186
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive review on carrier mediated nose to brain targeting: emphasis on molecular targets, current trends, future prospects, and challenges

, , &
Pages 91-103 | Received 13 Jun 2022, Accepted 06 Sep 2022, Published online: 23 Sep 2022

References

  • Khan, A. R.; Liu, M.; Khan, M. W.; Zhai, G. Progress in Brain Targeting Drug Delivery System by Nasal Route. J. Control. Release 2017, 268, 364–389. DOI: 10.1016/j.jconrel.2017.09.001.
  • Vyas, T. K.; Babbar, A. K.; Sharma, R. K.; Singh, S.; Misra, A. Preliminary Brain-Targeting Studies on Intranasal Mucoadhesive Microemulsions of Sumatriptan. AAPS PharmSciTech 2006, 7, E49–E57. DOI: 10.1208/pt070108.
  • Selvaraj, K.; Gowthamarajan, K.; Karri, V. V. S. R. Nose to Brain Transport Pathways an Overview: Potential of Nanostructured Lipid Carriers in Nose to Brain Targeting. Artif. Cells Nanomed. Biotechnol. 2018, 46, 2088–2095. DOI: 10.1080/21691401.2017.1420073.
  • Illum, L. Transport of Drugs from the Nasal Cavity to the Central Nervous System. Eur. J. Pharm. Sci. 2000, 11, 1–18. DOI: 10.1016/S0928-0987(00)00087-7.
  • Pajouhesh, H.; Lenz, G. R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRx 2005, 2, 541–553. DOI: 10.1602/neurorx.2.4.541.
  • Dhuria, S. V.; Hanson, L. R.; Frey, W. H. Intranasal Delivery to the Central Nervous System: Mechanisms and Experimental Considerations. J. Pharm. Sci. 2010, 99, 1654–1673. DOI: 10.1002/jps.21924.
  • Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for Direct Nose-to-Brain Delivery of Drugs. Int. J. Pharm. 2009, 379, 146–157. DOI: 10.1016/j.ijpharm.2009.06.019.
  • Illum, L. Is Nose‐to‐Brain Transport of Drugs in Man a Reality? J. Pharm. Pharmacol. 2004, 56, 3–17. DOI: 10.1211/0022357022539.
  • Islam, S. U.; Shehzad, A.; Ahmed, M. B.; Lee, Y. S. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders. Molecules 2020, 25, 1929. DOI: 10.3390/molecules25081929.
  • Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte–Endothelial Interactions at the Blood–Brain Barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. DOI: 10.1038/nrn1824.
  • Raghuvanshi, A.; Shah, K.; Dewangan, H. K. Emerging Nanovaccine Technology: Defense against Infection by Oral Administration, Micro and Nano System, 2022.
  • Lomate, D.; Mahajan, A.; Tapkir, M. Nasal Drug Delivery: A Promising Approach for Brain Targeting. World J. Pharm. Pharm. Sci. 2019, 8, 477–449.
  • Illum, L. Nasal Drug Delivery—Possibilities, Problems and Solutions. J. Control. Release 2003, 87, 187–198. DOI: 10.1016/S0168-3659(02)00363-2.
  • Bonferoni, M. C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics 2019, 11, 84. DOI: 10.3390/pharmaceutics11020084.
  • Parvathi, M. Intranasal Drug Delivery to Brain: An Overview. Int. J. Res. Pharm. Chem. 2012, 2, 889–895.
  • Appasaheb, P. S.; Manohar, S. D.; Bhanudas, S. R.; Anjaneri, N. A Review on Intranasal Drug Delivery System. J. Adv. Pharm. Educ. Res. 2013, 3, 121–134.
  • Vanshita , Garg, A.; Shah, K.; Sharma, R.; Dewangan, H. K. Review: Recent Advances of Nanotechnology in Brain Targeting. Curr. Nanosci. 2022, 19, 8.
  • Chapman, C. D.; Frey, W. H.; Craft, S.2nd; Danielyan, L.; Hallschmid, M.; Schiöth, H. B.; Benedict, C. Intranasal Treatment of Central Nervous System Dysfunction in Humans. Pharm. Res. 2013, 30, 2475–2484. DOI: 10.1007/s11095-012-0915-1.
  • Leopold, D. A. The Relationship between Nasal Anatomy and Human Olfaction. Laryngoscope 1988, 98, 1232–1238. DOI: 10.1288/00005537-198811000-00015.
  • Caggiano, M.; Kauer, J. S.; Hunter, D. D. Globose Basal Cells Are Neuronal Progenitors in the Olfactory Epithelium: A Lineage Analysis Using a Replication-Incompetent Retrovirus. Neuron 1994, 13, 339–352. DOI: 10.1016/0896-6273(94)90351-4.
  • Yadav, R. K.; Shah, K.; Dewangan, H. K. Intranasal Drug Delivery of Sumatriptan Succinate Loaded Polymeric Solid Lipid Nanoparticles for Brain Targeting. Drug Dev. Ind. Pharm. 2022, 48, 21–28. DOI: 10.1080/03639045.2022.2090575.
  • Lorenzo, A. D. Electron Microscopy of the Olfactory and Gustatory Pathways. Ann. Otol. Rhinolaryngol. 1960, 68, 410–420.
  • Johnson, N. J.; Hanson, L. R.; Frey, W. H. Trigeminal Pathways Deliver a Low Molecular Weight Drug from the Nose to the Brain and Orofacial Structures. Mol. Pharm. 2010, 7, 884–893. DOI: 10.1021/mp100029t.
  • Thorne, R. G.; Pronk, G. J.; Padmanabhan, V.; Frey, W. H. Delivery of Insulin-Like Growth Factor-I to the Rat Brain and Spinal Cord along Olfactory and Trigeminal Pathways following Intranasal Administration. Neuroscience 2004, 127, 481–496. DOI: 10.1016/j.neuroscience.2004.05.029.
  • Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S. K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V. G.; Murty, U. S. Stimuli-Responsive In Situ Gelling System for Nose-to-Brain Drug Delivery. J. Control. Release 2020, 31, 25–63.
  • Feng, Y.; He, H.; Li, F.; Lu, Y.; Qi, J.; Wu, W. An Update on the Role of Nanovehicles in Nose-to-Brain Drug Delivery. Drug Discov. Today 2018, 23, 1079–1088. DOI: 10.1016/j.drudis.2018.01.005.
  • Raghuvanshi, A.; Shah, K.; Dewangan, H. K. Ethosome as Antigen Delivery Carrier: Optimization, Evaluation and Induction of Immunological Response via Nasal Route against Hepatitis B. J. Microencapsul. 2022, 39(4), 1–12.
  • Mistry, A.; Stolnik, S.; Illum, L. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium. Mol. Pharm. 2015, 12, 2755–2766. DOI: 10.1021/acs.molpharmaceut.5b00088.
  • Kozlovskaya, L.; Abou-Kaoud, M.; Stepensky, D. Quantitative Analysis of Drug Delivery to the Brain via Nasal Route. J. Control. Release 2014, 189, 133–140. DOI: 10.1016/j.jconrel.2014.06.053.
  • Sachan, N.; Bahadur, S.; Sharma, P. K. Recent Advances and Novel Approaches for Nose to Brain Drug Delivery for Treatment of Migraine. Drug Deliv. Lett. 2019, 9, 182–198. DOI: 10.2174/2210303109666190508083142.
  • Dewangan, H. K.; Tomar, S. Nanovaccine for Transdermal Delivery System. J. Drug Deliv. Sci. Technol. 2022, 67, 102988. DOI: 10.1016/j.jddst.2021.102988.
  • Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Size Dependent Internalization of Particles via the Pathway of Clathrin and Caveolae Mediated Endocytosis. Biochem. J. 2004, 377, 159–169. DOI: 10.1042/bj20031253.
  • Jones, A. T. Gateways and Tools for Drug Delivery: Endocytic Pathway and the Cellular Dynamics of Cell Penetrating Peptides. Int. J. Pharm. 2008, 354, 34–38. DOI: 10.1016/j.ijpharm.2007.10.046.
  • Van Itallie, C. M.; Anderson, J. M. Claudins and Epithelial Paracellular Transport. Annu. Rev. Physiol. 2006, 68, 403–429. DOI: 10.1146/annurev.physiol.68.040104.131404.
  • Miyamoto, M.; Natsume, H.; Satoh, I.; Ohtake, K.; Yamaguchi, M.; Kobayashi, D.; Sugibayashi, K.; Morimoto, Y. Effect of Poly-L-Arginine on the Nasal Absorption of FTIRdextran of Different Molecular Weights and Recombinant Human Granulocyte Colony Stimulating Factor (RHG-SF) in Rats. Int. J. Pharm. 2001, 226, 127–138. DOI: 10.1016/S0378-5173(01)00797-9.
  • Wearley, L. L. Recent Progress in Protein and Peptide Delivery by Non-Invasive Routes. Crit. Rev. Ther. Drug Carrier Syst. 1991, 8, 331–394.
  • Reger, M. A.; Watson, G. S.; Green, P. S.; Baker, L. D.; Cholerton, B.; Fishel, M. A.; Plymate, S. R.; Cherrier, M. M.; Schellenberg, G. D.; Frey, W. H. II; Craft, S. Intranasal Insulin Administration Dose-Dependently Modulates Verbal Memory and Plasma Amyloid-Beta in Memory-Impaired Older Adults. J. Alzheimers Dis. 2008, 13, 323–331. DOI: 10.3233/jad-2008-13309.
  • Guastella, A. J.; Einfeld, S. L.; Gray, K. M.; Rinehart, N. J.; Tonge, B. J.; Lambert, T. J.; Hickie, I. B. Intranasal Oxytocin Improves Emotion Recognition for Youth with Autism Spectrum Disorders. Biol. Psychiatry 2010, 67, 692–694. DOI: 10.1016/j.biopsych.2009.09.020.
  • Baier, P. C.; Weinhold, S. L.; Huth, V.; Gottwald, B.; Ferstl, R.; Hinze-Selch, D. Olfactory Dysfunction in Patients with Narcolepsy with Cataplexy is Restored by Intranasal Orexin A (Hypocretin-1). Brain 2008, 131, 2734–2741. DOI: 10.1093/brain/awn193.
  • Schulz, C.; Paulus, K.; Jöhren, O.; Lehnert, H. Intranasal Leptin Reduces Appetite and Induces Weight Loss in Rats with Diet-Induced Obesity (DIO). Endocrinology 2012, 153, 143–153. DOI: 10.1210/en.2011-1586.
  • Fliedner, S.; Schulz, C.; Lehnert, H. Brain Uptake of Intranasally Applied Radioiodinated Leptin in Wistar Rats. Endocrinology 2006, 147, 2088–2094. DOI: 10.1210/en.2005-1016.
  • Fişgin, T.; Gurer, Y.; Teziç, T.; Senbil, N.; Zorlu, P.; Okuyaz, C.; Akgün, D. Effects of Intranasal Midazolam and Rectal Diazepam on Acute Convulsions in Children: Prospective Randomized Study. J. Child Neurol. 2002, 17, 123–126. DOI: 10.1177/088307380201700206.
  • de Haan, G. J.; van der Geest, P.; Doelman, G.; Bertram, E.; Edelbroek, P. A Comparison of Midazolam Nasal Spray and Diazepam Rectal Solution for the Residential Treatment of Seizure Exacerbations. Epilepsia 2010, 51, 478–482. DOI: 10.1111/j.1528-1167.2009.02333.x.
  • Ashton, H.; Hassan, Z. Best Evidence Topic Report. Intranasal Naloxone in Suspected Opioid Overdose. Emerg. Med. J. 2006, 23, 221–223. DOI: 10.1136/emj.2005.034322.
  • Cho, H. Y.; Wang, W.; Jhaveri, N.; Torres, S.; Tseng, J.; Leong, M. N.; Lee, D. J.; Goldkorn, A.; Xu, T.; Petasis, N. A.; et al. Perillyl Alcohol for the Treatment of Temozolomide-Resistant Gliomas. Mol. Cancer Ther. 2012, 11, 2462–2472. DOI: 10.1158/1535-7163.MCT-12-0321.
  • Smolnik, R.; Molle, M.; Fehm, H. L.; Born, J. Brain Potential and Attention after Acute Subchronic Intranasal Administration of ACTH4-10 Desacetyl-a-MSH in Human. Neuroendocrinol 1999, 70, 63–72. DOI: 10.1159/000054460.
  • Liu, X. F.; Fawcett, J. R.; Thorne, R. G.; Defor, T. A.; Frey, W. H. Intranasal Administration of Insulin like Growth Factor-I Bypass the Blood Brain Barrier and Protects against Focal Cerebral Ischemic Damage. J. Neurol. Sci. 2001, 187, 91–97. DOI: 10.1016/S0022-510X(01)00532-9.
  • Danielyan, L.; Schäfer, R.; von Ameln-Mayerhofer, A.; Buadze, M.; Geisler, J.; Klopfer, T.; Burkhardt, U.; Proksch, B.; Verleysdonk, S.; Ayturan, M.; et al. Intranasal Delivery of Cells to Brain. Eur. J. Cell Biol. 2009, 88, 315–324. DOI: 10.1016/j.ejcb.2009.02.001.
  • Reitz, M.; Demestre, M.; Sedlacik, J.; Meissner, H.; Fiehler, J.; Kim, S. U.; Westphal, M.; Schmidt, N. O. Intranasal Delivery of Neural Stem/Progenitor Cells: A Non-Invasive Passage to Target Intracerebral Gioma. Stem Cells Transl. Med. 2012, 1, 866–873. DOI: 10.5966/sctm.2012-0045.
  • Balyasnikova, I. V.; Prasol, M. S.; Ferguson, S. D.; Han, Y.; Ahmed, A. U.; Gutova, M.; Tobias, A. L.; Mustafi, D.; Rincón, E.; Zhang, L.; et al. Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice with Experimental Brain Tumors. Mol. Ther. 2014, 22, 140–148. DOI: 10.1038/mt.2013.199.
  • Fonseca, C. O. D.; Teixeira, R. M.; Ramina, R.; Kovaleski, G.; Silva, J. T.; Nagel, J.; Quirico-Santos, T. Case of Advanced Recurrent Glioblastoma Successfully Treated with Monoterpene Perillyl Alcohol by Intranasal Administration. J. Cancer Ther. 2011, 2, 16–21. DOI: 10.4236/jct.2011.21003.
  • Ozduman, K.; Wollmann, G.; Piepmeier, J. M.; van den Pol, A. N. Systemic Vesicular Stomatitis Virus Selectively Destroys Multifocal Glioma and Metastatic Carcinoma in Brain. J. Neurosci. 2008, 28, 1882–1893. DOI: 10.1523/JNEUROSCI.4905-07.2008.
  • Hashizume, R.; Ozawa, T.; Gryaznov, S. M.; Bollen, A. W.; Lamborn, K. R.; Frey, W. H.; Deen, D. F. New Therapeutic Approach for Brain Tumors: Intranasal Delivery of Telomerase Inhibitor GRN163. Neuro. Oncol. 2008, 10, 112–120. DOI: 10.1215/15228517-2007-052.
  • Chen, T. C.; Cho, H. Y.; Wang, W.; Barath, M.; Sharma, N.; Hofman, F. M.; Schönthal, A. H. A Novel Temozolomide-Perillyl Alcohol Conjugate Exhibits Superior Activity against Breast Cancer Cells In Vitro and Intracranial Triple-Negative Tumor Growth In Vivo. Mol. Cancer Ther. 2014, 13, 1181–1193. DOI: 10.1158/1535-7163.MCT-13-0882.
  • Lakshmi, S. K.; Dewangan, H. K. Dual Vinorelbine Bitartrate and Resveratrol Loaded Polymeric Aqueous Core Nanocapsules for Synergistic Efficacy in Breast Cancer. J. Microencapsul. 2022, 39(4), 1–15. DOI: 10.1080/02652048.2022.2070679.
  • Kumar, M.; Pathak, K.; Misra, A. Formulation and Characterization of Nanoemulsion-Based Drug Delivery System of Risperidone. Drug Dev. Ind. Pharm. 2009, 35, 387–395. DOI: 10.1080/03639040802363704.
  • Lungare, S.; Hallam, K.; Badhan, R. K. Phytochemical-Loaded Mesoporous Silica Nanoparticles for Nose-to-Brain Olfactory Drug Delivery. Int. J. Pharm 2016, 513, 280–293. DOI: 10.1016/j.ijpharm.2016.09.042.
  • Yang, Z. Z.; Zhang, Y. Q.; Wang, Z. Z.; Wu, K.; Lou, J. N.; Qi, X. R. Enhanced Brain Distribution and Pharmacodynamics of Rivastigmine by Liposomes following Intranasal Administration. Int. J. Pharm. 2013, 452, 344–354. DOI: 10.1016/j.ijpharm.2013.05.009.
  • Shahiwala, A.; Dash, D. Preparation and Evaluation of Microemulsion Based Formulations for Rapid-Onset Intranasal Delivery of Zonisamide. Adv. Sci. Lett. 2010, 3, 442–446. DOI: 10.1166/asl.2010.1149.
  • Sharma, D.; Sharma, R. K.; Bhatnagar, A.; Nishad, D. K.; Singh, T.; Gabrani, R.; Sharma, S. K.; Ali, J.; Dang, S. S. Nose to Brain Delivery of Midazolam Loaded PLGA Nanoparticles: In Vitro and In Vivo Investigations. Curr. Drug Deliv. 2016, 13, 557–564. DOI: 10.2174/1567201812666150507120124.
  • Eskandari, S.; Varshosaz, J.; Minaiyan, M.; Tabbakhian, M. Brain Delivery of Valproic Acid via Intranasal Administration of Nanostructured Lipid Carriers: In Vivo Pharmacodynamic Studies Using Rat Electroshock Model. Int. J. Nanomedicine 2011, 6, 363–371. DOI: 10.2147/IJN.S15881.
  • Hansraj, G. P.; Singh, S. K.; Kumar, P. Sumatriptan Succinate Loaded Chitosan Solid Lipid Nanoparticles for Enhanced Anti-Migraine Potential. Int. J. Biol. Macromol. 2015, 81, 467–476. DOI: 10.1016/j.ijbiomac.2015.08.035.
  • Jain, R.; Nabar, S.; Dandekar, P.; Patravale, V. Micellar Nanocarriers: Potential Nose-to-Brain Delivery of Zolmitriptan as Novel Migraine Therapy. Pharm. Res. 2010, 27, 655–664. DOI: 10.1007/s11095-009-0041-x.
  • Wang, X.; Chi, N.; Tang, X. Preparation of Estradiol Chitosan Nanoparticles for Improving Nasal Absorption and Brain Targeting. Eur. J. Pharm. Biopharm. 2008, 70, 735–740. DOI: 10.1016/j.ejpb.2008.07.005.
  • Deepika, D.; Dewangan, H. K.; Maurya, L.; Singh, S. Intranasal Drug Delivery of Frovatriptan Succinate–Loaded Polymeric Nanoparticles for Brain Targeting. J. Pharm. Sci. 2019, 108, 851–859. DOI: 10.1016/j.xphs.2018.07.013.
  • Taki, H.; Kanazawa, T.; Akiyama, F.; Takashima, Y.; Okada, H. Intranasal Delivery of – Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors. Pharmaceuticals 2012, 5, 1092–1102. DOI: 10.3390/ph5101092.
  • Benedict, C.; Hallschmid, M.; Hatke, A.; Schultes, B.; Fehm, H. L.; Born, J.; Kern, W. Intranasal Insulin Improves Memory in Humans. Psychoneuroendocrinology 2004, 29, 1326–1334. DOI: 10.1016/j.psyneuen.2004.04.003.
  • Khan, S.; Patil, K.; Bobade, N.; Yeole, P.; Gaikwad, R. Formulation of Intranasal Mucoadhesive Temperature-Mediated In Situ Gel Containing Ropinirole and Evaluation of Brain Targeting Efficiency in Rats. J. Drug Target. 2010, 18, 223–234. DOI: 10.3109/10611860903386938.
  • Wolf, D. A.; Hanson, L. R.; Aronovich, E. L.; Nan, Z.; Low, W. C.; Frey, W. H.; McIvor, R. S. Lysosomal Enzyme Can Bypass the Blood–Brain Barrier and Reach the CNS following Intranasal Administration. Mol. Genet. Metab. 2012, 106, 131–134. DOI: 10.1016/j.ymgme.2012.02.006.
  • Dhuria, S. V.; Hanson, L. R.; Frey, W. H. Novel Vasoconstrictor Formulation to Enhance Intranasal Targeting of Neuropeptide Therapeutics to the Central Nervous System. J. Pharmacol. Exp. Ther. 2009, 328, 312–320. DOI: 10.1124/jpet.108.145565.
  • Dewangan, H. K.; Pandey, T.; Maurya, L.; Singh, S. Rational Design and Evaluation of HBsAg Polymeric Nanoparticles as Antigen Delivery Carriers. Int. J. Biol. Macromol. 2018, 111, 804–812. DOI: 10.1016/j.ijbiomac.2018.01.073.
  • Illum, L. Nanoparticle Systems for Nasal Delivery of Drugs: A Real Improvement over Simple Systems? J. Pharm. Sci. 2007, 96, 473–483. DOI: 10.1002/jps.20718.
  • Chen, F.; Zhang, Z. R.; Yuan, F.; Qin, X.; Wang, M.; Huang, Y. In Vitro and In Vivo Study of N-Trimethyl Chitosan Nanoparticles for Oral Protein Delivery. Int. J. Pharm. 2008, 349, 226–233. DOI: 10.1016/j.ijpharm.2007.07.035.
  • Dalpiaz, A.; Gavini, E.; Colombo, G.; Russo, P.; Bortolotti, F.; Ferraro, L.; Tanganelli, S.; Scatturin, A.; Menegatti, E.; Giunchedi, P. Brain Uptake of an Anti-Ischemic Agent by Nasal Administration of Microparticles. J. Pharm. Sci. 2008, 97, 4889–4903. DOI: 10.1002/jps.21335.
  • Dewangan, H. K.; Singh, S.; Maurya, L.; Srivastava, A. Hepatitis B Antigen Loaded Biodegradable Polymeric Nanoparticles: Formulation Optimization and In-Vivo Immunization in BALB/C Mice. Curr. Drug Deliv. 2018, 15, 1204–1215. DOI: 10.2174/1567201815666180604110457.
  • Sharma, V.; Dewangan, H. K.; Maurya, L.; Vats, K.; Verma, H.; Singh, S. Rational Design and In-Vivo Estimation of Ivabradine Hydrochloride Loaded Nanoparticles for Management of Stable Angina. J. Drug Deliv. Sci. Technol. 2019, 54, 101337–101346. DOI: 10.1016/j.jddst.2019.101337.
  • Yadav, S.; Gattacceca, F.; Panicucci, R.; Amiji, M. M. Comparative Biodistribution and Pharmacokinetic Analysis of Cyclosporine-A in the Brain upon Intranasal or Intravenous Administration in an Oil-in-Water Nanoemulsion Formulation. Mol. Pharm. 2015, 12, 1523–1533. DOI: 10.1021/mp5008376.
  • Ding, Z.; Zhang, Y.; Wen, N.; Sun, Z.; Li, C.; Zhang, B. W/O Nanoemulsion-Based Intranasal Drug Delivery System of Panax Notoginseng Saponins for Brain Targeting. J. Control. Release 2015, 213, e11. DOI: 10.1016/j.jconrel.2015.05.014.
  • Sood, S.; Jain, K.; Gowthamarajan, K. Optimization of Curcumin Nanoemulsion for Intranasal Delivery Using Design of Experiment and Its Toxicity Assessment. Colloids Surf. B Biointerfaces 2014, 113, 330–337. DOI: 10.1016/j.colsurfb.2013.09.030.
  • Yadav, S.; Gandham, S. K.; Panicucci, R.; Amiji, M. M. Intranasal Brain Delivery of Cationic Nanoemulsion-Encapsulated TNFα siRNA in Prevention of Experimental Neuroinflammation. Nanomedicine 2016, 12, 987–1002. DOI: 10.1016/j.nano.2015.12.374.
  • Parikh, R. H.; Patel, R. J. Nanoemulsions for Intranasal Delivery of Riluzole to Improve Brain Bioavailability: Formulation Development and Pharmacokinetic Studies. Curr. Drug Deliv. 2016, 13, 1130–1143. DOI: 10.2174/1567201813666151202195729.
  • Kanazawa, T.; Taki, H.; Tanaka, K.; Takashima, Y.; Okada, H. Cell Penetrating Peptidemodified Block Copolymer Micelles Promote Direct Brain Delivery via Intranasal Administration. Pharm. Res. 2011, 28, 2130–2139. DOI: 10.1007/s11095-011-0440-7.
  • Kanazawa, T.; Akiyama, F.; Kakizaki, S.; Takashima, Y.; Seta, Y. Delivery of siRNA to the Brain Using a Combination of Nose-to-Brain Delivery and Cell-Penetrating Peptide Modified Nano-Micelles. Biomaterials 2013, 34, 9220–9226. DOI: 10.1016/j.biomaterials.2013.08.036.
  • Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D.; Shengule, S. Formulation and Evaluation of Thermoreversible Mucoadhesive In-Situ Gel for Intranasal Delivery of Naratriptan Hydrochloride. J. Drug Deliv. Sci. Technol. 2015, 29, 238–244. DOI: 10.1016/j.jddst.2015.08.003.
  • Perez, A. P.; Mundiña-Weilenmann, C.; Romero, E. L.; Morilla, M. J. Increased Brain Radioactivity by Intranasal P-Labeled siRNA Dendriplexes within In Situ-Forming Mucoadhesive Gels. Int. J. Nanomedicine 2012, 7, 1373–1385. DOI: 10.2147/IJN.S28261.
  • Dewangan, H. K.; Singh, N.; Megh, S. K.; Singh, S.; Maurya, L. Optimization and Evaluation of Gymnema Sylvestre (GYM) Extract Loaded Polymeric Nanoparticles for Enhancement of In-Vivo Efficacy and Reduction of Toxicity. J. Microencapsul. 2022, 39(2), 1–22.
  • Dewangan, H. K. The Emerging Role of Nanosuspensions for Drug Delivery and Stability. Curr. Nanomed. 2021, 11, 213–223. DOI: 10.2174/2468187312666211222123307.
  • Jayachandra Babu, R. j.; Dayal, P. P.; Pawar, K.; Singh, M. Nose-to-Brain Transport of Melatonin from Polymer Gel Suspensions: A Microdialysis Study in Rats. J. Drug Target. 2011, 19, 731–740. DOI: 10.3109/1061186X.2011.558090.
  • Torchilin, V. P. Liposomes as Targetable Drug Carriers. Crit. Rev. Ther. Drug Carrier Syst. 1985, 2, 65–115.
  • Torchilin, V. P. Recent Advances with Liposomes as Pharmaceutical Carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160. DOI: 10.1038/nrd1632.
  • Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal H102 Peptide Loaded Liposomes for Brain Delivery to Treat Alzheimer’s Disease. Pharm. Res. 2015, 32, 3837–3849. DOI: 10.1007/s11095-015-1744-9.
  • Yadav, D.; Dewangan, H. K. Pegylation: An Important Approach for Novel Drug Delivery System. J. Biomater. Sci. Polym. Ed. 2020, 32(2), 1–15.
  • Md, S.; Ali, M.; Ali, R.; Bhatnagar, A.; Baboota, S.; Ali, J. Donepezil Nanosuspension Intended for Nose to Brain Targeting: In Vitro and In Vivo Safety Evaluation. Int. J. Biol. Macromol. 2014, 67, 418–425. DOI: 10.1016/j.ijbiomac.2014.03.022.
  • Elnaggar, Y. S. R.; Etman, S. M.; Abdelmonsif, D. A.; Abdallah, O. Y. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer’s Disease: Optimization, Biological Efficacy, and Potential Toxicity. J. Pharm. Sci. 2015, 104, 3544–3556. DOI: 10.1002/jps.2455799.
  • Dewangan, H. K. Rational Application of Nanoadjuvant for Mucosal Vaccine Delivery System. J. Immunol. Methods 2020, 112791, 481–482. DOI: 10.1016/j.jim.2020.112791.
  • Garg, A.; Dewangan, H. K. Nanoparticles as Adjuvants in Vaccine Delivery. Crit. Rev. Ther. Drug Carrier Syst. 2020, 37, 183–204. DOI: 10.1615/CritRevTherDrugCarrierSyst.2020033273.
  • Dewangan, H. K.; Pandey, T.; Singh, S. Nanovaccine for Immunotherapy and Reduced Hepatitis B Virus in Humanized Mice. Artif. Cell Nanomed. Biotech. 2017, 46, 2033–2042.
  • Crowe, T. P.; Greenlee, M. H. W.; Kanthasamy, A. G.; Hsu, W. H. Mechanism of Intranasal Drug Delivery Directly to the Brain. Life Sci. 2018, 195, 44–52. DOI: 10.1016/j.lfs.2017.12.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.