351
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Insight into the fabrication, characterization, and in vitro cytotoxicity studies approaches of halloysite-based functional anhydride containing polymer nanocomposites

, & ORCID Icon
Pages 79-90 | Received 13 May 2022, Accepted 09 Sep 2022, Published online: 21 Sep 2022

References

  • Huang, J.; Tang, Z.H.; Zhang, X.H.; Guo, B.C. Halloysite Polymer Nanocomposites. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2016; Vol. 7, pp 509–553.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. C. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces 2019, 26, 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Vahabi, H.; Sonnier, R.; Taguet, A.; Otazaghine, B.; Saeb, M. R.; Beyer, G. Halloysite nanotubes (HNTs)/polymer nanocomposites: Thermal degradation and flame retardancy. In Micro and Nano Technologies, Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp 67–93.
  • Murugesan, S.; Scheibel, T. Copolymer/Clay Nanocomposites for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1908101. DOI: 10.1002/adfm.201908101.
  • Ferrari, P.; Araujo, F.; Pianaro, S. Halloysite Nanotubes-Polymeric Nanocomposites: characteristics, Modifications and Controlled Drug Delivery Approaches. Cerâmica 2017, 63, 423–431. DOI: 10.1590/0366-69132017633682167.
  • Cheng, C.; Song, W.; Zhao, Q.; Zhang, H. Halloysite Nanotubes in Polymer Science: Purification, Characterization, Modification and Applications. Nanotechnol. Rev. 2020, 9, 323–344. DOI: 10.1515/ntrev-2020-0024.
  • Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent Advance in Research on Halloysite Nanotubes-Polymer Nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. DOI: 10.1016/j.progpolymsci.2014.04.004.
  • Gao, Y.; Jing, H.; Zhou, Z. Fractal Analysis of Pore Structures in Graphene Oxide-Carbon Nanotube Based Cementitious Pastes under Different Ultrasonication. Nanotechnol. Rev. 2019, 8, 107–115. DOI: 10.1515/ntrev-2019-0010.
  • Huang, K.; Ou, Q.; Xie, Y.; Chen, X.; Fang, Y.; Huang, C.; Wang, Y.; Gu, Z.; Wu, J. Halloysite Nanotube Based Scaffold for Enhanced Bone Regeneration. ACS Biomater. Sci. Eng. 2019, 5, 4037–4047. DOI: 10.1021/acsbiomaterials.9b00277.
  • Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. DOI: 10.1002/adma.201502341.
  • Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820–826. DOI: 10.1021/bm9014446.
  • Kausar, A. Role of thermosetting polymer in structural composite. Am. J. Polym. Sci. Eng. 2017, 5, 1–12.
  • Ghaderi‐Ghahfarrokhi, M.; Haddadi‐Asl, V.; Zargarian, S. S. Fabrication and Characterization of Polymer-Ceramic Nanocomposites Containing Drug Loaded Modified Halloysite Nanotubes. J. Biomed. Mater. Res. A 2018, 106, 1276–1287. DOI: 10.1002/jbm.a.36327.
  • Fakhrullin, R. F.; Lvov, Y. M. Halloysite clay nanotubes for tissue engineering. Nanomedicine 2016, 11(17), 2243–2246.
  • Setter, O. P.; Segal, E. Halloysite Nanotubes – The Nano-Bio Interface. Nanoscale 2020, 12, 23444–23460. DOI: 10.1039/d0nr06820a.
  • Wu, Y.-P.; Yang, J.; Gao, H.-Y.; Shen, Y.; Jiang, L.; Zhou, C.; Li, Y.-F.; He, R.-R.; Liu, M. Folate-Conjugated Halloysite Nanotubes, an Efficient Drug Carrier, Deliver Doxorubicin for Targeted Therapy of Breast Cancer. ACS Appl. Nano Mater. 2018, 1, 595–608. DOI: 10.1021/acsanm.7b00087.
  • Yang, J.; Wu, Y.; Shen, Y.; Zhou, C.; Li, Y.-F.; He, R.-R.; Liu, M. Enhanced Therapeutic Efficacy of Doxorubicin for Breast Cancer Using Chitosan Oligosaccharide-Modified Halloysite Nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 26578–26590. DOI: 10.1021/acsami.6b09074.
  • Biswas, M.; Ray, S. S. Preparation and Evaluation of Composites from Montmorillonite and Some Heterocyclic Polymers. 1: Poly(N-Vinylcarbazole)–Montmorillonite Nanocomposite System. Polymer 1998, 39, 6423–6428. DOI: 10.1016/S0032-3861(97)10366-4.
  • Stadtmueller, L. M.; Ratinac, K. R.; Ringer, S. P. The Effects of Intragallery Polymerization on the Structure of PMMA–Clay Nanocomposites. Polymer 2005, 46, 9574–9584. DOI: 10.1016/j.polymer.2005.08.036.
  • Li, H.-M.; Chen, H.-B. Synthesis and Characterization of Poly(N-n-Butylmaleimide)–Clay Nanocomposites. Mater. Lett. 2003, 57, 3000–3004. DOI: 10.1016/S0167-577X(02)01420-9.
  • Messersmith, P.; Giannelis, E. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. A Polym. Chem. 1995, 33, 1–47.
  • Kim, C. S.; Ozer, F.; Mante, F. K. Fracture Mechanics of Dental Adhesives Supplemented with Polymethyl-Vinyl-Ether-co-Maleic Anhydride. J. Adhes. Sci. Technol. 2017, 31, 1116–1124. DOI: 10.1080/01694243.2016.1245569.
  • Tanabe, G.; Churei, H.; Wada, T.; Takahashi, H.; Uo, M.; Ueno, T. The Influence of Temperature on Sheet Lamination Process When Fabricating Mouthguard on Dental Thermoforming Machine. J. Oral Sci. 2020, 62, 23–27. DOI: 10.2334/josnusd.18-0421.
  • Chaves, C. A.; Vergani, C. E.; Thomas, D.; Young, A.; Costa, C. A.; Salih, V. M.; Machado, A. L. Biological Effects of Soft Denture Reline Materials on L929 Cells In Vitro. J. Tissue Eng. 2014, 5, 2041731414540911. DOI: 10.1177/2041731414540911.
  • Çakırbay Tanış, M.; Akay, C.; Sevim, H. Cytotoxicity of Long-Term Denture Base Materials. Int. J. Artif. Organs 2018, 41, 677–683. DOI: 10.1177/0391398818786884.
  • D. M, Morgan. Tetrazolium (MTT) Assay for Cellular Viability and Activity Polyamine protocols. In Methods in Molecular Biology Vol. 79; 1998, 179–184.
  • Can, H. K.; Sevim, H.; Şahin, Ö.; Gürpınar, Ö. A. Experimental Routes of Cytotoxicity Studies of Nanocomposites Based on the Organo-Bentonite Clay and Anhydride Containing co-and Terpolymers. Polym. Bull. 2022, 79, 5549–5567. DOI: 10.1007/s00289-021-03776-w.
  • Çeliksöz, Ö.; Irmak, Ö.; Dikmen, Z.; Yaman, B. C.; Bütün, V.; Özer, F. Effect of Poly(Methyl Vinyl Ether-Comaleic Anhydride) Copolymer on Bond Strength of Experimental Dental Adhesive. Meandros 2019, 20, 106–113. DOI: 10.4274/meandros.galenos.2018.28190.
  • Can, H. K. Charge Transfer Complex Formation in In-Situ Maleic Anhydride and N-Vinyl Caprolactam Copolymer and Copolymer/Organo-Montmorillonite Nanoarchitectures. J. Macromol. Sci. A 2016, 53, 26–33. DOI: 10.1080/10601325.2016.1110454.
  • Gürpınar, Ö. A.; Beklen, A.; Hukkanen, M.; Cehreli, Z. C.; Onur, M. A.; Konttinen, Y. T. Effects of Two Multi-Step Self-Etch Primer/Adhesives on Apoptosis in Human Gingival Fibroblasts In Vitro. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79, 435–440. DOI: 10.1002/jbm.b.30558.
  • Gürpınar, Ö. A.; Sevim, H.; Onur, M. A.; Dağli, F.; Çehreli, Z. C. Biocompatibility of a Fifth-Generation Adhesive System on Pulpal and Gingival Fibroblasts. Hacettepe J. Biol. Chem. 2009, 37, 189–195.
  • Liu, M.; Zhang, Y.; Wu, C.; Xiong, S.; Zhou, C. Chitosan/Halloysite Nanotubes Bionanocomposites: Structure, Mechanical Properties and Biocompatibility. Int. J. Biol. Macromol. 2012, 51, 566–575. DOI: 10.1016/j.ijbiomac.2012.06.022.
  • Yu, H.; Zhang, Y.; Sun, X.; Liu, J.; Zhang, H. Improving the Antifouling Property of Polyethersulfone Ultrafiltration Membrane by Incorporation of Dextran Grafted Halloysite Nanotubes. Chem. Eng. J. 2014, 237, 322–328. DOI: 10.1016/j.cej.2013.09.094.
  • Chitanu, G. C.; Popescu, I.; Carpov, A. Synthesis and characterization of maleic anhydride copolymers and their derivatives. 2. New data on the copolymerization of maleic anhydride with vinyl acetate. Rev. Roum. Chim. 2006, 51, 923–929.
  • Chitanu, G. C.; Popescu, I.; Carpov, A. Synthesis and characterization of maleic anhydride copolymers and their derivatives. 1. Addition polymerization - literature survey. Rev. Roum. Chim. 2005, 50, 589–599.
  • Chen, F.; Liu, J.; Yang, T.; Yin, S.; Su, B.; Xie, M.; Dai, B.; Han, S.; Xue, Y. Influence of Maleic Anhydride-co-Methyl Benzyl Acrylate Copolymers Modified with Long-Chain Fatty Amine and Long-Chain Fatty Alcohol on the Cold Flow Properties of Diesel Fuel. Fuel 2020, 268, 117392. DOI: 10.1016/j.fuel.2020.117392.
  • Torres, E.; Fombuena, V.; Vallés-Lluch, A.; Ellingham, T. Improvement of Mechanical and Biological Properties of Polycaprolactone Loaded with Hydroxyapatite and Halloysite Nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 418–424. DOI: 10.1016/j.msec.2017.02.087.
  • Karakus, G.; Ece, A.; Yaglioglu, A. S.; Zengin, H. B.; Karahan, M. Synthesis, Structural Characterization, and Antiproliferative/Cytotoxic Effects of a Novel Modified Poly(Maleic Anhydride-co-Vinyl Acetate)/Doxorubicin Conjugate. Polym. Bull. 2017, 74, 2159–2184. DOI: 10.1007/s00289-016-1821-1.
  • Pal, P.; Kundu, M. K.; Kalra, S.; Das, C. K. Mechanical and Crystalline Behavior of Polymeric Nanocomposites in Presence of Natural Clay. Open J. Appl. Sci. 2012, 2, 277–282. DOI: 10.4236/ojapps.2012.24041.
  • Zare, Y.; Rhee, K. Y. A Two-Step Technique Established by Simple Models to Estimate the Tensile Strength of Halloysite Nanotubes-Filled Nanocomposites. Polym. Test. 2021, 96, 107073. DOI: 10.1016/j.polymertesting.2021.107073.
  • Dong, F.; Wang, J.; Wang, Y.; Ren, S. Synthesis and Humidity Controlling Properties of Halloysite/Poly(Sodium Acrylate-Acrylamide) Composite. J. Mater. Chem. 2012, 22, 11093–11100. DOI: 10.1039/c2jm30401e.
  • Einstein, A. Zur Elektrodynamik Bewegter Körper. Ann. Phys. 1905, 322, 891–921. DOI: 10.1002/andp.19053221004.
  • Sabbagh, N.; Akbari, A.; Arsalani, N.; Eftekhari-Sis, B.; Hamishekar, H. Halloysite-Based Hybrid Bionanocomposite Hydrogels as Potential Drug Delivery Systems. Appl. Clay Sci. 2017, 148, 48–55. DOI: 10.1016/j.clay.2017.08.009.
  • Li, C.; Liu, J.; Qu, X.; Yang, Z. A General Synthesis Approach toward Halloysite-Based Composite Nanotube. J. Appl. Polym. Sci. 2009, 112, 2647–2655. DOI: 10.1002/app.29652.
  • Shu, Z.; Zhang, Y.; Ouyang, J.; Yang, H. Characterization and Synergetic Antibacterial Properties of ZnO and CeO2 Supported by Halloysite. Appl. Surf. Sci. 2017, 420, 833–838. DOI: 10.1016/j.apsusc.2017.05.219.
  • Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689. DOI: 10.1021/acs.langmuir.0c00573.
  • Li, C.; Wang, J.; Feng, S.; Yang, Z.; Ding, S. Low-Temperature Synthesis of Heterogeneous Crystalline TiO2–Halloysite Nanotubes and Their Visible Light Photocatalytic Activity. J. Mater. Chem. A 2013, 1, 8045–8054. DOI: 10.1039/c3ta11176h.
  • Yuan, P.; Tan, D.; Annabi-Bergaya, F. Properties and Applications of Halloysite Nanotubes: recent Research Advances and Future Prospects. Appl. Clay Sci. 2015, 112–113, 75–93. DOI: 10.1016/j.clay.2015.05.001.
  • Mascotti, K.; McCullough, J.; Burger, S. R. HPC Viability Measurement: Trypan Blue versus Acridine Orange and Propidium Iodide. Transfusion 2000, 40, 693–696. DOI: 10.1046/j.1537-2995.2000.40060693.x.
  • Akay, C.; Taniş, M. Ç.; Sevim, H. Effect of Artificial Saliva with Different pH Levels on the Cytotoxicity of Soft Denture Lining Materials. Int. J. Artif. Organs 2017, 40, 581–588. DOI: 10.5301/ijao.5000614.
  • Atay, A.; Cetintas, V. B.; Cal, E.; Kosova, B.; Kesercioglu, A.; Guneri, P. Cytotoxicity of Hard and Soft Denture Lining Materials. Dent. Mater. J. 2012, 31, 1082–1086. DOI: 10.4012/dmj.2012-209.
  • Jin, Y.; Yip, H.-K. Supragingival Calculus: Formation and Control. Crit. Rev. Oral Biol. Med. 2002, 13, 426–441. DOI: 10.1177/154411130201300506.
  • Okazaki, H.; Yoshida, K.; Egoshi, T.; Takase, K.; Murata, H. Influence of Composition and Powder/Water Ratio on Adhesion Strength and Initial Viscosity of Powder-Type Denture Adhesives Based on CMC-Na and PVM-MA. Dent. Mater. J. 2019, 38, 994–1001. DOI: 10.4012/dmj.2018-307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.