306
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication and characterization of hydroxyapatite-polycaprolactone-collagen bone scaffold by electrospun nanofiber

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1281-1293 | Received 10 Mar 2022, Accepted 30 Jun 2022, Published online: 20 Jul 2022

References

  • Ropyanto, C. B. Analisis Faktor-Faktor Yang Berhubungan Dengan Status Fungsional Paska Open Reduction Internal Fixation (ORIF) Fraktur Ekstermitas. Jurnal Keperawatan Medikal Bedah 2021, 1, 81–90.
  • Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan RI. Laporan Nasional Riset Kesehatan Dasar (Riskesdas), 2018. https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas (accessed Jun 1, 2021).
  • Sari, M.; Hening, P.; Ana, I. D.; Yusuf, Y. Porous Structure of Bioceramics Carbonated Hydroxyapatite-Based Honeycomb Scaffold for Bone Tissue Engineering. Mater. Today Commun. 2021, 26, 102135. DOI: 10.1016/j.mtcomm.2021.102135.
  • Sari, M.; Suciati, T.; Sari, Y. W.; Yusuf, Y. Porous Carbonated Hydroxyapatite-Based Paraffin Wax Nanocomposite Scaffold for Bone Tissue Engineering: A Physicochemical Properties and Cell Viability Assay Analysis. Coatings 2021, 11, 1189. DOI: 10.3390/coatings11101189.
  • Udomluck, N.; Koh, W.-G.; Lim, D.-J.; Park, H. Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. IJMS 2019, 21, 99. DOI: 10.3390/ijms21010099.
  • Zhou, Y.; Yao, H.; Wang, J.; Wang, D.; Liu, Q.; Li, Z. Greener Synthesis of Electrospun Collagen/Hydroxyapatite Composite Fibers with an Excellent Microstructure for Bone Tissue Engineering. Int. J. Nanomedicine 2015, 10, 3203–3215. DOI: 10.2147/IJN.S79241.
  • Catledge, S. A.; Clem, W. C.; Shrikishen, N.; Chowdhury, S.; Stanishevsky, A. V.; Koopman, M.; Vohra, Y. K. An Electrospun Triphasic Nanofibrous Scaffold for Bone Tissue Engineering. Biomed. Mater. 2007, 2, 142–150. [Database] DOI: 10.1088/1748-6041/2/2/013.
  • Aminatun, A.; Suciati, T.; Sari, Y. W.; Sari, M.; Alamsyah, K. A.; Purnamasari, W.; Yusuf, Y. Biopolymer-Based Polycaprolactone-Hydroxyapatite Scaffolds for Bone Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2021, 1–10. DOI: 10.1080/00914037.2021.2018315.
  • Zhang, J.; Senger, B.; Vautier, D.; Picart, C.; Schaaf, P.; Voegel, J.-C.; Lavalle, P. Natural Polyelectrolyte Films Based on Layer-by Layer Deposition of Collagen and Hyaluronic Acid. Biomaterials 2005, 26, 3353–3361. DOI: 10.1016/j.biomaterials.2004.08.019.
  • Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity, and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. DOI: 10.3762/bjnano.9.98.
  • Baek, J.; Chen, X.; Sovani, S.; Jin, S.; Grogan, S. P.; D'Lima, D. D. Meniscus Tissue Engineering Using a Novel Combination of Electrospun Scaffolds and Human Meniscus Cells Embedded within an Extracellular Matrix Hydrogel. J. Orthop. Res. 2015, 33, 572–583. DOI: 10.1002/jor.22802.
  • Ramakrishna, H.; Li, T.; He, T.; Temple, J.; King, M.-W.; Spagnoli, A. Tissue Engineering a Tendon-Bone Junction with Biodegradable Braided Scaffolds. Biomaterials. Res. 2019, 23, 1–12. DOI: 10.1186/s40824-019-0160-3.
  • Camposeo, A.; Greenfeld, I.; Tantussi, F.; Pagliara, S.; Moffa, M.; Fuso, F.; Allegrini, M.; Zussman, E.; Pisignano, D. Local Mechanical Properties of Electrospun Fibers Correlate to Their Internal Nanostructure. Nano Lett. 2013, 13, 5056–5062. DOI: 10.1021/nl4033439.
  • Gilbert, M.-M.; Snively, E.; Cotton, J. The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics. PLOS One 2016, 11, e0149708. DOI: 10.1371/journal.pone.0149708.
  • Ficai, A.; Andronescu, E.; Voicu, G.; Ficai, D. Advances in Collagen/Hydroxyapatite Composite Materials. Adv. Compos. Mater. Med. Nanotechnol. https://www.intechopen.com/chapters/14592.
  • Chen, M.; Gao, S.; Wang, P.; Li, Y.; Guo, W.; Zhang, Y.; Wang, M.; Xiao, T.; Zhang, Z.; Zhang, X.; et al. The Application of Electrospinning Used in Meniscus Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2018, 29, 461–475. DOI: 10.1080/09205063.2018.1425180.
  • Nitti, P.; Gallo, N.; Natta, L.; Scalera, F.; Palazzo, B.; Sannino, A.; Gervaso, F. Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats. J. Health. Eng. 2018, 2018, 1–12. DOI: 10.1155/2018/3651480.
  • Meng, Q.; Li, B.; Li, T.; Feng, X.-Q. Effects of Nanofiber Orientations on the Fracture Toughness of Cellulose Nanopaper. Eng. Frac. Mech. 2018, 194, 350–361. DOI: 10.1016/j.engfracmech.2018.03.034.
  • Arakawa, C.-K.; DeForest, C.-A. Polymer Design and Development. Biology and Engineering of Stem Cell Niches. Academic Press, 2017; pp 295–314. DOI: 10.1016/B978-0-12-802734-9.00019-6.
  • Zhang, Q.; Lv, S.; Lu, J.; Jiang, S.; Lin, L. Characterization of Polycaprolactone/Collagen Fibrous Scaffolds by Electrospinning and Their Bioactivity. Int. J. Biol. Macromol. 2015, 76, 94–101. DOI: 10.1016/j.ijbiomac.2015.01.063.
  • Díaz, E.; Sandonis, I.; Valle, M. B. In Vitro Degradation of Poly(Caprolactone)/nHA Composites. J. Nanomater. 2014, 2014, 802435. DOI: 10.1155/2014/802435.
  • Clarke, B. Normal Bone Anatomy and Physiology. CJASN 2008, 3, S131–S139. DOI: 10.2215/CJN.04151206.
  • Wang, Z.; Wang, L.; Lin, S.; Liang, Q.; Shi, Z.; Xu, J.; Ma, H. Isolation and Characterization of Collagen from the Muscle of Amur Sturgeon (Acipenser schrenckii). Biotechnol. Bioproc. E. 2014, 19, 935–941. DOI: 10.1007/s12257-013-0638-0.
  • ISO 10993-5. Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity, 2009. https://www.iso.org/standard/36406.html (accessed Nov 22, 2021).
  • Deb, P. B.; Deoghare, A.; Borah, A.; Barua, E.; Lala, S. D. Scaffold Development Using Biomaterials: A Review. Mater. Today Proc. 2018, 5, 12909–12919. DOI: 10.1016/j.matpr.2018.02.276.
  • Januariyasa, I. K.; Ana, I. D.; Yusuf, Y. Nanofibrous Poly (Vinyl Alcohol)/Chitosan Contained Carbonated Hydroxyapatite Nanoparticles Scaffold for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110347. DOI: 10.1016/j.msec.2019.110347.
  • Lou, T.; Wang, X.; Song, G.; Gu, Z.; Yang, Z. Structure and Properties of PLLA/β-TCP Nanocomposite Scaffolds for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2015, 26, 5366. DOI: 10.1007/s10856-014-5366-2.
  • Sánchez-Salcedo, S.; Arcos, D.; Vallet-Regi, M. Upgrading Calcium Phosphate Scaffolds for Tissue Engineering Applications. KEM 2008, 377, 19–42. DOI: 10.4028/www.scientific.net/KEM.377.19.
  • Scaglione, S.; Giannoni, P.; Bianchini, P.; Sandri, M.; Marotta, R.; Firpo, G.; Valbusa, U.; Tampieri, A.; Diaspro, A.; Bianco, P.; Quarto, R. Order versus Disorder: In Vivo Bone Formation within Osteoconductive Scaffolds. Sci. Rep. 2012, 2, 274. DOI: 10.1038/srep00274.
  • Han, F.; Zhang, P.; Sun, Y.; Lin, C.; Zhao, P.; Chen, J. Hydroxyapatite-Doped Polycaprolactone Nanofiber Membrane Improves Tendon-Bone Interface Healing for Anterior Cruciate Ligament Reconstruction. Int. J. Nanomedicine 2015, 10, 7333–7343. DOI: 10.2147/IJN.S92099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.