204
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Electrospun PCL/fibrin scaffold as a bone implant improved the differentiation of human adipose-derived mesenchymal stem cells into osteo-like cells

, &
Pages 71-78 | Received 29 Apr 2022, Accepted 09 Sep 2022, Published online: 21 Sep 2022

References

  • Fratzl, P.; Gupta, H. S.; Roschger, P.; Klaushofer, K. Bone Nanostructure and Its Relevance for Mechanical Performance, Disease and Treatment. Nanotechnology. 2010, 2010, 345–360.
  • Fratzl, P.; Gupta, H.; Paschalis, E.; Roschger, P. Structure and Mechanical Quality of the Collagen–Mineral Nano-Composite in Bone. J. Mater. Chem. 2004, 14, 2115–2123. DOI: 10.1039/B402005G.
  • Florencio-Silva, R.; Sasso, G.; Sasso-Cerri, E.; Simões, M. J.; Cerri, P. S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Res. Int. 2015, 2015, 421746. DOI: 10.1155/2015/421746.
  • Morgan, E. F.; Gerstenfeld, L. C. The Bone Organ System: Form and Function. In Marcus and Feldman’s Osteoporosis; Elsevier: Amsterdam, 2021, pp. 15–35.
  • Alford, A. I.; Kozloff, K. M.; Hankenson, K. D. Extracellular Matrix Networks in Bone Remodeling. Int. J. Biochem. Cell Biol. 2015, 65, 20–31. DOI: 10.1016/j.biocel.2015.05.008.
  • Parkinson, I. H.; Fazzalari, N. L. Characterisation of Trabecular Bone Structure. Skeletal Aging and Osteoporosis; Springer: Berlin, 2013. pp. 31–51.
  • Stein, G. S.; Lian, J. B. Molecular Mechanisms Mediating Developmental and Hormone-Regulated Expression of Genes in Osteoblasts: An Integrated Relationship of Cell Growth and Differentiation. Cellular and Molecular Biology of Bone; Elsevier: Amsterdam, 1993. pp. 47–95.
  • Davies, J.; Ottensmeyer, P.; Shen, X.; Hashimoto, M.; Peel, S. Early Extracellular Matrix Synthesis by Bone Cells. Bone-Bio Material Interface; University of Toronto Press: Toronto, 2016. pp. 214–228.
  • Hosseini, F. S.; Soleimanifar, F.; Aidun, A.; Enderami, S. E.; Saburi, E.; Marzouni, H. Z.; Khani, M.-M.; Khojasteh, A.; Ardeshirylajimi, A. Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Improved Osteogenic Differentiation of the Human Induced Pluripotent Stem Cells While Considered as an Artificial Extracellular Matrix. J. Cell. Physiol. 2019, 234, 11537–11544. DOI: 10.1002/jcp.27807.
  • Schindeler A., McDonald M. M., Bokko P., Little D. G., editors. Bone Remodeling during Fracture Repair: The Cellular Picture. Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, 2008. DOI: 10.1016/j.semcdb.2008.07.004.
  • Perry, C. R. Bone Repair Techniques, Bone Graft, and Bone Graft Substitutes. Clin. Orthopaed. Rel. Res.® 1999, 360, 71–86.
  • Murphy, C. M.; O’Brien, F. J.; Little, D. G.; Schindeler, A. Cell-scaffold interactions in the bone tissue engineering triad. Eur. Cell. Mater. 2013, 26, 120–132.
  • Ardeshirylajimi, A.; Soleimani, M.; Hosseinkhani, S.; Parivar, K.; Yaghmaei, P. A Comparative Study of Osteogenic Differentiation Human Induced Pluripotent Stem Cells and Adipose Tissue Derived Mesenchymal Stem Cells. Cell. J. 2014, 16, 235.
  • Abazari, M. F.; Zare Karizi, S.; Kohandani, M.; Nasiri, N.; Nejati, F.; Saburi, E.; Nikpoor, A. R.; Enderami, S. E.; Soleimanifar, F.; Mansouri, V.; et al. MicroRNA-2861 and Nanofibrous Scaffold Synergistically Promote Human Induced Pluripotent Stem Cells Osteogenic Differentiation. Polym. Adv. Technol. 2020, 31, 2259–2269. DOI: 10.1002/pat.4946.
  • Hosseini, F. S.; Soleimanifar, F.; Ardeshirylajimi, A.; Vakilian, S.; Mossahebi-Mohammadi, M.; Enderami, S. E.; Khojasteh, A.; Zare Karizi, S. In Vitro Osteogenic Differentiation of Stem Cells with Different Sources on Composite Scaffold Containing Natural Bioceramic and Polycaprolactone. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 300–307. DOI: 10.1080/21691401.2018.1553785.
  • Zhang, B.; Yang, L.; Zeng, Z.; Feng, Y.; Wang, X.; Wu, X.; Luo, H.; Zhang, J.; Zhang, M.; Pakvasa, M.; et al. Leptin Potentiates BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells through the Activation of JAK/STAT Signaling. Stem. Cells. Dev. 2020, 29, 498–510. DOI: 10.1089/scd.2019.0292.
  • Semenova, D.; Bogdanova, M.; Kostina, A.; Golovkin, A.; Kostareva, A.; Malashicheva, A. Dose-Dependent Mechanism of Notch Action in Promoting Osteogenic Differentiation of Mesenchymal Stem Cells. Cell Tissue Res. 2020, 379, 169–179. DOI: 10.1007/s00441-019-03130-7.
  • Abazari, M. F.; Hosseini, Z.; Zare Karizi, S.; Norouzi, S.; Amini Faskhoudi, M.; Saburi, E.; Enderami, S. E.; Ardeshirylajimi, A.; Mohajerani, H. Different Osteogenic Differentiation Potential of Mesenchymal Stem Cells on Three Different Polymeric Substrates. Gene. 2020, 740, 144534. DOI: 10.1016/j.gene.2020.144534.
  • Sabouri, E.; Rezaie, Z.; Enderami, S. E.; Mirahmadi, M.; Askari, M. Different Osteoconductivity of PLLA/PHB Composite Nanofibers Prepared by One- and Two-Nozzle Electrospinning. Polym. Adv. Technol. 2021, 32, 1783–1792. DOI: 10.1002/pat.5215.
  • Abazari, M. F.; Nejati, F.; Nasiri, N.; Khazeni, Z. A. S.; Nazari, B.; Enderami, S. E.; Mohajerani, H. Platelet-Rich Plasma Incorporated Electrospun PVA-chitosan-HA Nanofibers Accelerates Osteogenic Differentiation and Bone Reconstruction. Gene. 2019, 720, 144096. DOI: 10.1016/j.gene.2019.144096.
  • Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D. S.; Mehrotra, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofac. Res. 2020, 10, 381–388. DOI: 10.1016/j.jobcr.2019.10.003.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer – Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Reneker, D.; Kataphinan, W.; Theron, A.; Zussman, E.; Yarin, A. Nanofiber Garlands of Polycaprolactone by Electrospinning. Polymer. 2002, 43, 6785–6794. DOI: 10.1016/S0032-3861(02)00595-5.
  • Mirzaei, A.; Saburi, E.; Islami, M.; Ardeshirylajimi, A.; Omrani, M. D.; Taheri, M.; Moghadam, A. S.; Ghafouri-Fard, S. Bladder Smooth Muscle Cell Differentiation of the Human Induced Pluripotent Stem Cells on Electrospun Poly(lactide-Co-Glycolide) Nanofibrous Structure. Gene 2019, 694, 26–32. DOI: 10.1016/j.gene.2019.01.037.
  • Hashemi, J.; Barati, G.; Enderami, S. E.; Safdari, M. Osteogenic Differentiation of Induced Pluripotent Stem Cells on Electrospun Nanofibers: A Review of Literature. Mater. Today Commun. 2020, 25, 101561. DOI: 10.1016/j.mtcomm.2020.101561.
  • Tahmasebi, A.; Shapouri Moghadam, A.; Enderami, S. E.; Islami, M.; Kaabi, M.; Saburi, E.; Daei Farshchi, A.; Soleimanifar, F.; Mansouri, V. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO J. 2020, 66, 966–973. DOI: 10.1097/MAT.0000000000001094.
  • Noori, A.; Ashrafi, S. J.; Vaez-Ghaemi, R.; Hatamian-Zaremi, A.; Webster, T. J. A Review of Fibrin and Fibrin Composites for Bone Tissue Engineering. Int. J. Nanomedicine. 2017, 12, 4937–4961. DOI: 10.2147/IJN.S124671.
  • Honarvar, A.; Karbasi, S.; Hashemibeni, B.; Setayeshmehr, M.; Kazemi, M.; Valiani, A. Effects of Cartilage Acellular Solubilised ECM on Physicomechanical and Biological Properties of Polycaprolactone/Fibrin Hybrid Scaffold Fabricated by 3D-Printing and Salt-Leaching Methods. Mater. Technol. 2020, 37, 204–212. DOI: 10.1080/10667857.2020.1824148.
  • Hutton, D. L.; Kondragunta, R.; Moore, E. M.; Hung, B. P.; Jia, X.; Grayson, W. L. Tumor Necrosis Factor Improves Vascularization in Osteogenic Grafts Engineered with Human Adipose-Derived Stem/Stromal Cells. PLoS One. 2014, 9, e107199. DOI: 10.1371/journal.pone.0107199.
  • Liang, Z.; Huang, D.; Nong, W.; Mo, J.; Zhu, D.; Wang, M.; Chen, M.; Wei, C.; Li, H. Advanced-Platelet-Rich Fibrin Extract Promotes Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells in a Dose-Dependent Manner In Vitro. Tissue Cell. 2021, 71, 101506. DOI: 10.1016/j.tice.2021.101506.
  • O’brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today. 2011, 14, 88–95. DOI: 10.1016/S1369-7021(11)70058-X.
  • Porter, R. M.; Huckle, W. R.; Goldstein, A. S. Effect of Dexamethasone Withdrawal on Osteoblastic Differentiation of Bone Marrow Stromal Cells. J. Cell. Biochem. 2003, 90, 13–22. DOI: 10.1002/jcb.10592.
  • Langenbach, F.; Handschel, J. Effects of Dexamethasone, Ascorbic Acid and β-Glycerophosphate on the Osteogenic Differentiation of Stem Cells In Vitro. Stem Cell Res. Ther. 2013, 4, 117. DOI: 10.1186/scrt328.
  • Soleimanifar, F.; Hosseini, F. S.; Atabati, H.; Behdari, A.; Kabiri, L.; Enderami, S. E.; Khani, M.-M.; Ardeshirylajimi, A.; Saburi, E. Adipose-Derived Stem Cells-Conditioned Medium Improved Osteogenic Differentiation of Induced Pluripotent Stem Cells When Grown on Polycaprolactone Nanofibers. J. Cell. Physiol. 2019, 234, 10315–10323. DOI: 10.1002/jcp.27697.
  • Abazari, M. F.; Soleimanifar, F.; Enderami, S. E.; Nematzadeh, M.; Nasiri, N.; Nejati, F.; Saburi, E.; Khodashenas, S.; Darbasizadeh, B.; Khani, M. M.; et al. Incorporated-bFGF Polycaprolactone/Polyvinylidene Fluoride Nanocomposite Scaffold Promotes Human Induced Pluripotent Stem Cells Osteogenic Differentiation. J. Cell. Biochem. 2019, 120, 16750–16759. DOI: 10.1002/jcb.28933.
  • Saburi, E.; Atabati, H.; Kabiri, L.; Behdari, A.; Azizi, M.; Ardeshirylajimi, A.; Enderami, S. E.; Ghaderian, M.-H.; Nafar, M.; Parvin, M.; Omrani, M. D. Bone Morphogenetic Protein-7 Incorporated Polycaprolactone Scaffold Has a Great Potential to Improve Survival and Proliferation Rate of the Human Embryonic Kidney Cells. J. Cell. Biochem. 2019, 120, 9859–9868. DOI: 10.1002/jcb.28268.
  • Rastegar, A.; Mahmoodi, M.; Mirjalili, M.; Nasirizadeh, N. Platelet-Rich Fibrin-Loaded PCL/Chitosan Core-Shell Fibers Scaffold for Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells. Carbohydr. Polym. 2021, 269, 118351. DOI: 10.1016/j.carbpol.2021.118351.
  • Shi, W.; Que, Y.; Zhang, X.; Bian, L.; Yu, X.; Tang, X.; Yang, G.; Dai, Y.; Bi, S.; Lv, D.; et al. Functional Tissue-Engineered Bone-like Graft Made of a Fibrin Scaffold and TG2 Gene-Modified EMSCs for Bone Defect Repair. NPG Asia Mater. 2021, 13, 28. DOI: 10.1038/s41427-021-00297-w.
  • Farmani, A. R.; Nekoofar, M. H.; Ebrahimi Barough, S.; Azami, M.; Rezaei, N.; Najafipour, S.; Ai, J. Application of Platelet Rich Fibrin in Tissue Engineering: Focus on Bone Regeneration. Platelets. 2021, 32, 183–188. DOI: 10.1080/09537104.2020.1869710.
  • Yang, Y.; Xiao, Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv. Healthcare Mater. 2020, 9, 2000726. DOI: 10.1002/adhm.202000726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.