191
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Minireview: biocompatibility of engineered biomaterials, their interaction with the host cells, and evaluation of their properties

ORCID Icon, ORCID Icon & ORCID Icon
Pages 45-60 | Received 01 Jun 2022, Accepted 31 Aug 2022, Published online: 14 Sep 2022

References

  • Ode Boni, B. O.; Lamboni, L.; Souho, T.; Gauthier, M.; Yang, G. Immunomodulation and Cellular Response to Biomaterials: The Overriding Role of Neutrophils in Healing. Mater. Horiz. 2019, 6, 1122–1137. DOI: 10.1039/C9MH00291J.
  • Abdeen, A. A.; Cosgrove, B. D.; Gersbach, C. A.; Saha, K. Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annu. Rev. Biomed. Eng. 2021, 23, 493–516. DOI: 10.1146/ANNUREV-BIOENG-122019-121602.
  • Jiang, Y.; Chekuri, S.; Fang, R. H.; Zhang, L. Engineering Biological Interactions on the Nanoscale. Curr. Opin. Biotechnol. 2019, 58, 1–8. DOI: 10.1016/J.COPBIO.2018.10.005.
  • Anderson, J. M. Biological Responses to Materials. Annu. Rev. Mater. Res. 2001, 31, 81–110. DOI: 10.1146/annurev.matsci.31.1.81.
  • Newton, K.; Dixit, V. M. Signaling in Innate Immunity and Inflammation. Cold Spring Harb. Perspect. Biol. 2012, 4, a006049. DOI: 10.1101/cshperspect.a006049.
  • Padmanabhan, J.; Kyriakides, T. R. Nanomaterials, Inflammation and Tissue Engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 355–370. DOI: 10.1002/WNAN.1320.
  • Liu, X. Q.; Tang, R. Z. Biological Responses to Nanomaterials: Understanding Nano-Bio Effects on Cell Behaviors. Drug Deliv. 2017, 24, 1–15. DOI: 10.1080/10717544.2017.1375577.
  • Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polym. 2018, 10, 31. DOI: 10.3390/polym10010031.
  • Sengupta, J.; Hussain, C. M. Graphene-Based Field-Effect Transistor Biosensors for the Rapid Detection and Analysis of Viruses: A Perspective in View of COVID-19. Carbon Trends. 2021, 2, 100011. DOI: 10.1016/j.cartre.2020.100011.
  • Seo, G.; Lee, G.; Kim, M. J.; Baek, S. H.; Choi, M.; Ku, K. B.; Lee, C. S.; Jun, S.; Park, D.; Kim, H. G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020, 14, 5135–5142. DOI: 10.1021/ACSNANO.0C02823/ASSET/IMAGES/LARGE/NN0C02823_0006.JPEG.
  • Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano. 2020, 14, 5268–5277. DOI: 10.1021/ACSNANO.0C02439.
  • Jung, T.; Kamm, W.; Breitenbach, A.; Kaiserling, E.; Xiao, J. X.; Kissel, T. Biodegradable Nanoparticles for Oral Delivery of Peptides: Is There a Role for Polymers to Affect Mucosal Uptake? Eur. J. Pharm. Biopharm. 2000, 50, 147–160. DOI: 10.1016/S0939-6411(00)00084-9.
  • Ray, P.; Haideri, N.; Haque, I.; Mohammed, O.; Chakraborty, S.; Banerjee, S.; Quadir, M.; Brinker, A. E.; Banerjee, S. K. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J. Immunol. Sci. 2021, 5, 19–33. DOI: 10.29245/2578-3009/2021/1.1206.
  • Troy, E.; Tilbury, M. A.; Power, A. M.; Wall, J. G. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers. 2021, 13, 3321. DOI: 10.3390/polym13193321.
  • Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature. 2006, 440, 297–302. DOI: 10.1038/NATURE04586.
  • Wang, H. X.; Li, M.; Lee, C. M.; Chakraborty, S.; Kim, H. W.; Bao, G.; Leong, K. W. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem. Rev. 2017, 117, 9874–9906. DOI: 10.1021/ACS.CHEMREV.6B00799.
  • Zolnik, B. S.; González-Fernández, Á.; Sadrieh, N.; Dobrovolskaia, M. A. Nanoparticles and the Immune System. Endocrinology. 2010, 151, 458–465. DOI: 10.1210/EN.2009-1082.
  • Li, H.; Guo, H.; Lei, C.; Liu, L.; Xu, L.; Feng, Y.; Ke, J.; Fang, W.; Song, H.; Xu, C.; et al. Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2. Adv. Mater. 2019, 31, 1904535. DOI: 10.1002/adma.201904535.
  • Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet. 2020, 395, 507–513. DOI: 10.1016/S0140-6736(20)30211-7.
  • Villanueva-Flores, F.; Castro-Lugo, A.; Ramírez, O. T.; Palomares, L. A. Understanding Cellular Interactions with Nanomaterials: Towards a Rational Design of Medical Nanodevices. Nanotechnology. 2020, 31, 132002. DOI: 10.1088/1361-6528/ab5bc8.
  • Yanat, M.; Schroën, K. Preparation Methods and Applications of Chitosan Nanoparticles; with an Outlook toward Reinforcement of Biodegradable Packaging. React. Funct. Polym. 2021, 161, 104849. DOI: 10.1016/j.reactfunctpolym.2021.104849.
  • Nokhodi, F.; Nekoei, M.; Goodarzi, M. T. Hyaluronic Acid-Coated Chitosan Nanoparticles as Targeted-Carrier of Tamoxifen against MCF7 and TMX-Resistant MCF7 Cells. J. Mater. Sci. Mater. Med. 2022, 2022, 33. DOI: 10.1007/S10856-022-06647-6.
  • Srisuk, P.; Bishi, D. K.; Berti, F. V.; Silva, C. J. R.; Kwon, I. K.; Correlo, V. M.; Reis, R. L. Eumelanin Nanoparticle-Incorporated Polyvinyl Alcohol Nanofibrous Composite as an Electroconductive Scaffold for Skeletal Muscle Tissue Engineering. ACS Appl. Bio. Mater. 2018, 1, 1893–1905. DOI: 10.1021/ACSABM.8B00465/ASSET/IMAGES/MEDIUM/MT-2018-00465G_0008.GIF.
  • Chiu, H. I.; Samad, N. A.; Fang, L.; Lim, V. Cytotoxicity of Targeted PLGA Nanoparticles: A Systematic Review. RSC. Adv. 2021, 11, 9433–9449. DOI: 10.1039/D1RA00074H.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug. Deliv. Rev. 2016, 99, 28–51. DOI: 10.1016/J.ADDR.2015.09.012.
  • Wu, Y.; Li, J.; Shin, H.-J. Self-Assembled Viral Nanoparticles as Targeted Anticancer Vehicles. Biotechnol. Bioprocess. Eng. 2021, 26, 25–38. DOI: 10.1007/s12257-020-0383-0.
  • Han, Z.; Lv, W.; Li, Y.; Chang, J.; Zhang, W.; Liu, C.; Sun, J. Improving Tumor Targeting of Exosomal Membrane-Coated Polymeric Nanoparticles by Conjugation with Aptamers. ACS Appl. Bio. Mater. 2020, 3, 2666–2673. DOI: 10.1021/ACSABM.0C00181.
  • Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N. E.; Salvatore, F.; Tasciotti, E. The Impact of Nanoparticle Protein Corona on Cytotoxicity, Immunotoxicity and Target Drug Delivery. Nanomedicine. 2016, 11, 81–100. DOI: 10.2217/NNM.15.188.
  • Ramanathan, A. Toxicity of Nanoparticles_ Challenges and Opportunities. Appl. Microsc. 2019, 49, 2. DOI: 10.1007/S42649-019-0004-6.
  • Thorp, E. B.; Boada, C.; Jarbath, C.; Luo, X. Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Front. Immunol. 2020, 11, 945. DOI: 10.3389/FIMMU.2020.00945/BIBTEX.
  • Svadlakova, T.; Kolackova, M.; Vankova, R.; Karakale, R.; Malkova, A.; Kulich, P.; Hubatka, F.; Turanek-Knotigova, P.; Kratochvilova, I.; Raska, M.; et al. Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages. Nanomater. 2021, 11, 2510. DOI: 10.3390/nano11102510.
  • Kamazani, F. M.; Sotoodehnejad nematalahi, F.; Siadat, S. D.; Pornour, M.; Sheikhpour, M. A Success Targeted Nano Delivery to Lung Cancer Cells with Multi-Walled Carbon Nanotubes Conjugated to Bromocriptine. Sci. Rep. 2021, 11, 2. DOI: 10.1038/S41598-021-03031-2.
  • Zarei, M.; Karbasi, S.; Fatemeh , Aslani, S.; Zare, S.; Koohi-Hosseinabad, O.; Tanideh, N. In Vitro and In Vivo Evaluation of Poly (3-Hydroxybutyrate)/Carbon Nanotubes Electrospun Scaffolds for Periodontal Ligament Tissue Engineering. J. Dent. 2020, 21, 18–30. DOI: 10.30476/DENTJODS.2019.77869.
  • Barna, B. P.; Judson, M. A.; Thomassen, M. J. Carbon Nanotubes and Chronic Granulomatous Disease. Nanomaterials. 2014, 4, 508–521. DOI: 10.3390/NANO4020508.
  • Pacheco, Y.; Ponchon, M.; Lebecque, S.; Calender, A.; Bernaudin, J. F.; Valeyre, D.; Iglarz, M.; Strasser, D. S.; Studer, R.; Freti, D.; et al. Granulomatous Lung Inflammation is Nanoparticle Type-Dependent. Exp. Lung. Res. 2018, 44, 25–39. DOI: 10.1080/01902148.2017.1412541.
  • Ben-Akiva, E.; Est Witte, S.; Meyer, R. A.; Rhodes, K. R.; Green, J. J. Polymeric Micro- and Nanoparticles for Immune Modulation. Biomater. Sci. 2018, 7, 14–30. DOI: 10.1039/C8BM01285G.
  • Williams, D. F. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater. Sci. Eng. 2017, 3, 2–35. DOI: 10.1021/ACSBIOMATERIALS.6B00607/ASSET/IMAGES/MEDIUM/AB-2016-006075_0008.GIF.
  • Mertz, L. Tissue Engineering and Regenerative Medicine: The Promise, the Challenges, the Future. IEEE Pulse. 2017, 8, 15–18. DOI: 10.1109/MPUL.2017.2678101.
  • Williams, D. F. On the Nature of Biomaterials. Biomaterials. 2009, 30, 5897–5909. DOI: 10.1016/J.BIOMATERIALS.2009.07.027.
  • Williams, D. F. Specifications for Innovative, Enabling Biomaterials Based on the Principles of Biocompatibility Mechanisms. Front. Bioeng. Biotechnol. 2019, 7, 255. DOI: 10.3389/FBIOE.2019.00255.
  • Kim, Y. K.; Chen, E. Y.; Liu, W. F. Biomolecular Strategies to Modulate the Macrophage Response to Implanted Materials. J. Mater. Chem. B. 2016, 4, 1600–1609. DOI: 10.1039/C5TB01605C.
  • Delano, M. J.; Ward, P. A. The Immune System’s Role in Sepsis Progression, Resolution and Long-Term Outcome. Immunol. Rev. 2016, 274, 330–353. DOI: 10.1111/IMR.12499.
  • Momeny, M.; Suresh Babu, V.; Majumder, A.; Bandzerewicz, A.; Gadomska-Gajadhur, A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells. 2022, 11, 914. DOI: 10.3390/cells11050914.
  • Batool, F.; Özçelik, H.; Stutz, C.; Gegout, P. Y.; Benkirane-Jessel, N.; Petit, C.; Huck, O. Modulation of Immune-Inflammatory Responses through Surface Modifications of Biomaterials to Promote Bone Healing and Regeneration. J. Tissue. Eng. 2021, 12, 20417314211041428. DOI: 10.1177/20417314211041428.
  • Wei, Q.; Wang, S.; Han, F.; Wang, H.; Zhang, W.; Yu, Q.; Liu, C.; Ding, L.; Wang, J.; Yu, L.; et al. Cellular Modulation by the Mechanical Cues from Biomaterials for Tissue Engineering. Biomater. Transl. 2021, 2, 323–342. DOI: 10.12336/biomatertransl.2021.04.001.
  • Tsimbouri, P.; Gadegaard, N.; Burgess, K.; White, K.; Reynolds, P.; Herzyk, P.; Oreffo, R.; Dalby, M. J. Nanotopographical Effects on Mesenchymal Stem Cell Morphology and Phenotype. J. Cell. Biochem. 2014, 115, 380–390. DOI: 10.1002/JCB.24673.
  • Hou, Y.; Yu, L.; Xie, W.; Camacho, L. C.; Zhang, M.; Chu, Z.; Wei, Q.; Haag, R. Surface Roughness and Substrate Stiffness Synergize to Drive Cellular Mechanoresponse. Nano. Lett. 2020, 20, 748–757. DOI: 10.1021/ACS.NANOLETT.9B04761.
  • Dziki, J. L.; Huleihel, L.; Scarritt, M. E.; Badylak, S. F. Extracellular Matrix Bioscaffolds as Immunomodulatory Biomaterials. Tissue. Eng. Part. A. 2017, 23, 1152–1159. DOI: 10.1089/TEN.TEA.2016.0538.
  • Mariani, E.; Lisignoli, G.; Borzì, R. M.; Pulsatelli, L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int. J. Mol. Sci. 2019, 20, 636. DOI: 10.3390/ijms20030636.
  • Karasu, E.; Demmelmaier, J.; Kellermann, S.; Holzmann, K.; Köhl, J.; Schmidt, C. Q.; Kalbitz, M.; Gebhard, F.; Huber-Lang, M. S.; Halbgebauer, R. Complement C5a Induces Pro-Inflammatory Microvesicle Shedding in Severely Injured Patients. Front. Immunol. 2020, 11, 1789. DOI: 10.3389/FIMMU.2020.01789/BIBTEX.
  • Higgins, D. M.; Basaraba, R. J.; Hohnbaum, A. C.; Lee, E. J.; Grainger, D. W.; Gonzalez-Juarrero, M. Localized Immunosuppressive Environment in the Foreign Body Response to Implanted Biomaterials. Am. J. Pathol. 2009, 175, 161–170. DOI: 10.2353/AJPATH.2009.080962.
  • Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. DOI: 10.1016/J.SMIM.2007.11.004.
  • Brandt, S. L.; Serezani, C. H. Too Much of a Good Thing: How Modulating LTB4 Actions Restore Host Defense in Homeostasis or Disease. Semin. Immunol. 2017, 33, 37–43. DOI: 10.1016/J.SMIM.2017.08.006.
  • Moore, L. B.; Kyriakides, T. R. Molecular Characterization of Macrophage-Biomaterial Interactions. Adv. Exp. Med. Biol. 2015, 865, 109–122. DOI: 10.1007/978-3-319-18603-0_7.
  • Carnicer-Lombarte, A.; Chen, S. T.; Malliaras, G. G.; Barone, D. G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 2021, 9, 622524. DOI: 10.3389/FBIOE.2021.622524/BIBTEX.
  • Di Summa, F.; Kargarpour, Z.; Nasirzade, J.; Stähli, A.; Mitulović, G.; Panić-Janković, T.; Koller, V.; Kaltenbach, C.; Müller, H.; Panahipour, L.; et al. TGFβ Activity Released from Platelet-Rich Fibrin Adsorbs to Titanium Surface and Collagen Membranes. Sci. Rep. 2020, 10, 10203. DOI: 10.1038/S41598-020-67167-3.
  • Schauer, C.; Janko, C.; Munoz, L. E.; Zhao, Y.; Kienhöfer, D.; Frey, B.; Lell, M.; Manger, B.; Rech, J.; Naschberger, E.; et al. Aggregated Neutrophil Extracellular Traps Limit Inflammation by Degrading Cytokines and Chemokines. Nat. Med. 2014, 20, 511–517. DOI: 10.1038/NM.3547.
  • Jones, J. A.; Chang, D. T.; Meyerson, H.; Colton, E.; Il, K. K.; Matsuda, T.; Anderson, J. M. Proteomic Analysis and Quantification of Cytokines and Chemokines from Biomaterial Surface-Adherent Macrophages and Foreign Body Giant Cells. J. Biomed. Mater. Res. A. 2007, 83, 585–596. DOI: 10.1002/JBM.A.31221.
  • Petreaca, M.; Martins-Green, M. The Dynamics of Cell–Extracellular Matrix Interactions, with Implications for Tissue Engineering. Princ. Tissue. Eng. 2020, 2020, 93–117. DOI: 10.1016/B978-0-12-818422-6.00007-1.
  • Junge, K.; Binnebösel, M.; Von Trotha, K. T.; Rosch, R.; Klinge, U.; Neumann, U. P.; Jansen, P. L. Mesh Biocompatibility: Effects of Cellular Inflammation and Tissue Remodelling. Langenbecks. Arch. Surg. 2012, 397, 255–270. DOI: 10.1007/S00423-011-0780-0.
  • Blanco, P.; Palucka, A. K.; Pascual, V.; Banchereau, J. Dendritic Cells and Cytokines in Human Inflammatory and Autoimmune Diseases. Cytokine. Growth. Factor. Rev. 2008, 19, 41–52. DOI: 10.1016/J.CYTOGFR.2007.10.004.
  • Eslami-Kaliji, F.; Sarafbidabad, M.; Rajadas, J.; Mohammadi, M. R. Dendritic Cells as Targets for Biomaterial-Based Immunomodulation. ACS Biomater. Sci. Eng. 2020, 6, 2726–2739. DOI: 10.1021/ACSBIOMATERIALS.9B01987/ASSET/IMAGES/MEDIUM/AB9B01987_0007.GIF.
  • Vijay, K. Toll-like Receptors in Immunity and Inflammatory Diseases: Past, Present, and Future. Int. Immunopharmacol. 2018, 59, 391–412. DOI: 10.1016/J.INTIMP.2018.03.002.
  • Roch, T.; Kratz, K.; Ma, N.; Lendlein, A. Inflammatory Responses of Primary Human Dendritic Cells towards Polydimethylsiloxane and Polytetrafluoroethylene. Clin. Hemorheol. Microcirc. 2016, 64, 899–910. DOI: 10.3233/CH-168033.
  • Khalili, A. A.; Ahmad, M. R. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int. J. Mol. Sci. 2015, 16, 18149–18184. DOI: 10.3390/IJMS160818149.
  • Goodman, S. Cell Adhesion and the Extracellular Matrix. Goodman’s Med. Cell. Biol. 2021, 203–247. DOI: 10.1016/B978-0-12-817927-7.00007-7.
  • Moreno-Layseca, P.; Icha, J.; Hamidi, H.; Ivaska, J. Integrin Trafficking in Cells and Tissues. Nat. Cell. Biol. 2019, 21, 122–132. DOI: 10.1038/S41556-018-0223-Z.
  • Moreno-Layseca, P.; Streuli, C. H. Signalling Pathways Linking Integrins with Cell Cycle Progression. Matrix. Biol. 2014, 34, 144–153. DOI: 10.1016/J.MATBIO.2013.10.011.
  • Yang, H.; Wang, H.; Chavan, S. S.; Andersson, U. High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule. Mol. Med. 2015, 21, S6–S12. DOI: 10.2119/MOLMED.2015.00087.
  • Biguetti, C. C.; Cavalla, F.; Silveira, E. V.; Tabanez, A. P.; Francisconi, C. F.; Taga, R.; Campanelli, A. P.; Trombone, A. P. F.; Rodrigues, D. C.; Garlet, G. P. HGMB1 and RAGE as Essential Components of Ti Osseointegration Process in Mice. Front. Immunol. 2019, 10, 709. DOI: 10.3389/FIMMU.2019.00709.
  • Morris, R.; Kershaw, N. J.; Babon, J. J. The Molecular Details of Cytokine Signaling via the JAK/STAT Pathway. Protein. Sci. 2018, 27, 1984–2009. DOI: 10.1002/PRO.3519.
  • Parry, M. C.; Bhabra, G.; Sood, A.; Machado, F.; Cartwright, L.; Saunders, M.; Ingham, E.; Newson, R.; Blom, A. W.; Case, C. P. Thresholds for Indirect DNA Damage across Cellular Barriers for Orthopaedic Biomaterials. Biomaterials. 2010, 31, 4477–4483. DOI: 10.1016/J.BIOMATERIALS.2010.02.038.
  • Lu, X.; Miousse, I. R.; Pirela, S. V.; Melnyk, S.; Koturbash, I.; Demokritou, P. Short-Term Exposure to Engineered Nanomaterials Affects Cellular Epigenome. Nanotoxicology. 2016, 10, 140–150. DOI: 10.3109/17435390.2015.1025115.
  • Lin, T. H.; Tamaki, Y.; Pajarinen, J.; Waters, H. A.; Woo, D. K.; Yao, Z.; Goodman, S. B. Chronic Inflammation in Biomaterial Induced Periprosthetic Osteolysis: NF-ΚB as a Therapeutic Target. Acta. Biomater. 2014, 10, 1–10. DOI: 10.1016/J.ACTBIO.2013.09.034.
  • Yanez, M.; Blanchette, J.; Jabbarzadeh, E. Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Curr. Pharm. Des. 2017, 23, 6347–6357. DOI: 10.2174/1381612823666170510124348.
  • Dybvik, E.; Furnes, O.; Havelin, L. I.; Fosså, S. D.; Trovik, C.; Lie, S. A. A Prospective Study on Cancer Risk after Total Hip Replacements for 41,402 Patients Linked to the Cancer Registry of Norway. BMC. Musculoskelet. Disord. 2020, 21, 7. DOI: 10.1186/S12891-020-03605-7.
  • Maggs, J.; Wilson, M. The Relative Merits of Cemented and Uncemented Prostheses in Total Hip Arthroplasty. Indian. J. Orthop. 2017, 51, 377–385. DOI: 10.4103/ORTHO.IJORTHO_405_16.
  • Vaishya, R.; Chauhan, M.; Vaish, A. Bone Cement. J. Clin. Orthop. Trauma. 2013, 4, 157–163. DOI: 10.1016/J.JCOT.2013.11.005.
  • Zhang, L.; Ke, J.; Wang, Y.; Yang, S.; Miron, R. J.; Zhang, Y. An in Vitro Investigation of the Marked Impact of Dendritic Cell Interactions with Bone Grafts. J. Biomed. Mater. Res. A. 2017, 105, 1703–1711. DOI: 10.1002/JBM.A.36048.
  • Hotaling, N. A.; Tang, L.; Irvine, D. J.; Babensee, J. E. Biomaterial Strategies for Immunomodulation. Annu. Rev. Biomed. Eng. 2015, 17, 317–349. DOI: 10.1146/ANNUREV-BIOENG-071813-104814.
  • Ham, J.; Miller, P. J. Expanded Polytetrafluoroethylene Implants in Rhinoplasty: Literature Review, Operative Techniques, and Outcome. Facial. Plast. Surg. 2003, 19, 331–339. DOI: 10.1055/S-2004-815653.
  • Park, J.; Babensee, J. E. Differential Functional Effects of Biomaterials on Dendritic Cell Maturation. Acta. Biomater. 2012, 8, 3606–3617. DOI: 10.1016/J.ACTBIO.2012.06.006.
  • Li, N.; Qin, Y.; Dai, D.; Wang, P.; Shi, M.; Gao, J.; Yang, J.; Xiao, W.; Song, P.; Xu, R. Transdermal Delivery of Therapeutic Compounds with Nanotechnological Approaches in Psoriasis. Front. Bioeng. Biotechnol. 2022, 9, 1446. DOI: 10.3389/FBIOE.2021.804415/BIBTEX.
  • Placha, D.; Jampilek, J. Chronic Inflammatory Diseases, anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics. 2021, 13, 64–27. DOI: 10.3390/pharmaceutics13010064.
  • Dehshahri, A.; Kumar, A.; Madamsetty, V. S.; Uzieliene, I.; Tavakol, S.; Azedi, F.; Fekri, H. S.; Zarrabi, A.; Mohammadinejad, R.; Thakur, V. K. New Horizons in Hydrogels for Methotrexate Delivery. Gels. 2020, 7, 2–20. DOI: 10.3390/gels7010002.
  • Kelly, S. H.; Shores, L. S.; Votaw, N. L.; Collier, J. H. Biomaterials Strategies for Generating Therapeutic Immune Responses. Adv. Drug. Deliv. Rev. 2017, 114, 3–18. DOI: 10.1016/J.ADDR.2017.04.009.
  • Flórez-Grau, G.; Rocas, P.; Cabezón, R.; España, C.; Panés, J.; Rocas, J.; Albericio, F.; Benítez-Ribas, D. Nanoencapsulated Budesonide in Self-Stratified Polyurethane-Polyurea Nanoparticles is Highly Effective in Inducing Human Tolerogenic Dendritic Cells. Int. J. Pharm. 2016, 511, 785–793. DOI: 10.1016/J.IJPHARM.2016.07.056.
  • Veiseh, O.; Vegas, A. J. Domesticating the Foreign Body Response: Recent Advances and Applications. Adv. Drug Deliv. Rev. 2019, 144, 148–161. DOI: 10.1016/J.ADDR.2019.08.010.
  • Zheng, X.; Zhou, F.; Gu, Y.; Duan, X.; Mo, A. Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells. Sci. Rep. 2017, 7, 1–9. DOI: 10.1038/srep41945.
  • Pizzoferrato, A.; Ciapetti, G.; Stea, S.; Cenni, E.; Arciola, C. R.; Granchi, D.; Savarino, L. Cell Culture Methods for Testing Biocompatibility. Clin. Mater. 1994, 15, 173–190. DOI: 10.1016/0267-6605(94)90081-7.
  • Tomić, S.; Kokol, V.; Mihajlović, D.; Mirčić, A.; Čolić, M. Native Cellulose Nanofibrills Induce Immune Tolerance In Vitro by Acting on Dendritic Cells. Sci. Rep. 2016, 6, 1–14. DOI: 10.1038/srep31618.
  • Aimonen, K.; Imani, M.; Hartikainen, M.; Suhonen, S.; Vanhala, E.; Moreno, C.; Rojas, O. J.; Norppa, H.; Catalán, J. Surface Functionalization and Size Modulate the Formation of Reactive Oxygen Species and Genotoxic Effects of Cellulose Nanofibrils. Part. Fibre. Toxicol. 2022, 19, 1–21. DOI: 10.1186/S12989-022-00460-3/FIGURES/6.
  • Tostanoski, L. H.; Gosselin, E. A.; Jewell, C. M. Engineering Tolerance Using Biomaterials to Target and Control Antigen Presenting Cells – PubMed. Discov. Med. 2016, 21, 403–410.
  • Smarr, C. B.; Miller, S. D. The Use of Biodegradable Nanoparticles for Tolerogenic Therapy of Allergic Inflammation. Methods. Mol. Biol. 2018, 1799, 353–358. DOI: 10.1007/978-1-4939-7896-0_25.
  • Freitag, T. L.; Podojil, J. R.; Pearson, R. M.; Fokta, F. J.; Sahl, C.; Messing, M.; Andersson, L. C.; Leskinen, K.; Saavalainen, P.; Hoover, L. I.; et al. Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterol. 2020, 158, 1667–1681.e12. DOI: 10.1053/J.GASTRO.2020.01.045.
  • Getts, D. R.; Martin, A. J.; Mccarthy, D. P.; Terry, R. L.; Hunter, Z. N.; Yap, W. T.; Getts, M. T.; Pleiss, M.; Luo, X.; King, N. J. C.; et al. Microparticles Bearing Encephalitogenic Peptides Induce T-Cell Tolerance and Ameliorate Experimental Autoimmune Encephalomyelitis. Nat. Biotechnol. 2012, 30, 1217–1224. DOI: 10.1038/NBT.2434.
  • Hume, P. S.; He, J.; Haskins, K.; Anseth, K. S. Strategies to Reduce Dendritic Cell Activation through Functional Biomaterial Design. Biomaterials. 2012, 33, 3615–3625. DOI: 10.1016/J.BIOMATERIALS.2012.02.009.
  • Varela, P.; Sartori, S.; Viebahn, R.; Salber, J.; Ciardelli, G. Macrophage Immunomodulation: An Indispensable Tool to Evaluate the Performance of Wound Dressing Biomaterials. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019830355. DOI: 10.1177/2280800019830355.
  • Kharaziha, M.; Baidya, A.; Annabi, N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Adv. Mater. 2021, 33, 2100176. DOI: 10.1002/adma.202100176.
  • Zhang, C.; Liao, W.; Liu, F.; Zhu, X.; He, X.; Hu, A. Immune Roles of Dendritic Cells in Stem Cell Transplantation. Clin. Transplant. 2017, 31, e13090. DOI: 10.1111/CTR.13090.
  • Han, H. D.; Byeon, Y.; Kang, T. H.; Jung, I. D.; Lee, J. W.; Shin, B. C.; Lee, Y. J.; Sood, A. K.; Park, Y. M. Toll-like Receptor 3-Induced Immune Response by Poly(d,l-Lactide-Co-Glycolide) Nanoparticles for Dendritic Cell-Based Cancer Immunotherapy. Int. J. Nanomedicine. 2016, 11, 5729–5742. DOI: 10.2147/IJN.S109001.
  • Won, J. E.; Byeon, Y.; Wi, T. I.; Lee, C. M.; Lee, J. H.; Kang, T. H.; Lee, J. W.; Lee, Y.; Park, Y. M.; Han, H. D. Immune Checkpoint Silencing Using RNAi-Incorporated Nanoparticles Enhances Antitumor Immunity and Therapeutic Efficacy Compared with Antibody-Based Approaches. J. Immunother. Cancer. 2022, 10, e003928. DOI: 10.1136/JITC-2021-003928.
  • González, F. E.; Gleisner, A.; Falcón-Beas, F.; Osorio, F.; López, M. N.; Salazar-Onfray, F. Tumor Cell Lysates as Immunogenic Sources for Cancer Vaccine Design. Hum. Vaccin. Immunother. 2014, 10, 3261–3269. DOI: 10.4161/21645515.2014.982996.
  • Kawahara, M.; Takaku, H. A Tumor Lysate is an Effective Vaccine Antigen for the Stimulation of CD4+ T-Cell Function and Subsequent Induction of Antitumor Immunity Mediated by CD8+ T Cells. Cancer. Biol. Ther. 2015, 16, 1616–1625. DOI: 10.1080/15384047.2015.1078027.
  • Li, Y.; Xiao, Y.; Liu, C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem. Rev. 2017, 117, 4376–4421. DOI: 10.1021/ACS.CHEMREV.6B00654/ASSET/IMAGES/MEDIUM/CR-2016-00654M_0032.GIF.
  • Yang, L.; Pijuan-Galito, S.; Rho, H. S.; Vasilevich, A. S.; Eren, A. D.; Ge, L.; Habibović, P.; Alexander, M. R.; De Boer, J.; Carlier, A.; et al. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem. Rev. 2021, 121, 4561–4677. DOI: 10.1021/ACS.CHEMREV.0C00752/ASSET/IMAGES/LARGE/CR0C00752_0044.JPEG.
  • ISO. ISO 10993-1:2018(en). Biological Evaluation of Medical Devices – Part 1: Evaluation and Testing within A Risk Management Process. https://www.iso.org/obp/ui#iso:std:iso:10993:-1:ed-5:v2:en. (accessed May 15, 2022).
  • ASTM International. Standard Guide for Biocompatibility Evaluation of Medical Device Packaging Materials. https://www.astm.org/f2475-20.html (accessed May 15, 2022).
  • Kullmann, A.; Kridner, D.; Mertens, S.; Christianson, M.; Rosa, D.; Diaz-Botia, C. A. First Food and Drug Administration Cleared Thin-Film Electrode for Intracranial Stimulation, Recording, and Monitoring of Brain Activity – Part 1: Biocompatibility Testing. Front. Neurosci. 2022, 16, 0–550. DOI: 10.3389/fnins.2022.876877.
  • Gad, S. C. Biocompatibility Testing: The Biologic Tests. Integr. Saf. Risk. Assess. Med. Devices. Comb. Prod. 2019, 57–238. DOI: 10.1007/978-3-030-35241-7_3.
  • Albert, D. E. A Practical Approach to Analytical Chemistry of Medical Devices. Biocompat. Perform. Med. Devices. 2020, 2020, 49–100. DOI: 10.1016/B978-0-08-102643-4.00005-7.
  • Ferraris, S.; Cazzola, M.; Peretti, V.; Stella, B.; Spriano, S. Zeta Potential Measurements on Solid Surfaces for In Vitro Biomaterials Testing: Surface Charge, Reactivity Upon Contact with Fluids and Protein Absorption. Front. Bioeng. Biotechnol. 2018, 6, 60. DOI: 10.3389/FBIOE.2018.00060/BIBTEX.
  • Fornaguera, C.; Solans, C. Analytical Methods to Characterize and Purify Polymeric Nanoparticles. Int. J. Polym. Sci. 2018, 2018, 1–10. DOI: 10.1155/2018/6387826.
  • Chitra, S.; Bargavi, P.; Balakumar, S. Effect of Microwave and Probe Sonication Processes on Sol-Gel-Derived Bioactive Glass and Its Structural and Biocompatible Investigations. J. Biomed. Mater. Res. B. Appl. Biomater. 2020, 108, 143–155. DOI: 10.1002/JBM.B.34373.
  • Awadallah-F, A.; Hillman, F.; Al-Muhtaseb, S. A.; Jeong, H. K. Adsorption of Carbon Dioxide, Methane, and Nitrogen Gases onto ZIF Compounds with Zinc, Cobalt, and Zinc/Cobalt Metal Centers. J. Nanomater. 2019, 2019, 1–11. DOI: 10.1155/2019/6130152.
  • Joyner, K.; Yang, S.; Duncan, G. A. Microrheology for Biomaterial Design. APL Bioeng. 2020, 4, 41508. DOI: 10.1063/5.0013707.
  • Schultz, K. M.; Kyburz, K. A.; Anseth, K. S. Measuring Dynamic Cell-Material Interactions and Remodeling during 3D Human Mesenchymal Stem Cell Migration in Hydrogels. Proc. Natl. Acad. Sci. USA. 2015, 112, E3757–E3764. DOI: 10.1073/PNAS.1511304112/SUPPL_FILE/PNAS.201511304SI.PDF.
  • Pan, J.; Kmieciak, T.; Liu, Y. T.; Wildenradt, M.; Chen, Y. S.; Zhao, Y. Quantifying Molecular- to Cellular-Level Forces in Living Cells. J. Phys. D. Appl. Phys. 2021, 54, 483001. DOI: 10.1088/1361-6463/AC2170.
  • Nishida, K.; Anada, T.; Kobayashi, S.; Ueda, T.; Tanaka, M. Effect of Bound Water Content on Cell Adhesion Strength to Water-Insoluble Polymers. Acta. Biomater. 2021, 134, 313–324. DOI: 10.1016/J.ACTBIO.2021.07.058.
  • Murphy, C. J.; Vartanian, A. M.; Geiger, F. M.; Hamers, R. J.; Pedersen, J.; Cui, Q.; Haynes, C. L.; Carlson, E. E.; Hernandez, R.; Klaper, R. D.; et al. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS. Cent. Sci. 2015, 1, 117–123. DOI: 10.1021/ACSCENTSCI.5B00182.
  • Murray, P. E.; Godoy, C. G.; Godoy, F. G. How is the Biocompatibilty of Dental Biomaterials Evaluated? Med. Oral. Patol. Oral. Cir. Bucal. 2007, 12, E258–E266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.