165
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Nanodrugs against cancer: biological considerations in its redesign

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1340-1359 | Received 19 May 2022, Accepted 30 Jun 2022, Published online: 19 Jul 2022

References

  • Lee Ventola, M. The Nanomedicine Revolution: Part 1: Emerging Concepts. Pharm. Ther. 2012, 37, 512–518.
  • Shrivastava, S.; Dash, D. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences. J. Nanotechnol. 2009, 2009, 1–14. DOI: 10.1155/2009/184702.
  • Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2019, 25, 112–115. DOI: 10.3390/molecules25010112.
  • Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse Applications of Nanomedicine. ACS Nano. 2017, 11, 2313–2381. DOI: 10.1021/acsnano.6b06040.
  • Tran, S.; DeGiovanni, P. J.; Piel, B.; Rai, P. Cancer Nanomedicine: A Review of Recent Success in Drug Delivery. Clin. Transl. Med. 2017, 6, 44. DOI: 10.1186/s40169-017-0175-0.
  • Samarasinghe, R. M.; Kanwar, R. K.; Kanwar, J. R. The Role of Nanomedicine in Cell Based Therapeutics in Cancer and Inflammation. IJMCM. 2012, 1, 133–144.
  • Siegel, R. L.; Miller, K. D. Cancer Statistics, 2020. CA. 2020, 0, 1–24.
  • WHO. Cáncer. Datos y cifras. WHO. Published 2021. https://www.who.int/es/news-room/fact-sheets/detail/cancer (accessed Mar 11, 2021).
  • Sutradhar, K. B.; Amin, M. L. Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnol. 2014, 2014, 1–12. DOI: 10.1155/2014/939378.
  • Li, Z.; Tan, S.; Li, S.; Shen, Q.; Wang, K. Cancer Drug Delivery in the Nano Era: An Overview and Perspectives (Review). Oncol. Rep. 2017, 38, 611–624. DOI: 10.3892/or.2017.5718.
  • Anselmo, A. C.; Mitragotri, S. Nanoparticles in the Clinic. Bioeng. Transl. Med. 2016, 1, 10–29. DOI: 10.1002/btm2.10003.
  • Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and Cancer Therapy: Perspectives for Application of Nanoparticles in the Treatment of Cancers. J. Cell. Physiol. 2020, 235, 1962–1972. DOI: 10.1002/jcp.29126.
  • Elgqvist, J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. IJMS. 2017, 18, 1102–1153. DOI: 10.3390/ijms18051102.
  • Bose, T.; Latawiec, D.; Mondal, P. P.; Mandal, S. Overview of Nano-Drugs Characteristics for Clinical Application: The Journey from the Entry to the Exit Point. J. Nanopart. Res. 2014, 16, 2527–2527. DOI: 10.1007/s11051-014-2527-7.
  • Navya, P. N.; Kaphle, A.; Srinivas, S. P.; Bhargava, S. K.; Rotello, V. M.; Daima, H. K. Current Trends and Challenges in Cancer Management and Therapy Using Designer Nanomaterials. Nano Converg. 2019, 6, 23–30. DOI: 10.1186/s40580-019-0193-2.
  • Hickey, J. W.; Santos, J. L.; Williford, J. M.; Mao, H. Q. Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. J. Control. Release. 2015, 219, 536–547. DOI: 10.1016/j.jconrel.2015.10.006.
  • Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct. Target. Ther. 2018, 3, 7–19.
  • OECD. Opportunities and Risks of Nanotechnologies; Allianz: Munich, 2007.
  • Krukemeyer, M.; Krenn, V.; Huebner, F. History and Possible Uses of Nanomedicine Based on Nanoparticles and Nanotechnological Progress. J. Nanomed. Nanotechnol. 2015, 06, 1–7. DOI: 10.4172/2157-7439.1000336.
  • de la Fuente, J.M.; Grazu, V. Nanobiotechnology: Inorganic Nanoparticles vs Organic Nanoparticles. Palmer, E., Ed.; Elsevier, 2012; Vol 4, pp 541. doi:10.1016/B978-0-12-415769-9.00007-8.
  • Akhter, M. H.; Rizwanullah, M.; Ahmad, J.; Ahsan, M. J.; Mujtaba, M. A.; Amin, S. Nanocarriers in Advanced Drug Targeting: Setting Novel Paradigm in Cancer Therapeutics. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 873–884. DOI: 10.1080/21691401.2017.1366333.
  • Akhter, M. H.; Rizwanullah, M.; Ahmad, J.; Amin, S.; Ahmad, M. Z.; Minhaj, M. A.; Mujtaba, M. A.; Ali, J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res. 2021, 71, 122–137. DOI: 10.1055/a-1296-7870.
  • Morachis, J. M.; Mahmoud, E. A.; Almutairi, A. Physical and Chemical Strategies for Therapeutic Delivery by Using Polymeric Nanoparticles. Pharmacol. Rev. 2012, 64, 505–519. DOI: 10.1124/pr.111.005363.
  • Zahin, N.; Anwar, R.; Tewari, D.; Kabir, M. T.; Sajid, A.; Mathew, B.; Uddin, M. S.; Aleya, L.; Abdel-Daim, M. M. Nanoparticles and Its Biomedical Applications in Health and Diseases: Special Focus on Drug Delivery. Environ. Sci. Pollut. Res. Int. 2020, 27, 19151–19168. DOI: 10.1007/s11356-019-05211-0.
  • Dhanasekaran, S. SMART Drug Based Targeted Delivery: A New Paradigm for Nanomedicine Strategies. Int. J. Immunother. Cancer Res. 2015, 1, 008–012. DOI: 10.17352/2455-8591.000003.
  • Fymat, A. L. Global Market Analysis on Nanomedicine and Drug Delivery System. Am. J. Adv. Drug Deliv. 2019, 7, 1–2.
  • Bosetti, R.; Jones, S. L. Cost – Effectiveness of Nanomedicine: Estimating the Real Size of Nano-Costs. Nanomedicine. 2019, 14, 1367–1370. DOI: 10.2217/nnm-2019-0130.
  • Yavuz, A. "Market Analysis of Nanomedicine and Nanomaterials Meet. J. Nanosci. Nanotechnol. 2020, 3, 1–2.
  • Bosetti, R. Cost-Effectiveness of Nanomedicine: The Path to a Future Successful and Dominant Market? Nanomedicine. 2015, 10, 1851–1853. DOI: 10.2217/nnm.15.74.
  • Talevi, A.; Quiroga, P.; Ruiz, M. E. Procesos Biofarmacéuticos, Universidad Nacional de la Plata (1era edici). Buenos Aires, Argentina: EDLUP; 2016; pp 157.
  • Beg, S.; Barkat, A.; Jaless, F. Nanophytomedicine. Concept to Clinic. Singapore: Springer, 2020. doi: 10.1007/978-981-15-4909-0.
  • Amidon, G. L.; Lennernas, H.; Shah, V. P.; Crison, J. R.. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. DOI: 10.1023/A:1016212804288.
  • Basanta, B.; Karunakar, A. Biopharmaceutics Classification System: A Regulatory Approach. Dissolution Technol. 2011, 18, 31–37. DOI: 10.14227/DT180111P31.
  • Varma, M. V.; Gardner, I.; Steyn, S. J.; Nkansah, P.; Rotter, C. J.; Whitney-Pickett, C.; Zhang, H.; Di, L.; Cram, M.; Fenner, K. S.; El-Kattan, A. F. pH-Dependent Solubility and Permeability Criteria for Provisional Biopharmaceutics Classification (BCS and BDDCS) in Early Drug Discovery. Mol. Pharm. 2012, 9, 1199–1212. DOI: 10.1021/mp2004912.
  • Yu, L. X.; Amidon, G. L.; Polli, J. E.; Zhao, H.; Mehta, M. U.; Conner, D. P.; Shah, V. P.; Lesko, L. J.; Chen, M.; Lee, V. H. L.; Hussain, A. S. Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions. Pharm. Res. 2002, 19, 921–925. DOI: 10.1023/A:1016473601633.
  • Hamidi, M.; Azadi, A.; Rafiei, P.; Ashrafi, H. A Pharmacokinetic Overview of Nanotechnology-Based Drug Delivery Systems: An ADME-Oriented Approach. Crit. Rev. Ther. Drug Carrier Syst. 2013, 30, 435–467. DOI: 10.1615/critrevtherdrugcarriersyst.2013007419.
  • McNeil, S. Preclinical Evaluation Strategies for Nanomedicines and Other Non-Biological Complex Drugs, NCI Alliance for Nanotechnology in Cancer, 2018, pp 35.
  • Guo, H.; MacKay, J. A. Chapter8. A Pharmacokinetics Primer for Preclinical Nanomedicine Research. In Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications; Ji-Chung, E., Leon, L., and Rinaldi, C., Eds.; Amsterdam, Netherlands: Elsevier Inc., 2019; pp 109–128.
  • Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. DOI: 10.1038/s41573-020-0090-8.
  • Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018, 6, 1–15.
  • Onoue, S.; Yamada, S.; Chan, H. Nanodrugs: Pharmacokinetics and Safety. IJN. 2014, 1025–1037. DOI: 10.2147/IJN.S38378.
  • Chen-Guang, L.; Ya-Hui, H.; Ranjith, K. K.; Shi-Bin, W.; Ai- Zheng, C. Subcellular Performance of Nanoparticles in Cancer Therapy. Int. J. Nanomed. 2020, 15, 675–704. DOI: 10.2147/IJN.S226186.
  • Zylberberg, C.; Matosevic, S. Pharmaceutical Liposomal Drug Delivery: A Review of New Delivery Systems and a Look at the Regulatory Landscape. Drug Deliv. 2016, 23, 3319–3329. DOI: 10.1080/10717544.2016.1177136.
  • Li, Y.; Chang, Y.; Lian, X.; Zhou, L.; Yu, Z.; Wang, H.; An, F. Silver Nanoparticles for Enhanced Cancer Theranostics: In Vitro and in Vivo Perspectives. J. Biomed. Nanotechnol. 2018, 14, 1515–1542. DOI: 10.1166/jbn.2018.2614.
  • Narum, S. M.; Le, T.; Le, D. P. Passive Targeting in Nanomedicine: Fundamental Concepts, Body Interactions, and Clinical Potential. In Ji-Cgung, E., Leon, L., and Rinaldi, C. Eds.; Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Ji-Cgung, E., Leon, L., and Rinaldi, C., Eds.; Amsterdam, Netherlands: Elsevier Inc., 2019; pp 37–53.
  • Clift, M. J. D.; Dechézelles, J. F.; Rothen-Rutishauser, B.; Petri-Fink, A. A Biological Perspective toward the Interaction of Theranostic Nanoparticles with the Bloodstream - What Needs to Be Considered? Front. Chem. 2015, 3, 7–4.
  • Garnett, M. C.; Kallinteri, P. Nanomedicines and Nanotoxicology: Some Physiological Principles. Occup. Med. 2006, 56, 307–311. DOI: 10.1093/occmed/kql052.
  • Nie, S. Understanding and Overcoming Major Barriers in Cancer Nanomedicine. Nanomedicine. 2010, 5, 523–528. DOI: 10.2217/nnm.10.23.
  • Tran, S.; DeGiovanni, P.; Piel, B.; Rai, P. Cancer Nanomedicine: A Review of Recent Success in Drug Delivery. Clin. Transl. Med. 2017, 6, 1–21.
  • Dadwal, A.; Baldi, A.; Narang, R. K. Nanoparticles as Carriers for Drug Delivery in Cancer. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 295–305. DOI: 10.1080/21691401.2018.1457039.
  • Hamadani, C. M.; Goetz, M. J.; Mitragotri, S.; Tanner, E. E. L. Protein-Avoidant Ionic Liquid (Pail)-Coated Nanoparticles to Increase Bloodstream Circulation and Drive Biodistribution. Sci. Adv. 2020, 6, 1–10.
  • Nichols, J. W.; Bae, Y. H. Odyssey of a Cancer Nanoparticle: From Injection Site to Site of Action. Nano Today. 2012, 7, 606–618. DOI: 10.1016/j.nantod.2012.10.010.
  • Ma, Y.; Mou, Q.; Yan, D.; Zhu, X. Engineering Small Molecule Nanodrugs to Overcome Barriers for Cancer Therapy. View. 2020, 1, 20200062. DOI: 10.1002/VIW.20200062.
  • Yetisgin, A. A.; Cetinel, S.; Merve, Z.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020, 25, 2193–2131. DOI: 10.3390/molecules25092193.
  • Zein, R.; Sharrouf, W.; Selting, K. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. J. Oncol. 2020, 2020, 5194780–5194716. DOI: 10.1155/2020/5194780.
  • Su, Y.; Hu, S. Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics; 2018, 10(4), 193. DOI:10.3390/pharmaceutics10040193
  • Zhou, Q.; Dong, C.; Fan, W.; Jiang, H.; Xiang, J.; Qiu, N.; Piao, Y.; Xie, T.; Luo, Y.; Li, Z.; et al. Tumor Extravasation and Infiltration as Barriers of Nanomedicine for High Efficacy: The Current Status and Transcytosis Strategy. Biomaterials. 2020, 240, 119902. DOI: 10.1016/j.biomaterials.2020.119902.
  • Danquah, M. K.; Zhang, X. A.; Mahato, R. I. Extravasation of Polymeric Nanomedicines across Tumor Vasculature ⋆. Adv. Drug Deliv. Rev. 2011, 63, 623–639. DOI: 10.1016/j.addr.2010.11.005.
  • Sarin, H. Physiologic Upper Limits of Pore Size of Different Blood Capillary Types and Another Perspective on the Dual Pore Theory of Microvascular Permeability. J. Angiogenes. Res. 2010, 2, 14–19.
  • Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. DOI: 10.7150/ijbs.7502.
  • Greish, K. Enhanced Permeability and Retention of Macromolecular Drugs in Solid Tumors: A Royal Gate for Targeted Anticancer Nanomedicines. J. Drug Target. 2007, 15, 457–464. DOI: 10.1080/10611860701539584.
  • Zhang, B.; Hu, Y.; Pang, Z. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Front. Pharmacol. 2017, 8, 952–916.
  • Yokoyama, M. Drug Targeting with Nano-Sized Carrier Systems. J. Artif. Organs. 2005, 8, 77–84. DOI: 10.1007/s10047-005-0285-0.
  • Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14, 1310–1316. DOI: 10.1158/1078-0432.CCR-07-1441.
  • Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C. Cancer Nanotechnology: The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25. DOI: 10.1016/j.addr.2013.11.009.
  • Nehoff, H.; Parayath, N. N.; Domanovitch, L.; Taurin, S.; Greish, K. Nanomedicine for Drug Targeting: Strategies beyond the Enhanced Permeability and Retention Effect. Int. J. Nanomed. 2014, 9, 2539–2555. DOI: 10.2147/IJN.S47129.
  • Subhan, A.; Kishan, S. S.; Filipczak, N.; Parveen, F.; Torchilin, V. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. JPM. 2021, 11, 571–527. DOI: 10.3390/jpm11060571.
  • Inagaki, F. F.; Furusawa, A.; Choyke, P. L.; Kobayashi, H. Enhanced Nanodrug Delivery in Tumors after Near-Infrared Photoimmunotherapy. Nanophotonics. 2019, 8, 1673–1688. DOI: 10.1515/nanoph-2019-0186.
  • Golombek, S. K.; May, J.-N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor Targeting via EPR: Strategies to Enhance Patient Responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. DOI: 10.1016/j.addr.2018.07.007.
  • Raza, F.; Zafar, H.; You, X.; Khan, A.; Wu, J.; Ge, L. Cancer Nanomedicine: focus on Recent Developments and Self-Assembled Peptide Nanocarriers. J. Mater. Chem. B. 2019, 7, 7639–7655. DOI: 10.1039/c9tb01842e.
  • Walker, C.; Mojares, E.; Del Río Hernández, A. Role of Extracellular Matrix in Development and Cancer Progression. Int. J. Mol. Sci., 2018; Vol. 19(10), 1–31. DOI: 10.3390/ijms19103028.
  • Theocharis, A. D.; Manou, D.; Karamanos, N. K. The Extracellular Matrix as a Multitasking Player in Disease. FEBS J. 2019, 286, 2830–2869. DOI: 10.1111/febs.14818.
  • Eble, J. A.; Niland, S. The Extracellular Matrix in Tumor Progression and Metastasis. Clin. Exp. Metastasis. 2019, 36, 171–198. DOI: 10.1007/s10585-019-09966-1.
  • Siegler, E. L.; Kim, Y. J.; Wang, P. Nanomedicine Targeting the Tumor Microenvironment: Therapeutic Strategies to Inhibit Angiogenesis, Remodel Matrix, and Modulate Immune Responses. J. Cell. Immunother. 2016, 2, 69–78. DOI: 10.1016/j.jocit.2016.08.002.
  • Pfisterer, K.; Shaw, L. E.; Symmank, D.; Weninger, W. The Extracellular Matrix in Skin Inflammation and Infection. Front. Cell. Dev. Biol. 2021, 9, 682414–682419.
  • Da, A. Applications of Nano-Drugs and Tumor Microenvironment Sensitive Nano-Drug Delivery Systems. ICBBBS. 2020, 16, 1–7. DOI: 10.1145/3431943.3431944.
  • Kou, L.; Sun, J.; Zhai, Y.; He, Z. The Endocytosis and Intracellular Fate of Nanomedicines: Implication for Rational Design. Asian J. Pharm. Sci. 2013, 8, 1–10. DOI: 10.1016/j.ajps.2013.07.001.
  • Li, J.; Burgess, D. J. Nanomedicine-Based Drug Delivery towards Tumor Biological and Immunological Microenvironment. Acta Pharm. Sin. B. 2020, 10, 2110–2124. DOI: 10.1016/j.apsb.2020.05.008.
  • Li, X.; Lu, X.; Xu, H.; Zhu, Z.; Yin, H.; Qian, X.; Li, R.; Jiang, X.; Liu, B. Paclitaxel/Tetrandrine Coloaded Nanoparticles Effectively Promote the Apoptosis of Gastric Cancer Cells Based on “Oxidation Therapy. Mol. Pharm. 2012, 9, 222–229. DOI: 10.1021/mp2002736.
  • Oliva, M.; Mulet-Margalef, N.; Ochoa-De-Olza, M.; Napoli, S.; Mas, J.; Laquente, B.; Alemany, L.; Duell, E.; Nuciforo, P.; Moreno, V. Tumor-Associated Microbiome: Where Do We Stand? IJMS. 2021, 22, 1446–1425. DOI: 10.3390/ijms22031446.
  • Song, W.; Anselmo, A. C.; Huang, L. Nanotechnology Intervention of the Microbiome for Cancer Therapy. Nat. Nanotechnol. 2019, 14, 1093–1103. DOI: 10.1038/s41565-019-0589-5.
  • Zhu, R.; Lang, T.; Yan, W.; Zhu, X.; Huang, X.; Yin, Q.; Li, Y. Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Adv. Sci. 2021, 8, 2003542–2003532. DOI: 10.1002/advs.202003542.
  • Fares, J.; Fares, M. Y.; Khachfe, H. H.; Salhab, H. A.; Fares, Y. Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct. Target. Ther. 2020, 5(1), 1–17. DOI:10.1038/s41392-020-0134-x
  • Kashani, A. S.; Packirisamy, M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int. J. Mol. Sci. 2021, 22, 1–30.
  • Xie, X.; Zhang, Y.; Li, F. Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Curr. Cancer Drug Targets. 2018, 18, 1–21.
  • Ma, N.; Ma, C.; Li, C.; Wang, T.; Tang, Y.; Wang, H.; Moul, X.; Chen, Z.; Hel, N. Influence of Nanoparticle Shape, Size, and Surface Functionalization on Cellular Uptake. J. Nanosci. Nanotechnol. 2013, 13, 6485–6498. DOI: 10.1166/jnn.2013.7525.
  • Jawahar, N.; Meyyanathan, S. N. Polymeric Nanoparticles for Drug Delivery and Targeting: A Comprehensive Review. Int. J. Health Allied Sci. 2012, 1, 217–223. DOI: 10.4103/2278-344X.107832.
  • Huynh, N. T.; Roger, E.; Lautram, N.; Benoit, J.; Passirani, C. The Rise and Rise of Stealth Nanocarriers for Cancer Therapy: Passive versus Active Targeting. Nanomedicine. 2010, 5, 1415–1433. DOI: 10.2217/nnm.10.113.
  • Nag, O. K.; Delehanty, J. B. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics. 2019, 11, 543–549. DOI: 10.3390/pharmaceutics11100543.
  • Wang, X.; Qiu, Y.; Wang, M.; Zhang, C.; Zhang, T.; Zhou, H.; Zhao, W.; Zhao, W.; Xia, G.; Shao, R.; et al. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int. J. Nanomedicine. 2020, 15, 9447–9467. DOI: 10.2147/IJN.S274289.
  • Nallanthighal, S.; Heiserman, J. P.; Cheon, D. J. The Role of the Extracellular Matrix in Cancer Stemness. Front. Cell Dev. Biol. 2019, 7, 86–14.
  • Wang, X.; Wang, M. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int. J. Mol. Sci. 2020, 15, 9477–9467.
  • Saranya, S.; Radha, K. V. Review of Nanobiopolymers for Controlled Drug Delivery. Polym. Plast. Technol. Eng. 2014, 53, 1636–1646. DOI: 10.1080/03602559.2014.915035.
  • Rennick, J. J.; Johnston, A. P. R.; Parton, R. G. Key Principles and Methods for Studying the Endocytosis of Biological and Nanoparticle Therapeutics. Nat. Nanotechnol. 2021, 16, 266–276. DOI: 10.1038/s41565-021-00858-8.
  • Donahue, N. D.; Acar, H.; Wilhelm, S. Concepts of Nanoparticle Cellular Uptake, Intracellular Trafficking, and Kinetics in Nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 68–96. DOI: 10.1016/j.addr.2019.04.008.
  • Patel, S.; Kim, J.; Herrera, M.; Mukherjee, A.; Kabanov, A.; Sahay, G. Brief Update on Endocytosis of Nanomedicines. Adv. Drug Deliv. Rev. 2019, 144, 90–111. DOI: 10.1016/j.addr.2019.08.004.
  • Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C. M.; Molina, A. M.; Torres, A.; Milián, M.; Griebenow, K. Smart Targeting to Improve Cancer Therapeutics. Drug Des. Dev. Ther. 2019, 13, 3753–3772. DOI: 10.2147/DDDT.S219489.
  • Bellotti, E.; Cascone, M. G.; Barbani, N.; Rossin, D.; Rastaldo, R.; Giachino, C.; Cristallini, C. Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy. Biomedicines. 2021, 9, 1275. DOI: 10.3390/biomedicines9091275.
  • Daniels, T. R.; Bernabeu, E.; Rodríguez, J. A.; Patel, S.; Kozman, M.; Chiappetta, D. A.; Holler, E.; Ljubimova, J. Y.; Helguera, G.; Penichet, M. L.; et al. Transferrin Receptors and the Targeted Delivery of Therapeutic Agents against Cancer. Biochim. Biophys. Acta. 2012, 1820, 291–317. DOI: 10.1016/j.bbagen.2011.07.016.
  • Tang, T.; Yang, J.; Jing, S. Transferrin Receptor Serves as a Potential Target for Cancer Therapy. Cancer Plus. 2021, 3, 28. DOI: 10.18063/cp.v3i2.317.
  • Mojarad-jabali, S.; Mahdinloo, S.; Farshbaf, M. Transferrin Receptor-Mediated Liposomal Drug Delivery: recent Trends in Transferrin Receptor-Mediated Liposomal Drug Delivery: Recent Trends in Targeted Therapy of Cancer. Expert Opin. Drug Deliv. 2022, 00, 1–21.
  • Habban Akhter, M.; Sateesh Madhav, N.; Ahmad, J. Epidermal Growth Factor Receptor Based Active Targeting: A Paradigm Shift towards Advance Tumor Therapy. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 1188–1198. DOI: 10.1080/21691401.2018.1481863.
  • Liang, T.; Zejing, X.; Liping, J.; Zhu, J. J. Tailoring Nanoparticles for Targeted Drug Delivery: From Organ to Subcellular Level. View. 2021, 2, 20200131–20200137. DOI: 10.1002/VIW.20200131.
  • Parodi, A.; Corbo, C.; Cevenini, A.; Molinaro, R.; Palomba, R.; Pandolfi, L.; Agostini, M.; Salvatore, F.; Tasciotti, E. Enabling Cytoplasmic Delivery and Organelle Targeting by Surface Modification of Nanocarriers. Nanomedicine. 2015, 10, 1923–1940. DOI: 10.2217/nnm.15.39.
  • Biswas, S.; Torchilin, V. P. Nanopreparations for Organelle-Specific Delivery in Cancer Swati. Adv. Drug Deliv. Rev. 2014, 23, 1–7.
  • Sakhrani, N. M.; Padh, H. Organelle Targeting: Third Level of Drug Targeting. Drug Des. Devel. Ther. 2013, 7, 585–599. DOI: 10.2147/DDDT.S45614.
  • Riaz Rajoka, M. S.; Mehwish, H. M.; Xiong, Y.; Song, X.; Hussain, N.; Zhu, Q.; He, Z. Gut Microbiota Targeted Nanomedicine for Cancer Therapy: challenges and Future Considerations. Trends Food Sci. Technol. 2021, 107, 240–251. DOI: 10.1016/j.tifs.2020.10.036.
  • Kim, M. S.; Haney, M. J.; Zhao, Y.; Yuan, D.; Deygen, I.; Klyachko, N. L.; Kabanov, A. V.; Batrakova, E. V. Engineering Macrophage-Derived Exosomes for Targeted Paclitaxel Delivery to Pulmonary Metastases: In Vitro and In Vivo Evaluations. Nanomedicine. 2018, 14, 195–204. DOI: 10.1016/j.nano.2017.09.011.
  • Wei, H.; Chen, J.; Wang, S.; Fu, F.; Zhu, X.; Wu, C.; Liu, Z.; Zhong, G.; Lin, J. A Nanodrug Consisting of Doxorubicin and Exosome Derived from Mesenchymal Stem Cells for Osteosarcoma Treatment In Vitro. Int. J. Nanomed. 2019, 14, 8603–8610. DOI: 10.2147/IJN.S218988.
  • Jeong, K.; Yu, Y. J.; You, J. Y.; Rhee, W. J.; Kim, J. A. Exosome-Mediated microRNA-497 Delivery for Anti-Cancer Therapy in a Microfluidic 3D Lung Cancer Model. Lab Chip. 2020, 20, 548–557. DOI: 10.1039/c9lc00958b.
  • Zhang, K.; Dong, C.; Chen, M.; Yang, T.; Wang, X.; Gao, Y.; Wang, L.; Wen, Y.; Chen, G.; Wang, X.; et al. Extracellular Vesicle-Mediated Delivery of miR-101 Inhibits Lung Metastasis in Osteosarcoma. Theranostics. 2020, 10, 411–425. DOI: 10.7150/thno.33482.
  • Shi, X.; Sun, J.; Li, H.; Lin, H.; Xie, W.; Li, J.; Tan, W. Antitumor Efficacy of Interferon-γ-Modified Exosomal Vaccine in Prostate Cancer. Prostate. 2020, 80, 811–823. DOI: 10.1002/pros.23996.
  • Le Broc-Ryckewaert, D.; Carpentier, R.; Lipka, E.; Daher, S.; Vaccher, C.; Betbeder, D.; Furman, C. Development of Innovative Paclitaxel-Loaded Small PLGA Nanoparticles: Study of Their Antiproliferative Activity and Their Molecular Interactions on Prostatic Cancer Cells. Int. J. Pharm. 2013, 454, 712–719. DOI: 10.1016/j.ijpharm.2013.05.018.
  • Bellocq, N. C.; Pun, S. H.; Jensen, G. S.; Davis, M. E. Transferrin-Containing, Cyclodextrin Polymer-Based Particles for Tumor-Targeted Gene Delivery. Bioconjug. Chem. 2003, 14, 1122–1132. DOI: 10.1021/bc034125f.
  • Zhang, X.; Liu, J.; Li, X.; Li, F.; Lee, R. J.; Sun, F.; Li, Y.; Liu, Z.; Teng, L. Trastuzumab-Coated Nanoparticles Loaded with Docetaxel for Breast Cancer Therapy. Dose. Response. 2019, 17, 1559325819872583–1559325819872512. DOI: 10.1177/1559325819872583.
  • Abedin, M. R.; Powers, K.; Aiardo, R.; Barua, D.; Barua, S. Antibody–Drug Nanoparticle Induces Synergistic Treatment Efficacies in HER2 Positive Breast Cancer Cells. Sci. Rep. 2021, 11, 1–17. DOI: 10.1038/s41598-021-86762-6.
  • Bao, S.; Zheng, H.; Ye, J.; Huang, H.; Zhou, B.; Yao, Q.; Lin, G.; Zhang, H.; Kou, L.; Chen, R.; et al. Dual Targeting EGFR and STAT3 with Erlotinib and Alantolactone Co-Loaded PLGA Nanoparticles for Pancreatic Cancer Treatment. Front. Pharmacol. 2021, 12, 625084–625012.
  • Hadla, M.; Palazzolo, S.; Corona, G.; Caligiuri, I.; Canzonieri, V.; Toffoli, G.; Rizzolio, F. Exosomes Increase the Therapeutic Index of Doxorubicin in Breast and Ovarian Cancer Mouse Models. Nanomedicine. 2016, 11, 2431–2441. DOI: 10.2217/nnm-2016-0154.
  • Lin, A. Y.; Young, J. K.; Nixon, A. V.; Drezek, R. A. Encapsulated Fe3O4/Ag Complexed Cores in Hollow Gold Nanoshells for Enhanced Theranostic Magnetic Resonance Imaging and Photothermal Therapy. Small. 2014, 10, 3246–3251. DOI: 10.1002/smll.201303593.
  • Park, Y. H.; Park, S. Y.; In, I. Direct Noncovalent Conjugation of Folic Acid on Reduced Graphene Oxide as Anticancer Drug Carrier. J. Ind. Eng. Chem. 2015, 30, 190–196. DOI: 10.1016/j.jiec.2015.05.021.
  • Jafarizad, A.; Aghanejad, A.; Sevim, M.; Metin, Ö.; Barar, J.; Omidi, Y.; Ekinci, D. Gold Nanoparticles and Reduced Graphene Oxide-Gold Nanoparticle Composite Materials as Covalent Drug Delivery Systems for Breast Cancer Treatment. Chem. Select. 2017, 2, 6663–6672. DOI: 10.1002/slct.201701178.
  • Masoudipour, E.; Kashanian, S.; Maleki, N. A Targeted Drug Delivery System Based on Dopamine Functionalized Nano Graphene Oxide. Chem. Phys. Lett. 2017, 668, 56–63. DOI: 10.1016/j.cplett.2016.12.019.
  • Rao, Z.; Ge, H.; Liu, L.; Zhu, C.; Min, L.; Liu, M.; Fan, L.; Li, D. Carboxymethyl Cellulose Modified Graphene Oxide as pH-Sensitive Drug Delivery System. Int. J. Biol. Macromol. 2018, 107, 1184–1192. DOI: 10.1016/j.ijbiomac.2017.09.096.
  • Nie, X.; Tang, J.; Liu, Y.; Cai, R.; Miao, Q.; Zhao, Y.; Chen, C. Fullerenol Inhibits the Cross-Talk between Bone Marrow-Derived Mesenchymal Stem Cells and Tumor Cells by Regulating MAPK Signaling. Nanomedicine. 2017, 13, 1879–1890. DOI: 10.1016/j.nano.2017.03.013.
  • Dong, X.; Sun, Z.; Wang, X.; Leng, X. An Innovative MWCNTs/DOX/TC Nanosystem for Chemo-Photothermal Combination Therapy of Cancer. Nanomedicine. 2017, 13, 2271–2280. DOI: 10.1016/j.nano.2017.07.002.
  • Zhou, L.; Li, Z.; Liu, Z.; Ren, J.; Qu, X. Luminescent Carbon Dot-Gated Nanovehicles for pH-Triggered Intracellular Controlled Release and Imaging. Langmuir. 2013, 29, 6396–6403. DOI: 10.1021/la400479n.
  • Vijayan, V.; Reddy, K. R.; Sakthivel, S.; Swetha, C. Optimization and Charaterization of Repaglinide Biodegradable Polymeric Nanoparticle Loaded Transdermal Patchs: In Vitro and In Vivo Studies. Colloids Surf. B Biointerfaces. 2013, 111, 150–155. DOI: 10.1016/j.colsurfb.2013.05.020.
  • Shastri, V. Non-Degradable Biocompatible Polymers in Medicine: Past, Present and Future. Curr. Pharm. Biotechnol. 2003, 4, 331–337. DOI: 10.2174/1389201033489694.
  • Elsabahy, M.; Wooley, K. Design of Polymeric Nanoparticles for Biomedical Delivery Applications. Chem. Soc. Rev. 2012, 41, 2545–2561. DOI: 10.1039/c2cs15327k.
  • Nieto, C.; Vega, M. A.; Del Valle, E. M. M. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. Nanomaterials. 2020, 10, 1674–1620. DOI: 10.3390/nano10091674.
  • Wei, W.; Ao, Q.; Wang, X.; Cao, Y.; Liu, Y.; Zheng, S. G.; Tian, X. Mesenchymal Stem Cell–Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front. Pharmacol. 2020, 11, 590470–590413.
  • Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13. DOI: 10.1186/s12989-016-0168-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.