Acid)/Epoxidized Poly(Isoprene): Chemical and Biological Evaluation. Fibers Polym. 2021, 22, 2079–2089. DOI: 10.1007/s12221-021-0971-4.
  • Maurmann, N.; Pereira, D. P.; Burguez, D.; Pereira, F. D. A. S.; Neto, P. I.; Rezende, R. A.; Gamba, D.; Silva, J. V. L.; Pranke, P. Mesenchymal Stem Cells Cultivated on Scaffolds Formed by 3D Printed PCL Matrices, Coated with PLGA Electrospun Nanofibers for Use in Tissue Engineering. Biomed. Phys. Eng. Express 2017, 3, 045005. DOI: 10.1088/2057-1976/aa6308.
  • Markarian, C. F.; Frey, G. Z.; Silveira, M. D.; Chem, E. M.; Milani, A. R.; Ely, P. B.; Horn, A. P.; Nardi, N. B.; Camassola, M. Isolation of Adipose-Derived Stem Cells: A Comparison Among Diferente Methods. Biotechnol. Lett. 2014, 36, 693–702. DOI: 10.1007/s10529-013-1425-x.
  • Marins, F. C.; Ronconi, C. T.; Saavedra, F. M.; Lima, A. B. M.; Zaia, A. A.; Moreira, E. J. L.; Silva, E. J. N. L. d. Avaliação da citotoxicidade de dois cimentos à base de MTA: um estudo in vitro. Rev. Bras. Odontol. 2017, 74, 27–30. DOI: 10.18363/rbo.v74n1.p.27.
  • Marques, D. R., 2015. Fibras de Poli (ácido láctico-co-glicólico)/Poliisopreno para aplicação em engenharia de tecidos. Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS/Brasil.
  • Marques, D. R., 2011. Obtenção e Caracterização de Blendas Poliméricas de Poli (Ácido Láctico-co-Glicólico) e Poliisopreno para Aplicação como Biomaterial. Dissertação, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS).
  • Zhou, M.; Smith, A. M.; Das, A. K.; Hodson, N. W.; Collins, R. F.; Ulijn, R. V.; Gough, J. E. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Anchorage-Dependent Cells. Biomaterials 2009, 30, 2523–2530. DOI: 10.1016/j.biomaterials.2009.01.010.
  • Hou, T.; Li, X.; Lu, Y.; Yang, B. Highly Porous Fibers Prepared by Centrifugal Spinning. Mater. Des. 2017, 114, 303–311. DOI: 10.1016/j.matdes.2016.11.019.
  • Zhang, Z. M.; Duan, Y. S.; Qiao, X.; Zhang, B. A Review on Nanofiber Fabrication with the Effect of High-Speed Centrifugal Force Field. J. Eng. Fib. Fabr. 2019, 14, 1–7. DOI: 10.1177/1558925019867517.
  • Hsia, H. C.; Nair, M. R.; Mintz, R. C.; Corbett, S. A. The Fiber Diameter of Synthetic Bioresorbable Extracellular Matrix Influences Human Fibroblast Morphology and Fibronectin Matrix Assembly. Plast. Reconstr. Surg. 2011, 127, 2312–2320. DOI: 10.1097/PRS.0b013e3182139fa4.
  • Zanatta, G.; Rudisile, M.; Camassola, M.; Wendorff, J.; Nardi, N.; Gottfried, C.; Pranke, P.; Netto, C. A. Mesenchymal Stem Cell Adherence on Poly (D,L-Lactide-co-Glycolide) Nanofibers Scaffold is Integrin-Beta 1 Receptor Dependent. J. Biomed. Nanotechnol. 2012, 8, 211–218. DOI: 10.1166/jbn.2012.1382.
  • Zanatta, G.; Steffens, D.; Braghirolli, D. I.; Fernandes, R. A.; Netto, C. A.; Pranke, P. Viability of Mesenchymal Stem Cells during Electrospinning. Braz. J. Med. Biol. Res. 2012, 45, 125–130. DOI: 10.1590/s0100-879x2011007500163.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods. 1983, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.
  • Tang, L. L.; Liu, H.; Wang, Y. L.; Xian, C. Y.; Su, A. H. Evaluation of Biocompatibility of Acellular Porcine Dermis. Colloids Surf. B Biointerfaces 2007, 57, 215–218. DOI: 10.1016/j.colsurfb.2007.02.009.
  • Ruedinger, F.; Lavrentieva, A.; Blume, C.; Pepelanova, I.; Scheper, T. Hydrogels for 3D Mammalian Cell Culture: A Starting Guide for Laboratory Practice. Appl. Microbiol. Biotechnol. 2015, 99, 623–636. DOI: 10.1007/s00253-014-6253-y.
  • Soletti, L.; Nieponice, A.; Guan, J.; Stankus, J. J.; Wagner, W. R.; Vorp, D. A. A Seeding Device for Tissue Engineered Tubular Structures. Biomaterials 2006, 27, 4863–4870. DOI: 10.1016/j.biomaterials.2006.04.042.
  • Kim, S. J.; Jang, D. H.; Park, W. H.; Min, B. Fabrication and Characterization of 3-Dimensional PLGA Nanofiber/Microfiber Composite Scaffolds. Polymer 2010, 51, 1320–1327. DOI: 10.1016/j.polymer.2010.01.025.
  • Stankus, J. J.; Guan, J.; Fujimoto, K.; Wagner, W. R. Microintegrating Smooth Muscle Cells into a Biodegradable, Elastomeric Fiber Matrix. Biomaterials 2006, 27, 735–744. DOI: 10.1016/j.biomaterials.2005.06.020.
  • Streuli, C. H. Integrins and Cell-Fate Determination. J. Cell Sci. 2009, 122, 171–177. DOI: 10.1242/jcs.018945.
  • Murray, P.; Prewitz, M.; Hopp, I.; Wells, N.; Zhang, H.; Cooper, A.; Parry, K. L.; Robert Short, R.; Antoine, D. J.; Edgar, D. The Self-Renewal of Mouse Embryonic Stem Cells is Regulated by Cell–Substratum Adhesion and Cell Spreading. Int. J. Biochem. Cell Biol. 2013, 45, 2698–2705. DOI: 10.1016/j.biocel.2013.07.001.
  • Krishnamoorthy, N.; Tseng, Y. T.; Gajendrarao, P.; Sarathchandra, P.; McCormack, A.; Carubelli, I.; Sohier, J.; Latif, N.; Chester, A. H.; Yacoub, M. H. A Strategy to Enhance Secretion of Extracellular Matrix Components by Stem Cells: Relevance to Tissue Engineering. Tissue Eng. Part A. 2018, 24, 145–156. DOI: 10.1089/ten.TEA.2017.0060.
  • Gandhimathi, C.; Venugopal, J. R.; Bhaarathy, V.; Ramakrishna, S.; Kumar, S. D. Biocomposite Nanofibrous Strategies for the Controlled Release of Biomolecules for Skin Tissue Regeneration. Int. J. Nanomed. 2014, 9, 4709–4722. DOI: 10.2147/IJN.S65335.
  • Zhang, H.; Jia, X.; Han, F.; Zhao, J.; Zhao, Y.; Fan, Y.; Yuan, X. Dual-Delivery of VEGF and PDGF by Double-Layered Electrospun Membranes for Blood Vessel Regeneration. Biomaterials 2013, 34, 2202–2212. DOI: 10.1016/j.biomaterials.2012.12.005.
  • Zhao, S.; Zhao, J.; Dong, S.; Huangfu, X.; Li, B.; Yang, H.; Zhao, J.; Cui, W. Biological Augmentation of Rotator Cuff Repair Using bFGF-Loaded Electrospun Poly(Lactide-co-Glycolide) Fibrous Membranes. Int. J. Nanomed. 2014, 9, 2173–2185. DOI: 10.2147/IJN.S59536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.