378
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and characterization of self-stimuli conductive nerve regeneration conduit using co-electrospun nanofibers filled with gelatin-chitosan hydrogels containing polyaniline-graphene-ZnO nanoparticles

, , &
Pages 165-175 | Received 25 Aug 2022, Accepted 03 Oct 2022, Published online: 13 Oct 2022

References

  • Heidari, M.; Bahrami, S. H.; Ranjbar-Mohammadi, M.; Milan, P. B. Smart Electrospun Nanofibers Containing PCL/Gelatin/Graphene Oxide for Application in Nerve Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109768. DOI: 10.1016/j.msec.2019.109768.
  • Sarker, M.; Naghieh, S.; McInnes, A. D.; Schreyer, D. J.; Chen, X. Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration. Biotechnol. J. 2018, 13, e1700635. DOI: 10.1002/biot.201700635.
  • Wang, Y.; Tan, H.; Hui, X. Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. Biomed. Res. Int. 2018, 2018, 7848901. DOI: 10.1155/2018/7848901.
  • Samadian, H.; Maleki, H.; Fathollahi, A.; Salehi, M.; Gholizadeh, S.; Derakhshankhah, H.; Allahyari, Z.; Jaymand, M. Naturally Occurring Biological Macromolecules-Based Hydrogels: Potential Biomaterials for Peripheral Nerve Regeneration. Int. J. Biol. Macromol. 2020, 154, 795–817. DOI: 10.1016/j.ijbiomac.2020.03.155.
  • Mohammadi, M.; Ramazani SaadatAbadi, A.; Mashayekhan, S.; Sanaei, R. Conductive Multichannel PCL/Gelatin Conduit with Tunable Mechanical and Structural Properties for Peripheral Nerve Regeneration. Appl. Polym. Sci. 2020, 137, 49219. DOI: 10.1002/app.49219.
  • Fu, S.; Zhou, L.; Zeng, P.; Fu, S. Antibacterial Chitosan-Gelatin Hydrogel Beads Cross-Linked by Riboflavin under Ultraviolet a Irradiation. Fibers Polym. 2022, 23, 315–320. DOI: 10.1007/s12221-021-0401-7.
  • Dulnik, J.; Kołbuk, D.; Denis, P.; Sajkiewicz, P. The Effect of a Solvent on Cellular Response to PCL/Gelatin and PCL/Collagen Electrospun Nanofibres. Eur. Polym. J. 2018, 104, 147–156. DOI: 10.1016/j.eurpolymj.2018.05.010.
  • Sadeghi, A.; Moztarzadeh, F.; Aghazadeh Mohandesi, J. Investigating the Effect of Chitosan on Hydrophilicity and Bioactivity of Conductive Electrospun Composite Scaffold for Neural Tissue Engineering. Int. J. Biol. Macromol. 2019, 121, 625–632. DOI: 10.1016/j.ijbiomac.2018.10.022.
  • Liu, S.; Sun, L.; Zhang, H.; Hu, Q.; Wang, Y.; Ramalingam, M. High-Resolution Combinatorial 3D Printing of Gelatin-Based Biomimetic Triple-Layered Conduits for Nerve Tissue Engineering. Int. J. Biol. Macromol. 2021, 166, 1280–1291. DOI: 10.1016/j.ijbiomac.2020.11.010.
  • Wang, L.; Wu, Y.; Hu, T.; Ma, P. X.; Guo, B. Aligned Conductive Core-Shell Biomimetic Scaffolds Based on Nanofiber Yarns/Hydrogel for Enhanced 3D Neurite Outgrowth Alignment and Elongation. Acta Biomater. 2019, 96, 175–187. DOI: 10.1016/j.actbio.2019.06.035.
  • Samadian, H.; Ehterami, A.; Sarrafzadeh, A.; Khastar, H.; Nikbakht, M.; Rezaei, A.; Chegini, L.; Salehi, M. Sophisticated Polycaprolactone/Gelatin Nanofibrous Nerve Guided Conduit Containing Platelet-Rich Plasma and Citicoline for Peripheral Nerve Regeneration: In Vitro and In Vivo Study. Int. J. Biol. Macromol. 2020, 150, 380–388. DOI: 10.1016/j.ijbiomac.2020.02.102.
  • Li, D.; Zhao, L.; Cong, M.; Liu, L.; Yan, G.; Li, Z.; Li, B.; Yu, W.; Sun, H.; Yang, B. Injectable Thermosensitive Chitosan/Gelatin-Based Hydrogel Carried Erythropoietin to Effectively Enhance Maxillary Sinus Floor Augmentation in Vivo. Dent. Mater. 2020, 36, e229–e240. DOI: 10.1016/j.dental.2020.04.016.
  • Rakhshaei, R.; Namazi, H.; Hamishehkar, H.; Kafil, H.; Salehi, R. In Situ Synthesized Chitosan–Gelatin/ZnO Nanocomposite Scaffold with Drug Delivery Properties: Higher Antibacterial and Lower Cytotoxicity Effects. J. Appl. Polym. Sci. 2019, 136, 47590. DOI: 10.1002/app.47590.
  • Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Velasquillo-Martínez, C.; García-Carvajal, Z. Y. Composite Hydrogels Based on Gelatin, Chitosan and Polyvinyl Alcohol to Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–20. DOI: 10.1080/00914037.2019.1581780.
  • Astaneh, M. E.; Goodarzi, A.; Khanmohammadi, M.; Shokati, A.; Mohandesnezhad, S.; Ataollahi, M. R.; Najafipour, S.; Farahani, M. S.; Ai, J. Chitosan/Gelatin Hydrogel and Endometrial Stem Cells with Subsequent Atorvastatin Injection Impact in Regenerating Spinal Cord Tissue. J. Drug Delivery Sci. Technol. 2020, 58, 101831. DOI: 10.1016/j.jddst.2020.101831.
  • Bayat, A.; Ramazani, A.; A, S. Biocompatible Conductive Alginate/Polyaniline-Graphene Neural Conduits Fabricated Using a Facile Solution Extrusion Technique. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 486–495. DOI: 10.1080/00914037.2020.1725764.
  • Mohseni, M.; A, A. R. S.; H Shirazi, F.; Nemati, N. H. Preparation and Characterization of Self-Electrical Stimuli Conductive Gellan Based Nano Scaffold for Nerve Regeneration Containing Chopped Short Spun Nanofibers of PVDF/MCM41 and Polyaniline/Graphene Nanoparticles: Physical, Mechanical and Morphological Studies. Int. J. Biol. Macromol. 2021, 167, 881–893. DOI: 10.1016/j.ijbiomac.2020.11.045.
  • Soleimani, M.; Mashayekhan, S.; Baniasadi, H.; Ramazani, A.; Ansarizadeh, M. Design and Fabrication of Conductive Nanofibrous Scaffolds for Neural Tissue Engineering: Process Modeling via Response Surface Methodology. J. Biomater. Appl. 2018, 33, 619–629. DOI: 10.1177/0885328218808917.
  • Azimi, S.; Golabchi, A.; Nekookar, A.; Rabbani, S.; Hassanpour Amiri, M.; Asadi, K.; Abolhasani, M. M. Self-Powered Cardiac Pacemaker by Piezoelectric Polymer Nanogenerator Implant. Nano Energy 2021, 83, 105781. DOI: 10.1016/j.nanoen.2021.105781.
  • Azimi, B.; Sorayani Bafqi, M. S.; Fusco, A.; Ricci, C.; Gallone, G.; Bagherzadeh, R.; Donnarumma, G.; Uddin, M. J.; Latifi, M.; Lazzeri, A.; Danti, S. Electrospun ZnO/Poly(Vinylidene Fluoride-Trifluoroethylene) Scaffolds for Lung Tissue Engineering. Tissue Eng. A 2020, 26, 1312–1331. DOI: 10.1089/ten.TEA.2020.0172.
  • Chandran, A. M.; Varun, S.; Mural, P. K. S. Flexible Electroactive PVDF/ZnO Nanocomposite with High Output Power and Current Density. Polym. Eng. Sci. 2021, 61, 1829–1841. DOI: 10.1002/pen.25704.
  • Chen, C.; Bai, Z.; Cao, Y.; Dong, M.; Jiang, K.; Zhou, Y.; Tao, Y.; Gu, S.; Xu, J.; Yin, X.; Xu, W. Enhanced Piezoelectric Performance of BiCl3/PVDF Nanofibers-Based Nanogenerators. Compos. Sci. Technol. 2020, 192, 108100. DOI: 10.1016/j.compscitech.2020.108100.
  • Liu, G.; Tsen, W.-C.; Jang, S.-C.; Hu, F.; Zhong, F.; Zhang, B.; Wang, J.; Liu, H.; Wang, G.; Wen, S.; Gong, C. Composite Membranes from Quaternized Chitosan Reinforced with Surface-Functionalized PVDF Electrospun Nanofibers for Alkaline Direct Methanol Fuel Cells. J. Membr. Sci. 2020, 611, 118242. DOI: 10.1016/j.memsci.2020.118242.
  • Liu, X.; Ma, J.; Wu, X.; Lin, L.; Wang, X. Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals. ACS Nano 2017, 11, 1901–1910. DOI: 10.1021/acsnano.6b07961.
  • Yang, J.; Zhang, Y.; Li, Y.; Wang, Z.; Wang, W.; An, Q.; Tong, W. Piezoelectric Nanogenerators Based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by in-Situ Reduction. Mater. Today Commun. 2021, 26, 101629. DOI: 10.1016/j.mtcomm.2020.101629.
  • Abzan, N.; Kharaziha, M.; Labbaf, S. Development of Three-Dimensional Piezoelectric Polyvinylidene Fluoride-Graphene Oxide Scaffold by Non-Solvent Induced Phase Separation Method for Nerve Tissue Engineering. Mater. Des. 2019, 167, 107636. DOI: 10.1016/j.matdes.2019.107636.
  • Maghfoori, F.; Najmoddin, N.; Pezeshki-Modaress, M. Enhancing Mechanical and Antibacterial Properties of Polycaprolactone Nanocomposite Nanofibers Using Decorated Clay with ZnO Nanorods. J. Appl. Polym. Sci. 2022, 139, e52684. DOI: 10.1002/app.52684.
  • Ratanavaraporn, J.; Rangkupan, R.; Jeeratawatchai, H.; Kanokpanont, S.; Damrongsakkul, S. Influences of Physical and Chemical Crosslinking Techniques on Electrospun Type a and B Gelatin Fiber Mats. Int. J. Biol. Macromol. 2010, 47, 431–438. DOI: 10.1016/j.ijbiomac.2010.06.008.
  • Kitsara, M.; Blanquer, A.; Murillo, G.; Humblot, V.; De Bragança Vieira, S.; Nogués, C.; Ibáñez, E.; Esteve, J.; Barrios, L. Permanently Hydrophilic, Piezoelectric PVDF Nanofibrous Scaffolds Promoting Unaided Electromechanical Stimulation on Osteoblasts. Nanoscale 2019, 11, 8906–8917. DOI: 10.1039/C8NR10384D.
  • Shi, K.; Sun, B.; Huang, X.; Jiang, P. Synergistic Effect of Graphene Nanosheet and BaTiO3 Nanoparticles on Performance Enhancement of Electrospun PVDF Nanofiber Mat for Flexible Piezoelectric Nanogenerators. Nano Energy 2018, 52, 153–162. DOI: 10.1016/j.nanoen.2018.07.053.
  • Liu, C.; Shen, J.; Liao, C.; Yeung, K.; Tjong, S. Novel Electrospun Polyvinylidene Fluoride-Graphene Oxide-Silver Nanocomposite Membranes with Protein and Bacterial Antifouling Characteristics. Express Polym. Lett. 2018, 12, 365–382. DOI: 10.3144/expresspolymlett.2018.31.
  • Lou, L.; Kendall, R. J.; Smith, E.; Ramkumar, S. S. Functional PVDF/rGO/TiO2 Nanofiber Webs for the Removal of Oil from Water. Polymer 2020, 186, 122028. DOI: 10.1016/j.polymer.2019.122028.
  • Bello, A. B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng. B Rev. 2020, 26, 164–180. DOI: 10.1089/ten.teb.2019.0256.
  • Ojeda-Hernández, D. D.; Canales-Aguirre, A. A.; Matias-Guiu, J.; Gomez-Pinedo, U.; Mateos-Díaz, J. C. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front. Bioeng. Biotechnol. 2020, 8, 389., DOI: 10.3389/fbioe.2020.00389.
  • Cristallini, C.; Barbani, N.; Bianchi, S.; Maltinti, S.; Baldassare, A.; Ishak, R.; Onor, M.; Ambrosio, L.; Castelvetro, V.; Cascone, M. G. Assessing two-way interactions between cells and inorganic particles. J. Mater. Sci. Mater. Med. 2020, 31, 1.
  • Zare, Y.; Rhee, K. Y.; Hui, D. Influences of Nanoparticles Aggregation/Agglomeration on the Interfacial/Interphase and Tensile Properties of Nanocomposites. Compos. B Eng. 2017, 122, 41–46. DOI: 10.1016/j.compositesb.2017.04.008.
  • Jiang, H.; Qian, Y.; Fan, C.; Ouyang, Y. Polymeric Guide Conduits for Peripheral Nerve Tissue Engineering. Front. Bioeng. Biotechnol. 2020, 8, 582646–582646. DOI: 10.3389/fbioe.2020.582646.
  • Cheng, Y.; Xu, Y.; Qian, Y.; Chen, X.; Ouyang, Y.; Yuan, W.-E. 3D Structured Self-Powered PVDF/PCL Scaffolds for Peripheral Nerve Regeneration. Nano Energy 2020, 69, 104411. DOI: 10.1016/j.nanoen.2019.104411.
  • Parveen, N.; Mahato, N.; Ansari, M. O.; Cho, M. H. Enhanced Electrochemical Behavior and Hydrophobicity of Crystalline Polyaniline@Graphene Nanocomposite Synthesized at Elevated Temperature. Compos. B Eng. 2016, 87, 281–290. DOI: 10.1016/j.compositesb.2015.10.029.
  • Song, J.; Sun, B.; Liu, S.; Chen, W.; Zhang, Y.; Wang, C.; Mo, X.; Che, J.; Ouyang, Y.; Yuan, W.; Fan, C. Polymerizing Pyrrole Coated Poly (L-Lactic Acid-co-ε-Caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration. Front. Mol. Neurosci. 2016, 9, 117. DOI: 10.3389/fnmol.2016.00117.
  • Kim, M.; Fan, J. Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Adv. Fiber Mater. 2021, 3, 160–171. DOI: 10.1007/s42765-021-00068-w.
  • Mahanty, B.; Ghosh, S. K.; Jana, S.; Mallick, Z.; Sarkar, S.; Mandal, D. ZnO Nanoparticle Confined Stress Amplified All-Fiber Piezoelectric Nanogenerator for Self-Powered Healthcare Monitoring. Sustainable Energy Fuels 2021, 5, 4389–4400. DOI: 10.1039/D1SE00444A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.