217
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Long circulating polymeric nanoparticles of gemcitabine HCl using PLGA-PEG-PPG-PEG block co-polymer

, , &
Pages 176-189 | Received 24 Jan 2022, Accepted 10 Oct 2022, Published online: 18 Nov 2022

References

  • Fukunaga, A. K.; Marsh, S.; Murry, D. J.; Hurley, T. D.; McLeod, H. L. Identification and Analysis of Single-Nucleotide Polymorphisms in the Gemcitabine Pharmacologic Pathway. Pharmacogenom. J. 2004, 4, 307–314. DOI: 10.1038/sj.tpj.6500259.
  • Galmarini, C. M.; Mackey, J. R.; Dumontet, C. Nucleoside Analogues: Mechanisms of Drug Resistance and Reversal Strategies. Leukaemia 2001, 15, 875–890. DOI: 10.1038/sj.leu.2402114.
  • Vandana, M.; Sahoo, S. K. Long Circulation and Cytotoxicity of PEGylated Gemcitabine and Its Potential for the Treatment of Pancreatic Cancer. Biomaterials 2010, 31, 9340–9356. DOI: 10.1016/j.biomaterials.2010.08.010.
  • Lilly, E. 2009. COMPANY. Highlights of Prescribing Information. Gemzar (Gemcitabine for Injection) [(accessed on 16 July 2019)]. Indianapolis, IN 46285, USA.
  • Greish, K. Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting. Cancer Nanotechnol. 2010, 2010, 25–37. DOI: 10.1007/978-1-60761-609-2_3.
  • Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C. Targeted Polymeric Therapeutic Nanoparticles: Design, Development and Clinical Translation. Chem. Soc. Rev. 2012, 41, 2971–3010. DOI: 10.1039/C2CS15344K.
  • Xiao, R. Z.; Zeng, Z. W.; Zhou, G. L.; Wang, J. J.; Li, F. Z.; Wang, A. M. Recent Advances in PEG–PLA Block Copolymer Nanoparticles. Int. J. Nanomed. 2010, 5, 1057. DOI: 10.2147/IJN.S14912.
  • Salmaso, S.; Caliceti, P. Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. J. Drug Deliv. 2013, 2013, 374252. DOI: 10.1155/2013/374252.
  • Loh, X. J.; Yee, B. J. H.; Chia, F. S. Sustained Delivery of Paclitaxel Using Thermogelling Poly (PEG/PPG/PCL Urethane) s for Enhanced Toxicity against Cancer Cells. J. Biomed. Mater. Res. A 2012, 100, 2686–2694. DOI: 10.1002/jbm.a.34198.
  • Yadav, K. S.; Chuttani, K.; Mishra, A. K.; Sawant, K. K. Long Circulating Nanoparticles of Etoposide Using PLGA‐MPEG and PLGA‐Pluronic Block Copolymers: Characterization, Drug‐Release, Blood‐Clearance, and Biodistribution Studies. Drug Dev. Res. 2010, 71, 228–239. DOI: 10.1002/ddr.20365.
  • Soni, G.; Yadav, K. S.; Gupta, M. K. QbD Based Approach for Formulation Development of Spray Dried Microparticles of Erlotinib Hydrochloride for Sustained Release. J. Drug Deliv. Sci. Technol. 2020, 57, 101684. DOI: 10.1016/j.jddst.2020.101684.
  • Öcal, H.; Arıca-Yegin, B.; Vural, I.; Goracinova, K.; Çalış, S. 5-Fluorouracil-Loaded PLA/PLGA PEG–PPG–PEG Polymeric Nanoparticles: Formulation, in Vitro Characterization and Cell Culture Studies. Drug Dev. Ind. Pharm. 2014, 40, 560–567. DOI: 10.3109/03639045.2013.775581.
  • Öztürk, K.; Mashal, A. R.; Yegin, B. A.; Çalış, S. Preparation and in Vitro Evaluation of 5-Fluorouracil-Loaded PCL Nanoparticles for Colon Cancer Treatment. Pharm. Dev. Technol. 2017, 22, 635–641. DOI: 10.3109/10837450.2015.1116565.
  • Kunii, R.; Onishi, H.; Machida, Y. Preparation and Antitumor Characteristics of PLA/(PEG-PPG-PEG) Nanoparticles Loaded with Camptothecin. Eur. J. Pharm. Biopharm. 2007, 67, 9–17. DOI: 10.1016/j.ejpb.2007.01.012.
  • Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Del. Rev. 2001, 47, 113–131. DOI: 10.1016/j.addr.2012.09.013.
  • Bahrami, Z.; Badiei, A.; Atyabi, F.; Darabi, H. R.; Mehravi, B. Piperazine and Its Carboxylic Acid Derivatives-Functionalized Mesoporous Silica as Nanocarriers for Gemcitabine: Adsorption and Release Study. Mater. Sci. Eng. C 2015, 49, 66–74. DOI: 10.1016/j.msec.2014.12.069.
  • Cavallaro, G.; Licciardi, M.; Mariano, L.; Salmaso, S.; Caliceti, P.; Gaetano, G. Folate-Mediated Targeting of Polymeric Conjugates of Gemcitabine. Int. J. Pharm. 2006, 307, 258–269. DOI: 10.1016/j.ijpharm.2005.10.015.
  • Khare, V.; Singh, A.; Mahajan, G.; Alam, N.; Kour, S.; Gupta, M.; Kumar, A.; Singh, G.; Singh, S. K.; Saxena, A. K.; et al. Long-Circulatory Nanoparticles for Gemcitabine Delivery: Development and Investigation of Pharmacokinetics and in-Vivo Anticancer Efficacy. Eur. J. Pharm. Sci. 2016, 92, 183–193. DOI: 10.1016/j.ejps.2016.07.007.
  • Gang, J.; Park, S. B.; Hyung, W.; Choi, E. H.; Wen, J.; Kim, H. S.; Shul, Y. G.; Haam, S.; Song, S. Y. Magnetic Poly ε-Caprolactone Nanoparticles Containing Fe3O4 and Gemcitabine Enhance anti-Tumor Effect in Pancreatic Cancer Xenograft Mouse Model. J. Drug Target. 2007, 15, 445–453. DOI: 10.1080/10611860701453901.
  • Hosseinzadeh, H.; Atyabi, F.; Dinarvand, R.; Ostad, S. N. Chitosan–Pluronic Nanoparticles as Oral Delivery of Anticancer Gemcitabine: Preparation and in Vitro Study. Int. J. Nanomed. 2012, 7, 1851. DOI: 10.2147/IJN.S26365.
  • Trickler, W. J.; Khurana, J.; Nagvekar, A. A.; Dash, A. K. Chitosan and Glyceryl Monooleate Nanostructures Containing Gemcitabine: Potential Delivery System for Pancreatic Cancer Treatment. AAPS PharmSciTech 2010, 11, 392–401. DOI: 10.1208/s12249-010-9393-0.
  • Parshina, N. A.; Pleteneva, T. V.; Baikova, V. N.; Narimanov, M. N.; Tyulyandin, S. A. Quantitative Estimation of Gemcitabine by HPLC in Plasma. Pharm. Chem. J. 2008, 42, 288–290. DOI: 10.1007/s11094-008-0110-1.
  • Singh, R.; Shakya, A. K.; Naik, R.; Shalan, N. Stability-Indicating HPLC Determination of Gemcitabine in Pharmaceutical Formulations. Int. J. Anal. Chem. 2015, 2015, 862592. DOI: 10.1155/2015/862592.
  • Xu, Y.; Keith, B.; Grem, J. L. Measurement of the Anticancer Agent Gemcitabine and Its Deaminated Metabolite at Low Concentrations in Human Plasma by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. B 2004, 802, 263–270. DOI: 10.1016/j.jchromb.2003.11.038.
  • Soni, G. S.; Yadav, K. S. Fast-Dissolving Films of Sumatriptan Succinate: Factorial Design to Optimize in Vitro Dispersion Time. J. Pharm. Innov. 2015, 10, 166–174. DOI: 10.1007/s12247-015-9217-6.
  • Yadav, K. S.; Kale, K. High Pressure Homogenizer in Pharmaceuticals: Understanding Its Critical Processing Parameters and Applications. J. Pharm. Innov. 2020, 15, 690–701. DOI: 10.1007/s12247-019-09413-4.
  • Soni, G.; Kale, K.; Shetty, S.; Gupta, M. K.; Yadav, K. S. Quality by Design (QbD) Approach in Processing Polymeric Nanoparticles Loading Anticancer Drugs by High Pressure Homogenizer. Heliyon 2020, 6, e03846. DOI: 10.1016/j.heliyon.2020.e03846.
  • Liang, Y.; Tian, B.; Zhang, J.; Li, K.; Wang, L.; Han, J.; Wu, Z. Tumor-Targeted Polymeric Nanostructured Lipid Carriers with Precise Ratiometric Control over Dual-Drug Loading for Combination Therapy in Non-Small-Cell Lung Cancer. Int. J. Nanomedicine. 2017, 12, 1699–1715. DOI: 10.2147/IJN.S121262.
  • Govender, T.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S. PLGA Nanoparticles Prepared by Nanoprecipitation: Drug Loading and Release Studies of a Water Soluble Drug. J. Control. Release 1999, 57, 171–185. DOI: 10.1016/S0168-3659(98)00116-3.
  • Acharya, S.; Dilnawaz, F.; Sahoo, S. K. Targeted Epidermal Growth Factor Receptor Nanoparticle Bioconjugates for Breast Cancer Therapy. Biomaterials 2009, 30, 5737–5750. DOI: 10.1016/j.biomaterials.2009.07.008.
  • Janes, K. A.; Fresneau, M. P.; Marazuela, A.; Fabra, A.; Alonso, M. J. Chitosan Nanoparticles as Delivery Systems for Doxorubicin. J. Control. Release 2001, 73, 255–267. DOI: 10.1016/S0168-3659(01)00294-2.
  • Craparo, E. F.; Pitarresi, G.; Bondì, M. L.; Casaletto, M. P.; Licciardi, M.; Giammona, G. A Nanoparticulate Drug‐Delivery System for Rivastigmine: Physico‐Chemical and in Vitro Biological Characterization. Macromol. Biosci. 2008, 8, 247–259. DOI: 10.1002/mabi.200700165.
  • Pasut, G.; Canal, F.; Dalla Via, L.; Arpicco, S.; Veronese, F. M.; Schiavon, O. Antitumoral Activity of PEG–Gemcitabine Prodrugs Targeted by Folic Acid. J. Control. Release 2008, 127, 239–248. DOI: 10.1016/j.jconrel.2008.02.002.
  • Soni, G.; Yadav, K. S.; Gupta, M. K. Design of Experiments (DoE) Approach to Optimize the Sustained Release Microparticles of Gefitinib. Curr. Drug Deliv. 2019, 16, 364–374. DOI: 10.2174/1567201816666181227114109.
  • Oliveira, M. S.; Aryasomayajula, B.; Pattni, B.; Mussi, S. V.; Ferreira, L. A.; Torchilin, V. P. Solid Lipid Nanoparticles co-Loaded with Doxorubicin and α-Tocopherol Succinate Are Effective against Drug-Resistant Cancer Cells in Monolayer and 3-D Spheroid Cancer Cell Models. Int. J. Pharm. 2016, 512, 292–300. DOI: 10.1016/j.ijpharm.2016.08.049.
  • Affram, K. O.; Smith, T.; Ofori, E.; Krishnan, S.; Underwood, P.; Trevino, J. G.; Agyare, E. Cytotoxic Effects of Gemcitabine-Loaded Solid Lipid Nanoparticles in Pancreatic Cancer Cells. J. Drug Deliv. Sci. Technol. 2020, 55, 101374. DOI: 10.1016/j.jddst.2019.101374.
  • Azizi, M.; Ghourchian, H.; Yazdian, F.; Dashtestani, F.; AlizadehZeinabad, H. Cytotoxic Effect of Albumin Coated Copper Nanoparticle on Human Breast Cancer Cells of MDA-MB 231. PLoS One 2017, 12, e0188639. DOI: 10.1371/journal.pone.0188639.
  • Gogoi, P.; Dutta, A.; Ramteke, A.; Maji, T. K. Preparation, Characterization and Cytotoxic Applications of Curcumin‐(±) α‐Lipoic Acid Coloaded Phosphorylated Chitosan Nanoparticles in MDA MB 231 Breast Cancer Cell Line. Polym. Adv. Technol. 2020, 31, 2827–2841. DOI: 10.1002/pat.5009.
  • Immordino, M. L.; Brusa, P.; Rocco, F.; Arpicco, S.; Ceruti, M.; Cattel, L. Preparation, Characterization, Cytotoxicity and Pharmacokinetics of Liposomes Containing Lipophilic Gemcitabine Prodrugs. J. Control. Release 2004, 100, 331–346. DOI: 10.1016/j.jconrel.2004.09.001.
  • Garg, N. K.; Dwivedi, P.; Campbell, C.; Tyagi, R. K. Site Specific/Targeted Delivery of Gemcitabine through Anisamide Anchored Chitosan/Poly Ethylene Glycol Nanoparticles: An Improved Understanding of Lung Cancer Therapeutic Intervention. Eur. J. Pharm. Sci. 2012, 47, 1006–1014. DOI: 10.1016/j.ejps.2012.09.012.
  • Vandana, M.; Sahoo, S. K. Synergistic Activity of Combination Therapy with PEGylated Pemetrexed and Gemcitabine for an Effective Cancer Treatment. Eur. J. Pharm. Sci. 2015, 94, 83–93. DOI: 10.1016/j.ejpb.2015.04.017.
  • Kumar, B. K.; Thiruvengada Rajan, V. S.; Begum, N. T. Analytical Method Development and Validation of Lidocaine in Ointment Formulation by U. V Spectrophotometric Method. Int. J. Pharm. Pharm. Sci. 2012, 4, 610–614.
  • Albanese, A.; Tang, P. S.; Chan, W. C. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. DOI: 10.1146/annurev-bioeng-071811-150124.
  • Menon, J. U.; Kuriakose, A.; Iyer, R.; Hernandez, E.; Gandee, L.; Zhang, S.; Takahashi, M.; Zhang, Z.; Saha, D.; Nguyen, K. T. Dual-Drug Containing Core-Shell Nanoparticles for Lung Cancer Therapy. Sci. Rep. 2017, 7, 13249. DOI: 10.1038/s41598-017-13320-4.
  • Sameni, J.; Bukhari, N. I.; Azlan, N. A.; Julianto, T.; Majeed, A. B. A. The Effect of Preparation Parameters on the Size and Morphology of PLGA-Based Nanoparticles. IEEE Symp. Comput. Appl. Ind. Electron. 2009, 2, 700–704. DOI: 10.1109/ISIEA.2009.5356377.
  • Jaidev, L. R.; Krishnan, U. M.; Sethuraman, S. Gemcitabine Loaded Biodegradable PLGA Nanospheres for in Vitro Pancreatic Cancer Therapy. Mater. Sci. Eng. C 2015, 47, 40–47. DOI: 10.1016/j.msec.2014.11.027.
  • Joshi, G.; Kumar, A.; Sawant, K. Enhanced Bioavailability and Intestinal Uptake of Gemcitabine HCl Loaded PLGA Nanoparticles after Oral Delivery. Eur. J. Pharm. Sci. 2014, 60, 80–89. DOI: 10.1016/j.ejps.2014.04.014.
  • Sloat, B. R.; Sandoval, M. A.; Li, D.; Chung, W. G.; Lansakara-P, D. S.; Proteau, P. J.; Kiguchi, K.; DiGiovanni, J.; Cui, Z. In Vitro and in Vivo anti-Tumor Activities of a Gemcitabine Derivative Carried by Nanoparticles. Int. J. Pharm. 2011, 409, 278–288. DOI: 10.1016/j.ijpharm.2011.02.037.
  • Dubey, R. D.; Alam, N.; Saneja, A.; Khare, V.; Kumar, A.; Vaidh, S.; Mahajan, G.; Sharma, P. R.; Singh, S. K.; Mondhe, D. M.; Gupta, P. N. Development and Evaluation of Folate Functionalized Albumin Nanoparticles for Targeted Delivery of Gemcitabine. Int. J. Pharm. 2015, 409, 80–91. DOI: 10.1016/j.ijpharm.2015.07.012.
  • Kunii, R.; Onishi, H.; Ueki, K. I.; Koyama, K. I.; Machida, Y. Particle Characteristics and Biodistribution of Camptothecin-Loaded PLA/(PEG-PPG-PEG) Nanoparticles. Drug Deliv. 2008, 15, 3–10. DOI: 10.1080/10717540701827154.
  • De Melo-Diogo, D.; Gaspar, V. M.; Costa, E. C.; Moreira, A. F.; Oppolzer, D.; Gallardo, E.; Correia, I. J. Combinatorial Delivery of Crizotinib–Palbociclib–Sildenafil Using TPGS-PLA Micelles for Improved Cancer Treatment. Eur. J. Pharm. Biopharm. 2014, 88, 718–729. DOI: 10.1016/j.ejpb.2014.09.013.
  • Papa, A. L.; Sidiqui, A.; Balasubramanian, S. U. A.; Sarangi, S.; Luchette, M.; Sengupta, S.; Harfouche, R. PEGylated Liposomal Gemcitabine: Insights into a Potential Breast Cancer Therapeutic. Cell Oncol (Dordr) 2013, 36, 449–457. DOI: 10.1007/s13402-013-0146-4.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. DOI: 10.1016/j.addr.2015.09.012.
  • Soni, G.; Yadav, K. S. Communication of Drug Loaded Nanogels with Cancer Cell Receptors for Targeted Delivery. Model. Optimiz. Sci. Technol. 2017, 9, 503–515. DOI: 10.1007/978-3-319-50688-3_21.
  • Yadav, K. S.; Mishra, D. K.; Deshpande, A.; Pethe, A. M. Levels of Drug Targeting. Basic Fundamentals of Drug Delivery; Academic Press: Cambridge, MA, 2018; pp. 269–305. DOI: 10.1016/B978-0-12-817909-3.00007-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.