106
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Multifunctional polyethylene glycol-coated Au@MnO nanoparticles for dual-modal CT/MRI and pH-responsive 5-Fluorouracil delivery

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1480-1488 | Received 22 Apr 2022, Accepted 12 Jul 2022, Published online: 21 Jul 2022

References

  • Zhao, W.; Chen, L.; Wang, Z.; Huang, Y.; Jia, N. An Albumin-based Gold Nanocomposites as Potential Dual Mode CT/MRI Contrast Agent. J. Nanopart. Res. 2018, 20, 1–12. DOI: 10.1007/s11051-018-4145-2.
  • Wei, Z.; Wu, M.; Li, Z.; Lin, Z.; Zeng, J.; Sun, H.; Liu, X.; Liu, J.; Li, B.; Zeng, Y. Gadolinium-doped Hollow CeO2-ZrO2 Nanoplatform as Multifunctional MRI/CT Dual-Modal Imaging Agent and Drug Delivery Vehicle. Drug Deliv. 2018, 25, 353–363. DOI: 10.1080/10717544.2018.1428241.
  • Tian, C.; Zhu, L.; Lin, F.; Boyes, S. G. Poly (Acrylic Acid) Bridged Gadolinium Metal–Organic Framework–Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. ACS Appl. Mater. Interfaces. 2015, 7, 17765–17775. DOI: 10.1021/acsami.5b03998.
  • Chen, Z.-Y.; Wang, Y.-X.; Lin, Y.; Zhang, J.-S.; Yang, F.; Zhou, Q.-L.; Liao, Y.-Y. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy. Biomed. Res. Int. 2014, 2014, 819324. DOI: 10.1155/2014/819324.
  • Simao, T.; Chevallier, P.; Lagueux, J.; Côté, M.-F.; Rehbock, C.; Barcikowski, S.; Fortin, M.-A.; Guay, D. Laser-synthesized Ligand-free Au Nanoparticles for Contrast Agent Applications in Computed Tomography and Magnetic Resonance Imaging. J. Mater. Chem. B. 2016, 4, 6413–6427. DOI: 10.1039/C6TB01162D.
  • Xia, H. X.; Yang, X. Q.; Song, J. T.; Chen, J.; Zhang, M. Z.; Yan, D. M.; Zhang, L.; Qin, M. Y.; Bai, L. Y.; Zhao, Y. D.; Ma, Z. Y. Folic Acid-conjugated Silica-coated Gold Nanorods and Quantum Dots for Dual-modality CT and Fluorescence Imaging and Photothermal Therapy. J. Mater. Chem. B. 2014, 2, 1945–1953. DOI: 10.1039/C3TB21591A.
  • Bhaskar, S.; Tian, F.; Stoeger, T.; Kreyling, W.; de la Fuente, J. M.; Grazú, V.; Borm, P.; Estrada, G.; Ntziachristos, V.; Razansky, D. Multifunctional Nanocarriers for Diagnostics, Drug Delivery and Targeted Treatment across Blood-brain Barrier: Perspectives on Tracking and Neuroimaging. Part. Fibre Toxicol. 2010, 7, 3–25. DOI: 10.1186/1743-8977-7-3.
  • Mastrogiacomo, S.; Dou, W.; Jansen, J. A.; Walboomers, X. F. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol. Imaging Biol. 2019, 21, 1003–1019. DOI: 10.1007/s11307-019-01345-2.
  • Key, J.; Leary, J. F. Nanoparticles for Multimodal In Vivo Imaging in Nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. DOI: 10.2147/IJN.S53717.
  • Lu, C.; Dong, P.; Pi, L.; Wang, Z.; Yuan, H.; Liang, H.; Ma, D.; Chai, K. Y. Hydroxyl–PEG–Phosphonic Acid-stabilized Superparamagnetic Manganese Oxide-doped Iron Oxide Nanoparticles with Synergistic Effects for Dual-mode MR Imaging. Langmuir. 2019, 35, 9474–9482. DOI: 10.1021/acs.langmuir.9b00736.
  • Fernández-Barahona, I.; Muñoz-Hernando, M.; Ruiz-Cabello, J.; Herranz, F.; Pellico, J. Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging. Inorganics. 2020, 8, 28. DOI: 10.3390/inorganics8040028.
  • Mathur, M.; Jones, J. R.; Weinreb, J. C. Gadolinium Deposition and Nephrogenic Systemic Fibrosis: A Radiologist’s Primer. Radiographics. 2020, 40, 153–162. DOI: 10.1148/rg.2020190110.
  • Do, C.; DeAguero, J.; Brearley, A.; Trejo, X.; Howard, T.; Escobar, G. P.; Wagner, B. Gadolinium-based Contrast Agent Use, Their Safety, and Practice Evolution. Kidney360. 2020, 1, 561–568. DOI: 10.34067/KID.0000272019.
  • Zhen, Z.; Xie, J. Development of Manganese-based Nanoparticles as Contrast Probes for Magnetic Resonance Imaging. Theranostics. 2012, 2, 45–54. DOI: 10.7150/thno.3448.
  • Balachandran, R. C.; Mukhopadhyay, S.; McBride, D.; Veevers, J.; Harrison, F. E.; Aschner, M.; Haynes, E. N.; Bowman, A. B. Brain Manganese and the Balance between Essential Roles and Neurotoxicity. J. Biol. Chem. 2020, 295, 6312–6329. DOI: 10.1074/jbc.REV119.009453.
  • Howell, M.; Mallela, J.; Wang, C.; Ravi, S.; Dixit, S.; Garapati, U.; Mohapatra, S. Manganese-loaded Lipid-micellar Theranostics for Simultaneous Drug and Gene Delivery to Lungs. J. Control. Release. 2013, 167, 210–218. DOI: 10.1016/j.jconrel.2013.01.029.
  • Cai, X.; Zhu, Q.; Zeng, Y.; Zeng, Q.; Chen, X.; Zhan, Y. Manganese Oxide Nanoparticles as MRI Contrast Agents in Tumor Multimodal Imaging and Therapy. Int. J. Nanomed. 2019, 14, 8321–8344. DOI: 10.2147/IJN.S218085.
  • Jain, P.; Patel, K.; Jangid, A. K.; Guleria, A.; Patel, S.; Pooja, D.; Kulhari, H. Modulating the Delivery of 5-Fluorouracil to Human Colon Cancer Cells Using Multifunctional Arginine-coated Manganese Oxide Nanocuboids with MRI Properties. ACS Appl. Bio. Mater. 2020, 3, 6852–6864. DOI: 10.1021/acsabm.0c00780.
  • Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int. J. Nanomed. 2020, 15, 5445–5458. DOI: 10.2147/IJN.S257700.
  • Wang, L.; Xing, H.; Zhang, S.; Ren, Q.; Pan, L.; Zhang, K.; Bu, W.; Zheng, X.; Zhou, L.; Peng, W.; et al. A Gd-doped Mg-Al-LDH/Au Nanocomposite for CT/MR Bimodal Imagings and Simultaneous Drug Delivery. Biomaterials. 2013, 34, 3390–3401. DOI: 10.1016/j.biomaterials.2013.01.070.
  • Schladt, T. D.; Shukoor, M. I.; Schneider, K.; Tahir, M. N.; Natalio, F.; Ament, I.; Becker, J.; Jochum, F. D.; Weber, S.; Köhler, O.; et al. Au@MnO Nanoflowers: Hybrid Nanocomposites for Selective Dual Functionalization and Imaging. Angew. Chem. Int. Ed. Engl. 2010, 49, 3976–3980. DOI: 10.1002/anie.200906689.
  • Yi, X.; Chen, L.; Zhong, X.; Gao, R.; Qian, Y.; Wu, F.; Song, G.; Chai, Z.; Liu, Z.; Yang, K. Core–Shell Au@MnO2 Nanoparticles for Enhanced Radiotherapy via Improving the Tumor Oxygenation. Nano. Res. 2016, 9, 3267–3278. DOI: 10.1007/s12274-016-1205-8.
  • Shi, Y.; Wan, A.; Shi, Y.; Zhang, Y.; Chen, Y. Experimental and Mathematical Studies on the Drug Release Properties of Aspirin Loaded Chitosan Nanoparticles. Biomed. Res. Int. 2014, 2014, 613619. DOI: 10.1155/2014/613619.
  • Hu, H.; Dai, A.; Sun, J.; Li, X.; Gao, F.; Wu, L.; Fang, Y.; Yang, H.; An, L.; Wu, H.; Yang, S. Aptamer-Conjugated Mn3O4@SiO2 Core–Shell Nanoprobes for Targeted Magnetic Resonance Imaging. Nanoscale. 2013, 5, 10447–10454. DOI: 10.1039/C3NR03490A.
  • Li, J.; Zheng, L.; Cai, H.; Sun, W.; Shen, M.; Zhang, G.; Shi, X. Polyethyleneimine-mediated Synthesis of Folic Acid-targeted Iron Oxide Nanoparticles for in Vivo Tumor MR Imaging. Biomaterials. 2013, 34, 8382–8392. DOI: 10.1016/j.biomaterials.2013.07.070.
  • Hou, W.; Xia, F.; Alfranca, G.; Yan, H.; Zhi, X.; Liu, Y.; Peng, C.; Zhang, C.; de la Fuente, J. M.; Cui, D. Nanoparticles for Multi-modality Cancer Diagnosis: Simple Protocol for Self-assembly of Gold Nanoclusters Mediated by Gadolinium Ions. Biomaterials. 2017, 120, 103–114. DOI: 10.1016/j.biomaterials.2016.12.027.
  • Hassani, S.; Gharehaghaji, N.; Divband, B. Chitosan-coated Iron Oxide/Graphene Quantum Dots as a Potential Multifunctional Nanohybrid for Bimodal Magnetic Resonance/Fluorescence Imaging and 5-Fluorouracil Delivery. Mater. Today Commun. 2022, 1, 103589. DOI: 10.1016/j.mtcomm.2022.103589.
  • Gharehaghaji, N.; Divband, B. PEGylated Magnetite/Hydroxyapatite: A Green Nanocomposite for T2-weighted MRI and Curcumin Carrying. Evid. Based Complement. Alternat. Med. 2022, 2022, 1337588. DOI: 10.1155/2022/1337588.
  • Gao, Y.; Kang, J.; Lei, Z.; Li, Y.; Mei, X.; Wang, G. Use of the Highly Biocompatible Au Nanocages@PEG Nanoparticles as a New Contrast Agent for in Vivo Computed Tomography Scan Imaging. Nanoscale Res. Lett. 2020, 15, 1–9. DOI: 10.1186/s11671-020-3286-2.
  • Xu, C.; Tung, G. A.; Sun, S. Size and Concentration Effect of Gold Nanoparticles on X-Ray Attenuation as Measured on Computed Tomography. Chem. Mater. 2008, 20, 4167–4169. DOI: 10.1021/cm8008418.
  • Khademi, S.; Sarkar, S.; Kharrazi, S.; Amini, S. M.; Shakeri-Zadeh, A.; Ay, M. R.; Ghadiri, H. Evaluation of Size, Morphology, Concentration, and Surface Effect of Gold Nanoparticles on X-ray Attenuation in Computed Tomography. Phys. Med. 2018, 45, 127–133. DOI: 10.1016/j.ejmp.2017.12.001.
  • Hayashi, K.; Nakamura, M.; Ishimura, K. Near‐infrared Fluorescent Silica‐coated Gold Nanoparticle Clusters for X‐ray Computed Tomography/Optical Dual Modal Imaging of the Lymphatic System. Adv. Healthc. Mater. 2013, 2, 756–763. DOI: 10.1002/adhm.201200238.
  • Gallo, J.; Alam, I. S.; Lavdas, I.; Wylezinska-Arridge, M.; Aboagye, E. O.; Long, N. J. RGD-targeted MnO Nanoparticles as T1 Contrast Agents for Cancer Imaging–The Effect of PEG Length in Vivo. J. Mater. Chem. B. 2014, 2, 868–876. DOI: 10.1039/C3TB21422B.
  • Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H.-J. Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Invest. Radiol. 2005, 40, 715–724. DOI: 10.1097/01.rli.0000184756.66360.d3.
  • Babić-Stojić, B.; Jokanović, V.; Milivojević, D.; Požek, M.; Jagličić, Z.; Makovec, D.; Arsikin, K.; Paunović, V. Gd2O3 Nanoparticles Stabilized by Hydrothermally Modified Dextrose for Positive Contrast Magnetic Resonance Imaging. J. Magn. Magn. Mater. 2016, 403, 118–126. DOI: 10.1016/j.jmmm.2015.11.075.
  • Luo, N.; Tian, X.; Xiao, J.; Hu, W.; Yang, C.; Li, L.; Chen, D. High Longitudinal Relaxivity of Ultra-small Gadolinium Oxide Prepared by Microsecond Laser Ablation in Diethylene Glycol. Int. J. Appl. Phys. 2013, 113, 164306. DOI: 10.1063/1.4803035.
  • Létourneau, M.; Tremblay, M.; Faucher, L.; Rojas, D.; Chevallier, P.; Gossuin, Y.; Lagueux, J.; Fortin, M.-A. MnO-labeled Cells: Positive Contrast Enhancement in MRI. J. Phys. Chem. B. 2012, 116, 13228–13238. DOI: 10.1021/jp3032918.
  • Park, J.; Bang, D.; Kim, E.; Yang, J.; Lim, E.; Choi, J.; Kang, B.; Suh, J.; Park, H. S.; Huh, Y.; Haam, S. Effect of Ligand Structure on MnO Nanoparticles for Enhanced T1 Magnetic Resonance Imaging of Inflammatory Macrophages. Eur. J. Inorg. Chem. 2012, 2012, 5960–5965. DOI: 10.1002/ejic.201201026.
  • Chevallier, P.; Walter, A.; Garofalo, A.; Veksler, I.; Lagueux, J.; Bégin-Colin, S.; Felder-Flesch, D.; Fortin, M.-A. Tailored Biological Retention and Efficient Clearance of Pegylated Ultra-small MnO Nanoparticles as Positive MRI Contrast Agents for Molecular Imaging. J. Mater. Chem. B. 2014, 2, 1779–1790. DOI: 10.1039/C3TB21634A.
  • Dobrovolskaia, M. A.; Aggarwal, P.; Hall, J. B.; McNeil, S. E. Preclinical Studies to Understand Nanoparticle Interaction with the Immune System and Its Potential Effects on Nanoparticle Biodistribution. Mol. Pharm. 2008, 5, 487–495. DOI: 10.1021/mp800032f.
  • Balan, V.; Verestiuc, L. Strategies to Improve Chitosan Hemocompatibility: A Review. Eur. Polym. J. 2014, 1, 171–188. DOI: 10.1016/J.EURPOLYMJ.2014.01.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.