428
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In vitro and in silico characteristics of doxorubicin-loaded four polymeric-based polysaccharides-modified super paramagnetic iron oxide nanoparticles for cancer chemotherapy and magnetic resonance imaging

, , , , &
Pages 117-130 | Received 11 Jul 2022, Accepted 19 Sep 2022, Published online: 19 Oct 2022

References

  • Rahib, L.; Smith, B. D.; Aizenberg, R.; Rosenzweig, A. B.; Fleshman, J. M.; Matrisian, L. M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. DOI: 10.1158/0008-5472.CAN-14-0155.
  • Lee, H.; Ghebre, R.; Le, C.; Jang, Y. J.; Sharratt, M.; Yee, D. Mobile Phone Multilevel and Multimedia Messaging Intervention for Breast Cancer Screening: Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth. 2017, 5, e154. DOI: 10.2196/mhealth.7091.
  • Zhang, R. X.; Wong, H. L.; Xue, H. Y.; Eoh, J. Y.; Wu, X. Y. Nanomedicine of Synergistic Drug Combinations for Cancer Therapy–Strategies and Perspectives. J. Control. Release. 2016, 240, 489–503. DOI: 10.1016/j.jconrel.2016.06.012.
  • Le, T. T. H.; Bui, T. Q.; Ha, T. M. T.; Le, M. H.; Pham, H. N.; Ha, P. T. Optimizing the Alginate Coating Layer of Doxorubicin-loaded Iron Oxide Nanoparticles for Cancer Hyperthermia and Chemotherapy. J. Mater. Sci. 2018, 53, 13826–13842. DOI: 10.1007/s10853-018-2574-z.
  • Yang, B.; Li, Y.; Sun, X.; Meng, X.; Chen, P.; Liu, N. A pH‐responsive Drug Release System Based on Doxorubicin Conjugated Amphiphilic Polymer Coated Quantum Dots for Tumor Cell Targeting and Tracking. J. Chem. Technol. Biotechnol. 2013, 88, 2169–2175. DOI: 10.1002/jctb.4081.
  • Maeda, H.; Nakamura, H.; Fang, J. The EPR Effect for Macromolecular Drug Delivery to Solid Tumors: Improvement of Tumor Uptake, Lowering of Systemic Toxicity, and Distinct Tumor Imaging in Vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. DOI: 10.1016/j.addr.2012.10.002.
  • Lee, J. H.; Nan, A. Combination Drug Delivery Approaches in Metastatic Breast Cancer. J. Drug Deliv. 2012, 2012, 915375. DOI: 10.1155/2012/915375.
  • Casals, E.; Puntes, V. F. Inorganic Nanoparticle Biomolecular Corona: Formation, Evolution and Biological Impact. Nanomedicine. 2012, 7, 1917–1930. DOI: 10.2217/nnm.12.169.
  • Longhi, A.; Ferrari, S.; Bacci, G.; Specchia, S. Long-term Follow-up of Patients with Doxorubicin-induced Cardiac Toxicity after Chemotherapy for Osteosarcoma. Anticancer. Drugs. 2007, 18, 737–744. DOI: 10.1097/CAD.0b013e32803d36fe.
  • Lu, A. H.; Salabas, E.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. Engl. 2007, 46, 1222–1244. DOI: 10.1002/anie.200602866.
  • Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Medical Application of Functionalized Magnetic Nanoparticles. J. Biosci. Bioeng. 2005, 100, 1–11. DOI: 10.1263/jbb.100.1.
  • Saiyed, Z.; Telang, S.; Ramchand, C. Application of Magnetic Techniques in the Field of Drug Discovery and Biomedicine. Biomagn. Res. Technol. 2003, 1, 2. DOI: 10.1186/1477-044X-1-2.
  • Halbreich, A.; Roger, J.; Pons, J. N.; Geldwerth, D.; Da Silva, M. F.; Roudier, M.; Bacri, J. C. Biomedical Applications of Maghemite Ferrofluid. Biochimie. 1998, 80, 379–390. DOI: 10.1016/S0300-9084(00)80006-1.
  • Pankhurst, Q.; Thanh, N. T.; Jones, S.; Dobson, J. Progress in Applications of Magnetic Nanoparticles in Biomedicine. J. Phys. D Appl. Phys. 2009, 42, 065303. DOI:10.1088/0022-3727/42/6/065303.
  • Lewin, M.; Carlesso, N.; Tung, C. H.; Tang, X. W.; Cory, D.; Scadden, D. T.; Weissleder, R. Tat Peptide-derivatized Magnetic Nanoparticles Allow in Vivo Tracking and Recovery of Progenitor Cells. Nat. Biotechnol. 2000, 18, 410–414. DOI: 10.1038/74464.
  • Pittet, M. J.; Swirski, F. K.; Reynolds, F.; Josephson, L.; Weissleder, R. Labeling of Immune Cells for in Vivo Imaging Using Magnetofluorescent Nanoparticles. Nat. Protoc. 2006, 1, 73–79. DOI: 10.1038/nprot.2006.11.
  • Wang, D.; He, J.; Rosenzweig, N.; Rosenzweig, Z. Superparamagnetic Fe2O3 Beads − CdSe/ZnS Quantum Dots Core − Shell Nanocomposite Particles for Cell Separation. Nano Lett. 2004, 4, 409–413. DOI: 10.1021/nl035010n.
  • Thanh, N. T. Clinical Applications of Magnetic Nanoparticles: From Fabrication to Clinical Applications; CRC Press: Boca Raton, 2018.
  • Huang, D.-M.; Chung, T.-H.; Hung, Y.; Lu, F.; Wu, S.-H.; Mou, C.-Y.; Yao, M.; Chen, Y.-C. Internalization of Mesoporous Silica Nanoparticles Induces Transient but Not Sufficient Osteogenic Signals in Human Mesenchymal Stem Cells. Toxicol. Appl. Pharmacol. 2008, 231, 208–215. DOI: 10.1016/j.taap.2008.04.009.
  • Hervault, A.; Dunn, A. E.; Lim, M.; Boyer, C.; Mott, D.; Maenosono, S.; Thanh, N. T. K. Doxorubicin Loaded Dual pH-and Thermo-responsive Magnetic Nanocarrier for Combined Magnetic Hyperthermia and Targeted Controlled Drug Delivery Applications. Nanoscale. 2016, 8, 12152–12161. DOI: 10.1039/c5nr07773g.
  • Ma, H.-L.; Qi, X.-R.; Maitani, Y.; Nagai, T. Preparation and Characterization of Superparamagnetic Iron Oxide Nanoparticles Stabilized by Alginate. Int. J. Pharm. 2007, 333, 177–186. DOI: 10.1016/j.ijpharm.2006.10.006.
  • Shelat, R.; Chandra, S.; Khanna, A. Detailed Toxicity Evaluation of β-cyclodextrin Coated Iron Oxide Nanoparticles for Biomedical Applications. Int. J. Biol. Macromol. 2018, 110, 357–365. DOI: 10.1016/j.ijbiomac.2017.09.067.
  • Yallapu, M. M.; Othman, S. F.; Curtis, E. T.; Gupta, B. K.; Jaggi, M.; Chauhan, S. C. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy. Biomaterials. 2011, 32, 1890–1905. DOI: 10.1016/j.biomaterials.2010.11.028.
  • Horst, M. F.; Coral, D. F.; van Raap, M. B. F.; Alvarez, M.; Lassalle, V. Hybrid Nanomaterials Based on Gum Arabic and Magnetite for Hyperthermia Treatments. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 443–450. DOI: 10.1016/j.msec.2016.12.035.
  • Kania, G.; Sternak, M.; Jasztal, A.; Chlopicki, S.; Błażejczyk, A.; Nasulewicz-Goldeman, A.; Wietrzyk, J.; Jasiński, K.; Skórka, T.; Zapotoczny, S.; et al. Uptake and Bioreactivity of Charged Chitosan-coated Superparamagnetic Nanoparticles as Promising Contrast Agents for Magnetic Resonance Imaging. Nanomedicine. 2018, 14, 131–140. DOI: 10.1016/j.nano.2017.09.004.
  • Patitsa, M.; Karathanou, K.; Kanaki, Z.; Tzioga, L.; Pippa, N.; Demetzos, C.; Verganelakis, D. A.; Cournia, Z.; Klinakis, A. Magnetic Nanoparticles Coated with Polyarabic Acid Demonstrate Enhanced Drug Delivery and Imaging Properties for Cancer Theranostic Applications. Sci. Rep. 2017, 7, 1–8. DOI: 10.1038/s41598-017-00836-y.
  • Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X.; et al. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Appl. Mater. Interfaces. 2013, 5, 1722–1731. DOI: 10.1021/am302883m.
  • Song, W.; Muthana, M.; Mukherjee, J.; Falconer, R. J.; Biggs, C. A.; Zhao, X. Magnetic-silk Core–Shell Nanoparticles as Potential Carriers for Targeted Delivery of Curcumin into Human Breast Cancer Cells. ACS Biomater. Sci. Eng. 2017, 3, 1027–1038. DOI: 10.1021/acsbiomaterials.7b00153.
  • Jia, Y.; Yuan, M.; Yuan, H.; Huang, X.; Sui, X.; Cui, X.; Tang, F.; Peng, J.; Chen, J.; Lu, S.; et al. Co-encapsulation of Magnetic Fe3O4 Nanoparticles and Doxorubicin into Biodegradable PLGA Nanocarriers for Intratumoral Drug Delivery. Int. J. Nanomed. 2012, 7, 1697–1708.
  • Zaaeri, F.; Khoobi, M.; Rouini, M.; Akbari Javar, H. pH-responsive Polymer in a Core–Shell Magnetic Structure as an Efficient Carrier for Delivery of Doxorubicin to Tumor Cells. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 967–977. DOI: 10.1080/00914037.2017.1405348.
  • Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, 2016.
  • Ehrlich, S.; Moellmann, J.; Reckien, W.; Bredow, T.; Grimme, S. System‐dependent Dispersion Coefficients for the DFT‐D3 Treatment of Adsorption Processes on Ionic Surfaces. Chemphyschem. 2011, 12, 3414–3420. DOI: 10.1002/cphc.201100521.
  • Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. DOI: 10.1021/ct700301q.
  • Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; Mackerell, A. D. Optimization of the Additive CHARMM All-atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. DOI: 10.1021/ct300400x.
  • Jo, S.; Song, K. C.; Desaire, H.; MacKerell, A. D. Jr.; Im, W. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins. J. Comput. Chem. 2011, 32, 3135–3141. DOI: 10.1002/jcc.21886.
  • Jo, S.; Kim, T.; Iyer, V. G.; Im, W. CHARMM‐GUI: A Web‐based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. DOI: 10.1002/jcc.20945.
  • Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. DOI: 10.1063/1.445869.
  • Parrinello, M.; Rahman, A. Strain Fluctuations and Elastic Constants. J. Chem. Phys. 1982, 76, 2662–2666. DOI: 10.1063/1.443248.
  • Jarvis, T. R.; Chughtai, B.; Kaplan, S. A. Testosterone and Benign Prostatic Hyperplasia. Asian J. Androl. 2015, 17, 212–216. DOI: 10.4103/1008-682X.140966.
  • Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Ramazani, A.; Amanlou, M.; Khoobi, M. Improved Curcumin Loading, Release, Solubility and Toxicity by Tuning the Molar Ratio of Cross-linker to β-cyclodextrin. Carbohydr. Polym. 2019, 213, 70–78. DOI: 10.1016/j.carbpol.2019.02.075.
  • Liang, W. T.; Li, D.; Ma, X. W.; Dong, W. J.; Li, J.; Wu, R. F.; Dong, C.; Dong, Q.C. Surface β-cyclodextrin Polymer Coated Fe3O4 Magnetic Nanoparticles: Synthesis, Characterization and Application on Efficient Adsorption of Malachite Green. J. Nano Res. 2018. DOI: 10.4028/www.scientific.net/JNanoR.54.54.
  • Dehdashtian, S.; Gholivand, M. B.; Shamsipur, M.; Kariminia, S. Construction of a Sensitive and Selective Sensor for Morphine Using Chitosan Coated Fe3O4 Magnetic Nanoparticle as a Modifier. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 53–59. DOI: 10.1016/j.msec.2015.07.049.
  • Banerjee, S. S.; Chen, D.-H. Fast Removal of Copper Ions by Gum Arabic Modified Magnetic Nano-adsorbent. J. Hazard. Mater. 2007, 147, 792–799. DOI: 10.1016/j.jhazmat.2007.01.079.
  • Mahmood, I.; Ahmad, I.; Chen, G.; Huizhou, L. A Surfactant-coated Lipase Immobilized in Magnetic Nanoparticles for Multicycle Ethyl Isovalerate Enzymatic Production. Biochem. Eng. J. 2013, 73, 72–79. DOI: 10.1016/j.bej.2013.01.017.
  • Liu, L.; Li, T.; Ruan, Z.; Yan, L. Polypeptide-based Artificial Erythrocytes Conjugated with near Infrared Photosensitizers for Imaging-guided Photodynamic Therapy. J. Mater. Sci. 2018, 53, 9368–9381. DOI: 10.1007/s10853-018-2276-6.
  • Banerjee, S. S.; Chen, D.-H. Magnetic Nanoparticles Grafted with Cyclodextrin for Hydrophobic Drug Delivery. Chem. Mater. 2007, 19, 6345–6349. DOI: 10.1021/cm702278u.
  • Khoobi, M.; Delshad, T. M.; Vosooghi, M.; Alipour, M.; Hamadi, H.; Alipour, E.; Hamedani, M. P.; Sadat ebrahimi, S. E.; Safaei, Z.; Foroumadi, A.; Shafiee, A. Polyethyleneimine-modified Superparamagnetic Fe3O4 Nanoparticles: An Efficient, Reusable and Water Tolerance Nanocatalyst. J. Magn. Magn. Mater. 2015, 375, 217–226. DOI: 10.1016/j.jmmm.2014.09.044.
  • ur Rahman, O.; Mohapatra, S. C.; Ahmad, S. Fe3O4 Inverse Spinal Super Paramagnetic Nanoparticles. Mater. Chem. Phys. 2012, 132, 196–202. DOI: 10.1016/j.matchemphys.2011.11.032.
  • Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Forootanfar, H.; Firoozpour, L.; Foroumadi, A.; Ramazani, A.; Khoobi, M. Folic Acid Decorated Magnetic Nanosponge: An Efficient Nanosystem for Targeted Curcumin Delivery and Magnetic Resonance Imaging. J. Colloid Interface Sci. 2019, 556, 128–139. DOI: 10.1016/j.jcis.2019.08.046.
  • Delavari, B.; Bigdeli, B.; Mamashli, F.; Gholami, M.; Bazri, B.; Khoobi, M.; Ghasemi, A.; Baharifar, H.; Dehghani, S.; Gholibegloo, E.; et al. Theranostic α-lactalbumin-polymer-based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater. Sci. Eng. 2019, 5, 5189–5208. DOI: 10.1021/acsbiomaterials.9b01236.
  • Kang, E.; Baek, Y.; Hahm, E.; Lee, S.; Pham, X.-H.; Noh, M.; Kim, D.-E.; Jun, B.-H. Functionalized β-cyclodextrin Immobilized on Ag-embedded Silica Nanoparticles as a Drug Carrier. IJMS. 2019, 20, 315. DOI: 10.3390/ijms20020315.
  • Mansouri, H.; Gholibegloo, E.; Mortezazadeh, T.; Yazdi, M. H.; Ashouri, F.; Malekzadeh, R.; Najafi, A.; Foroumadi, A.; Khoobi, M. A Biocompatible Theranostic Nanoplatform Based on Magnetic Gadolinium-chelated Polycyclodextrin: In Vitro and In Vivo Studies. Carbohydr. Polym. 2021, 254, 117262. DOI: 10.1016/j.carbpol.2020.117262.
  • Chen, Z.; Zhang, L.; Song, Y.; He, J.; Wu, L.; Zhao, C.; Xiao, Y.; Li, W.; Cai, B.; Cheng, H.; et al. Hierarchical Targeted Hepatocyte Mitochondrial Multifunctional Chitosan Nanoparticles for Anticancer Drug Delivery. Biomaterials. 2015, 52, 240–250. DOI: 10.1016/j.biomaterials.2015.02.001.
  • Nazli, C.; Demirer, G. S.; Yar, Y.; Acar, H. Y.; Kizilel, S. Targeted Delivery of Doxorubicin into Tumor Cells via MMP-sensitive PEG Hydrogel-coated Magnetic Iron Oxide Nanoparticles (MIONPs). Colloids Surf. B Biointerfaces. 2014, 122, 674–683. DOI: 10.1016/j.colsurfb.2014.07.049.
  • Li, G.; Cao, L.; Zhou, Z.; Chen, Z.; Huang, Y.; Zhao, Y. Rapamycin Loaded Magnetic Fe3O4/Carboxymethylchitosan Nanoparticles as Tumor-targeted Drug Delivery System: Synthesis and In Vitro Characterization. Colloids Surf. B Biointerfaces. 2015, 128, 379–388. DOI: 10.1016/j.colsurfb.2015.02.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.