153
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A three-dimensional structure with osteoconductive function made of O-carboxymethyl chitosan using aspirin as a cross-linker

, , , &
Pages 214-230 | Received 13 May 2022, Accepted 01 Dec 2022, Published online: 12 Jan 2023

References

  • Fang, X.; Lei, L.; Jiang, T.; Chen, Y.; Kang, Y. Injectable Thermosensitive Alginate/β‐Tricalcium Phosphate/Aspirin Hydrogels for Bone Augmentation. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 1739–1751. DOI: 10.1002/jbm.b.33982.
  • Zhao, H.; Zhao, L. Low-Dose Aspirin Promotes Osteogenic Differentiation and Osteogenic Activity in Osteoporotic Rats by Regulating Opg/Rankl/Rank Axis. Trop. J. Pharm. Res. 2020, 19, 2103–2107. DOI: 10.4314/tjpr.v19i10.13.
  • Abd Rahman, F.; Mohd Ali, J.; Abdullah, M.; Abu Kasim, N. H.; Musa, S. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor–Associated Genes in PDLSCs. J. Periodontol. 2016, 87, 837–847. DOI: 10.1902/jop.2016.150610.
  • Zhang, J.; Ma, S.; Liu, Z.; Geng, H.; Lu, X.; Zhang, X.; Li, H.; Gao, C.; Zhang, X.; Gao, P. Guided Bone Regeneration with Asymmetric Collagen-Chitosan Membranes Containing Aspirin-Loaded Chitosan Nanoparticles. Int. J. Nanomedicine. 2017, 12, 8855–8866. DOI: 10.2147/IJN.S148179.
  • Yuan, M.; Zhan, Y.; Hu, W.; Li, Y.; Xie, X.; Miao, N.; Jin, H.; Zhang, B. Aspirin Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int. J. Mol. Med. 2018, 42, 1967–1976. DOI: 10.3892/ijmm.2018.3801.
  • Tao, Z.; Zhou, W.; Wu, X.; Lu, H.; Ma, N.; Li, Y.; Zhang, R.; Yang, M.; Xu, H.-G. Local Administration of Aspirin Improves Osseointegration of Hydroxyapatite-Coated Titanium Implants in Ovariectomized Rats through Activation of the Notch Signaling Pathway. J. Biomater. Appl. 2020, 34, 1009–1018. DOI: 10.1177/0885328219889630.
  • Liu, H.; Li, W.; Liu, Y.; Zhang, X.; Zhou, Y. Co-Administration of Aspirin and Allogeneic Adipose-Derived Stromal Cells Attenuates Bone Loss in Ovariectomized Rats through the anti-Inflammatory and Chemotactic Abilities of Aspirin. Stem Cell Res. Ther. 2015, 6, 200. DOI: 10.1186/s13287-015-0195-x.
  • Wang, L.; Stegemann, J. P. Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with β-Glycerophosphate for Bone Tissue Engineering. Biomaterials 2010, 31, 3976–3985. DOI: 10.1016/j.biomaterials.2010.01.131.
  • Ma, G.; Yang, D.; Li, Q.; Wang, K.; Chen, B.; Kennedy, J. F.; Nie, J. Injectable Hydrogels Based on Chitosan Derivative/Polyethylene Glycol Dimethacrylate/N, N-Dimethylacrylamide as Bone Tissue Engineering Matrix. Carbohydr. Polym. 2010, 79, 620–627. DOI: 10.1016/j.carbpol.2009.09.015.
  • Zhou, H. Y.; Jiang, L. J.; Cao, P. P.; Li, J. B.; Chen, X. G. Glycerophosphate-Based Chitosan Thermosensitive Hydrogels and Their Biomedical Applications. Carbohydr. Polym. 2015, 117, 524–536. DOI: 10.1016/j.carbpol.2014.09.094.
  • Baran, T.; Menteş, A.; Arslan, H. Synthesis and Characterization of Water Soluble O-Carboxymethyl Chitosan Schiff Bases and Cu (II) Complexes. Int. J. Biol. Macromol. 2015, 72, 94–103. DOI: 10.1016/j.ijbiomac.2014.07.029.
  • Anitha, A.; Rani, V. D.; Krishna, R.; Sreeja, V.; Selvamurugan, N.; Nair, S.; Tamura, H.; Jayakumar, R. Synthesis, Characterization, Cytotoxicity and Antibacterial Studies of Chitosan, O-Carboxymethyl and N, O-Carboxymethyl Chitosan Nanoparticles. Carbohydr. Polym. 2009, 78, 672–677. DOI: 10.1016/j.carbpol.2009.05.028.
  • Zheng, M.; Han, B.; Yang, Y.; Liu, W. Synthesis, Characterization and Biological Safety of O-Carboxymethyl Chitosan Used to Treat Sarcoma 180 Tumor. Carbohydr. Polym. 2011, 86, 231–238. DOI: 10.1016/j.carbpol.2011.04.038.
  • Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7, 211–228. DOI: 10.1089/107632701300062859.
  • Tobita, M.; Tajima, S.; Mizuno, H. Adipose Tissue-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma: Stem Cell Transplantation Methods That Enhance Stemness. Stem Cell Res. Ther. 2015, 6, 1–7. DOI: 10.1186/s13287-015-0217-8.
  • Park, S.-H.; Seo, S.-Y.; Na, H.-N.; Kim, K.-I.; Lee, J.-W.; Woo, H.-D.; Lee, J.-H.; Seok, H.-K.; Lee, J.-G.; Chung, S.-I.; et al. Preparation of a Visible Light-Reactive Low molecular-O-Carboxymethyl Chitosan (LM-O-CMCS) Derivative and Applicability as an Anti-Adhesion Agent. Macromol. Res. 2011, 19, 921–927. DOI: 10.1007/s13233-011-0914-9.
  • Abazari, M. F.; Hosseini, Z.; Karizi, S. Z.; Norouzi, S.; Faskhoudi, M. A.; Saburi, E.; Enderami, S. E.; Ardeshirylajimi, A.; Mohajerani, H. Different Osteogenic Differentiation Potential of Mesenchymal Stem Cells on Three Different Polymeric Substrates. Gene 2020, 740, 144534. DOI: 10.1016/j.gene.2020.144534.
  • Lin, H.-Y.; Huang, H.-Y.; Shiue, S.-J.; Cheng, J.-K. Osteogenic Effects of Inductive Coupling Magnetism from Magnetic 3D Printed Hydrogel Scaffold. J. Magn. Magn. Mater. 2020, 504, 166680. DOI: 10.1016/j.jmmm.2020.166680.
  • Khalid, M.; Agnely, F.; Yagoubi, N.; Grossiord, J.; Couarraze, G. Water State Characterization, Swelling Behavior, Thermal and Mechanical Properties of Chitosan Based Networks. Eur. J. Pharm. Sci. 2002, 15, 425–432. DOI: 10.1016/s0928-0987(02)00029-5.
  • Zhang, Y.; Ding, N.; Zhang, T.; Sun, Q.; Han, B.; Yu, T. A Tetra-PEG Hydrogel Based Aspirin Sustained Release System Exerts Beneficial Effects on Periodontal Ligament Stem Cells Mediated Bone Regeneration. Front. Chem. 2019, 7, 682. DOI: 10.3389/fchem.2019.00682.
  • Khoramgah, M. S.; Ranjbari, J.; Abbaszadeh, H.-A.; Mirakabad, F. S. T.; Hatami, S.; Hosseinzadeh, S.; Ghanbarian, H. Freeze-Dried Multiscale Porous Nanofibrous Three Dimensional Scaffolds for Bone Regenerations. Bioimpacts 2020, 10, 73–85. DOI: 10.34172/bi.2020.10.
  • Bagher, Z.; Ehterami, A.; Safdel, M. H.; Khastar, H.; Semiari, H.; Asefnejad, A.; Davachi, S. M.; Mirzaii, M.; Salehi, M. Wound Healing with Alginate/Chitosan Hydrogel Containing Hesperidin in Rat Model. J. Drug Delivery Sci. Technol. 2020, 55, 101379. DOI: 10.1016/j.jddst.2019.101379.
  • Jahed, V.; Vasheghani-Farahani, E.; Bagheri, F.; Zarrabi, A.; Jensen, H. H.; Larsen, K. L. Quantum Dots-Βcyclodextrin-Histidine Labeled Human Adipose Stem Cells-Laden Chitosan Hydrogel for Bone Tissue Engineering. Nanomedicine 2020, 27, 102217. DOI: 10.1016/j.nano.2020.102217.
  • Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan Hydrogel Incorporated with Dental Pulp Stem Cell-Derived Exosomes Alleviates Periodontitis in Mice via a Macrophage-Dependent Mechanism. Bioact. Mater. 2020, 5, 1113–1126. DOI: 10.1016/j.bioactmat.2020.07.002.
  • Tan, M. L.; Shao, P.; Friedhuber, A. M.; van Moorst, M.; Elahy, M.; Indumathy, S.; Dunstan, D. E.; Wei, Y.; Dass, C. R. The Potential Role of Free Chitosan in Bone Trauma and Bone Cancer Management. Biomaterials 2014, 35, 7828–7838. DOI: 10.1016/j.biomaterials.2014.05.087.
  • Chen, W.; Zhou, H.; Weir, M. D.; Tang, M.; Bao, C.; Xu, H. H. Human Embryonic Stem Cell-Derived Mesenchymal Stem Cell Seeding on Calcium Phosphate Cement-Chitosan-RGD Scaffold for Bone Repair. Tissue Eng. A 2013, 19, 915–927. DOI: 10.1089/ten.TEA.2012.0172.
  • Park, K. M.; Lee, S. Y.; Joung, Y. K.; Na, J. S.; Lee, M. C.; Park, K. D. Thermosensitive Chitosan–Pluronic Hydrogel as an Injectable Cell Delivery Carrier for Cartilage Regeneration. Acta Biomater. 2009, 5, 1956–1965. DOI: 10.1016/j.actbio.2009.01.040.
  • Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G. Bone Formation by Three‐Dimensional Stromal Osteoblast Culture in Biodegradable Polymer Scaffolds. J. Biomed. Mater. Res. 1997, 36, 17–28. DOI: 10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O.
  • Dennis, J. E.; Haynesworth, S. E.; Young, R. G.; Caplan, A. I. Osteogenesis in Marrow-Derived Mesenchymal Cell Porous Ceramic Composites Transplanted Subcutaneously: Effect of Fibronectin and Laminin on Cell Retention and Rate of Osteogenic Expression. Cell Transplant. 1992, 1, 23–32. DOI: 10.1177/096368979200100106.
  • Tziafas, D.; Amar, S.; Staubli, A.; Meyer, J.; Ruch, J. Effects of Glycosaminoglycans on In Vitro Mouse Dental Cells. Arch. Oral Biol. 1988, 33, 735–740. DOI: 10.1016/0003-9969(88)90007-6.
  • Lee, J.-Y.; Nam, S.-H.; Im, S.-Y.; Park, Y.-J.; Lee, Y.-M.; Seol, Y.-J.; Chung, C.-P.; Lee, S.-J. Enhanced Bone Formation by Controlled Growth Factor Delivery from Chitosan-Based Biomaterials. J. Control. Release 2002, 78, 187–197. DOI: 10.1016/s0168-3659(01)00498-9.
  • Weir, M. D.; Xu, H. H. Osteoblastic Induction on Calcium Phosphate Cement–Chitosan Constructs for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2010, 94, 223–233. DOI: 10.1002/jbm.a.32665.
  • Song, H.-Y.; Esfakur Rahman, A.; Lee, B.-T. Fabrication of Calcium Phosphate-Calcium Sulfate Injectable Bone Substitute Using Chitosan and Citric Acid. J. Mater. Sci. Mater. Med. 2009, 20, 935–941. DOI: 10.1007/s10856-008-3642-8.
  • Liu, H.; Li, H.; Cheng, W.; Yang, Y.; Zhu, M.; Zhou, C. Novel Injectable Calcium Phosphate/Chitosan Composites for Bone Substitute Materials. Acta Biomater. 2006, 2, 557–565. DOI: 10.1016/j.actbio.2006.03.007.
  • Ji, J.; Hao, S.; Dong, J.; Wu, D.; Yang, B.; Xu, Y. Preparation, Evaluation, and In Vitro Release Study of O‐Carboxymethyl Chitosan Nanoparticles Loaded with Gentamicin and Salicylic Acid. J. Appl. Polym. Sci. 2012, 123, 1684–1689. DOI: 10.1002/app.34631.
  • Chen, X.-G.; Park, H.-J. Chemical Characteristics of O-Carboxymethyl Chitosans Related to the Preparation Conditions. Carbohydr. Polym. 2003, 53, 355–359. DOI: 10.1016/S0144-8617(03)00051-1.
  • Prabaharan, M.; Reis, R.; Mano, J. Carboxymethyl Chitosan-Graft-Phosphatidylethanolamine: Amphiphilic Matrices for Controlled Drug Delivery. React. Funct. Polym. 2007, 67, 43–52. DOI: 10.1016/j.reactfunctpolym.2006.09.001.
  • He, G.; Chen, X.; Yin, Y.; Zheng, H.; Xiong, X.; Du, Y. Synthesis, Characterization and Antibacterial Activity of Salicyloyl Chitosan. Carbohydr. Polym. 2011, 83, 1274–1278. DOI: 10.1016/j.carbpol.2010.09.034.
  • He, G.; Wang, Z.; Zheng, H.; Yin, Y.; Xiong, X.; Lin, R. Preparation, Characterization and Properties of Aminoethyl Chitin Hydrogels. Carbohydr. Polym. 2012, 90, 1614–1619. DOI: 10.1016/j.carbpol.2012.07.040.
  • Liu, C.; Wu, Y.; Zhao, L.; Huang, X. Preparation of Acetylsalicylic Acid-Acylated Chitosan as a Novel Polymeric Drug for Drug Controlled Release. Int. J. Biol. Macromol. 2015, 78, 189–194. DOI: 10.1016/j.ijbiomac.2015.03.063.
  • Zhao, Y.; Chen, J.; Zou, L.; Xu, G.; Geng, Y. Facile One-Step Bioinspired Mineralization by Chitosan Functionalized with Graphene Oxide to Activate Bone Endogenous Regeneration. Chem. Eng. J. 2019, 378, 122174. DOI: 10.1016/j.cej.2019.122174.
  • Koleva, B. B. Polymorphs of Aspirin–Solid-State IR-LD Spectroscopic and Quantitative Determination in Solid Mixtures. J. Mol. Struct. 2006, 800, 23–27. DOI: 10.1016/j.molstruc.2006.03.088.
  • Ajun, W.; Yan, S.; Li, G.; Huili, L. Preparation of Aspirin and Probucol in Combination Loaded Chitosan Nanoparticles and in Vitro Release Study. Carbohydr. Polym. 2009, 75, 566–574. DOI: 10.1016/j.carbpol.2008.08.019.
  • Bi, S.; Wang, P.; Hu, S.; Li, S.; Pang, J.; Zhou, Z.; Sun, G.; Huang, L.; Cheng, X.; Xing, S.; Chen, X. Construction of Physical-Crosslink Chitosan/PVA Double-Network Hydrogel with Surface Mineralization for Bone Repair. Carbohydr. Polym. 2019, 224, 115176. DOI: 10.1016/j.carbpol.2019.115176.
  • Bi, S.; Pang, J.; Huang, L.; Sun, M.; Cheng, X.; Chen, X. The Toughness chitosan-PVA Double Network Hydrogel Based on Alkali Solution System and Hydrogen Bonding for Tissue Engineering Applications. Int. J. Biol. Macromol. 2020, 146, 99–109. DOI: 10.1016/j.ijbiomac.2019.12.186.
  • Wang, L.; Qiu, Y.; Lv, H.; Si, Y.; Liu, L.; Zhang, Q.; Cao, J.; Yu, J.; Li, X.; Ding, B. 3D Superelastic Scaffolds Constructed from Flexible Inorganic Nanofibers with Self‐Fitting Capability and Tailorable Gradient for Bone Regeneration. Adv. Funct. Mater. 2019, 29, 1901407. DOI: 10.1002/adfm.201901407.
  • Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 2006, 126, 677–689. DOI: 10.1016/j.cell.2006.06.044.
  • Choi, J. S.; Harley, B. A. The Combined Influence of Substrate Elasticity and Ligand Density on the Viability and Biophysical Properties of Hematopoietic Stem and Progenitor Cells. Biomaterials 2012, 33, 4460–4468. DOI: 10.1016/j.biomaterials.2012.03.010.
  • Yu, P.; Bao, R.-Y.; Shi, X.-J.; Yang, W.; Yang, M.-B. Self-Assembled High-Strength Hydroxyapatite/Graphene Oxide/Chitosan Composite Hydrogel for Bone Tissue Engineering. Carbohydr. Polym. 2017, 155, 507–515. DOI: 10.1016/j.carbpol.2016.09.001.
  • Panzavolta, S.; Bracci, B.; Gualandi, C.; Focarete, M. L.; Treossi, E.; Kouroupis-Agalou, K.; Rubini, K.; Bosia, F.; Brely, L.; Pugno, N. M.; et al. Structural Reinforcement and Failure Analysis in Composite Nanofibers of Graphene Oxide and Gelatin. Carbon 2014, 78, 566–577. DOI: 10.1016/j.carbon.2014.07.040.
  • Zhou, F.; Hong, Y.; Zhang, X.; Yang, L.; Li, J.; Jiang, D.; Bunpetch, V.; Hu, Y.; Ouyang, H.; Zhang, S. Tough Hydrogel with Enhanced Tissue Integration and in Situ Forming Capability for Osteochondral Defect Repair. Appl. Mater. Today 2018, 13, 32–44. DOI: 10.1016/j.apmt.2018.08.005.
  • Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H.-P.; Lippens, E.; Duda, G. N.; Mooney, D. J. Hydrogels with Tunable Stress Relaxation Regulate Stem Cell Fate and Activity. Nat. Mater. 2016, 15, 326–334. DOI: 10.1038/nmat4489.
  • Maharjan, B.; Park, J.; Kaliannagounder, V. K.; Awasthi, G. P.; Joshi, M. K.; Park, C. H.; Kim, C. S. Regenerated Cellulose Nanofiber Reinforced Chitosan Hydrogel Scaffolds for Bone Tissue Engineering. Carbohydr. Polym. 2021, 251, 117023. DOI: 10.1016/j.carbpol.2020.117023.
  • Filippi, M.; Born, G.; Chaaban, M.; Scherberich, A. Natural Polymeric Scaffolds in Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 474. DOI: 10.3389/fbioe.2020.00474.
  • Sharifi, F.; Atyabi, S. M.; Norouzian, D.; Zandi, M.; Irani, S.; Bakhshi, H. Polycaprolactone/Carboxymethyl Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering Application. Int. J. Biol. Macromol. 2018, 115, 243–248. DOI: 10.1016/j.ijbiomac.2018.04.045.
  • Ji, M.; Li, H.; Guo, H.; Xie, A.; Wang, S.; Huang, F.; Li, S.; Shen, Y.; He, J. A Novel Porous Aspirin-Loaded (GO/CTS-HA) n Nanocomposite Films: Synthesis and Multifunction for Bone Tissue Engineering. Carbohydr. Polym. 2016, 153, 124–132. DOI: 10.1016/j.carbpol.2016.07.078.
  • Zhang, W.; Lu, X.; Yuan, Z.; Shen, M.; Song, Y.; Liu, H.; Deng, J.; Zhong, X.; Zhang, X. Establishing an Osteoimmunomodulatory Coating Loaded with Aspirin on the Surface of Titanium Primed with Phase-Transited Lysozyme. Int. J. Nanomedicine. 2019, 14, 977–991. DOI: 10.2147/IJN.S190766.
  • Praveen, G.; Sreerekha, P.; Menon, D.; Nair, S. V.; Chennazhi, K. P. Fibrin Nanoconstructs: A Novel Processing Method and Their Use as Controlled Delivery Agents. Nanotechnology 2012, 23, 095102. DOI: 10.1088/0957-4484/23/9/095102.
  • Martínez-Vázquez, F.; Cabañas, M.; Paris, J.; Lozano, D.; Vallet-Regí, M. Fabrication of Novel Si-Doped Hydroxyapatite/Gelatine Scaffolds by Rapid Prototyping for Drug Delivery and Bone Regeneration. Acta Biomater. 2015, 15, 200–209. DOI: 10.1016/j.actbio.2014.12.021.
  • Fan, M.; Ma, Y.; Mao, J.; Zhang, Z.; Tan, H. Cytocompatible in Situ Forming Chitosan/Hyaluronan Hydrogels via a Metal-Free Click Chemistry for Soft Tissue Engineering. Acta Biomater. 2015, 20, 60–68. DOI: 10.1016/j.actbio.2015.03.033.
  • Wang, Y.; Qian, J.; Zhao, N.; Liu, T.; Xu, W.; Suo, A. Novel Hydroxyethyl Chitosan/Cellulose Scaffolds with Bubble-like Porous Structure for Bone Tissue Engineering. Carbohydr. Polym. 2017, 167, 44–51. DOI: 10.1016/j.carbpol.2017.03.030.
  • Su, F.; Wang, J.; Zhu, S.; Liu, S.; Yu, X.; Li, S. Synthesis and Characterization of Novel Carboxymethyl Chitosan Grafted Polylactide Hydrogels for Controlled Drug Delivery. Polym. Adv. Technol. 2015, 26, 924–931. DOI: 10.1002/pat.3503.
  • Zhang, Y.; Dou, X.; Zhang, L.; Wang, H.; Zhang, T.; Bai, R.; Sun, Q.; Wang, X.; Yu, T.; Wu, D.; et al. Facile Fabrication of a Biocompatible Composite Gel with Sustained Release of Aspirin for Bone Regeneration. Bioact. Mater. 2022, 11, 130–139. DOI: 10.1016/j.bioactmat.2021.09.033.
  • Ren, L.; Pan, S.; Li, H.; Li, Y.; He, L.; Zhang, S.; Che, J.; Niu, Y. Effects of Aspirin-Loaded Graphene Oxide Coating of a Titanium Surface on Proliferation and Osteogenic Differentiation of MC3T3-E1 Cells. Sci. Rep. 2018, 8, 1–13. DOI: 10.1038/s41598-018-33353-7.
  • Zhu, W.; Chen, R.; Wang, W.; Liu, Y.; Shi, C.; Tang, S.; Tang, G. Fabrication of Naturally Derived Double-Network Hydrogels with a Sustained Aspirin Release System for Facilitating Bone Regeneration. Front. Chem. 2022, 10, 874985. DOI: 10.3389/fchem.2022.874985.
  • Bu, Y.; Zhang, L.; Sun, G.; Sun, F.; Liu, J.; Yang, F.; Tang, P.; Wu, D. Tetra‐PEG Based Hydrogel Sealants for In Vivo Visceral Hemostasis. Adv. Mater. 2019, 31, 1901580. DOI: 10.1002/adma.201901580.
  • Du, J.; Mei, S.; Guo, L.; Su, Y.; Wang, H.; Liu, Y.; Zhao, Z.; Wang, S.; Liu, Y. Platelet‐Rich Fibrin/Aspirin Complex Promotes Alveolar Bone Regeneration in Periodontal Defect in Rats. J. Periodontal Res. 2018, 53, 47–56. DOI: 10.1111/jre.12485.
  • Aguilar, A., Zein, N., Harmouch, E., Hafdi, B., Bornert, F., Offner, D., Clauss, F., Fioretti, F., Huck, O.; Benkirane-Jessel, N., et al. Application of Chitosan in Bone and Dental Engineering. Molecules 2019, 24, 3009. DOI: 10.3390/molecules24163009.
  • Tan, H.; Marra, K. G. Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials 2010, 3, 1746–1767. DOI: 10.3390/ma3031746.
  • Reakasame, S.; Boccaccini, A. R. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. Biomacromolecules 2018, 19, 3–21. DOI: 10.1021/acs.biomac.7b01331.
  • Saravanan, S.; Leena, R.; Selvamurugan, N. Chitosan Based Biocomposite Scaffolds for Bone Tissue Engineering. Int. J. Biol. Macromol. 2016, 93, 1354–1365. DOI: 10.1016/j.ijbiomac.2016.01.112.
  • Tödtmann, N.; Lode, A.; Mann, R.; Mai, R.; Lauer, G.; Wieczorek, K.; Eckelt, U. Influence of Different Modifications of a Calcium Phosphate Cement on Resorption and New Bone Formation: An In Vivo Study in the Minipig. J. Biomed. Mater. Res. 2013, 101, 1410–1418. DOI: 10.1002/jbm.b.32960.
  • Yu, R.; de Saint-Cyr, L. C.; Soussan, L.; Barboiu, M.; Li, S. Anti-Bacterial Dynamic Hydrogels Prepared from O-Carboxymethyl Chitosan by Dual Imine Bond Crosslinking for Biomedical Applications. Int. J. Biol. Macromol. 2021, 167, 1146–1155. DOI: 10.1016/j.ijbiomac.2020.11.068.
  • Fattahi, R.; Mohebichamkhorami, F.; Khani, M. M.; Soleimani, M.; Hosseinzadeh, S. Aspirin Effect on Bone Remodeling and Skeletal Regeneration. Tissue and Cell 2022, 76, 101753. DOI: 10.1016/j.tice.2022.101753.
  • Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Xu, X.; Chen, X.; Shi, S. Acetylsalicylic Acid Treatment Improves Differentiation and Immunomodulation of SHED. J. Dent. Res. 2015, 94, 209–218. DOI: 10.1177/0022034514557672.
  • Shams Ara, A.; Sheibani, V.; Esmaeilpour, K.; Eslaminejad, T.; Nematollahi-Mahani, S. N. Coadministration of the Human Umbilical Cord Matrix-Derived Mesenchymal Cells and Aspirin Alters Postischemic Brain Injury in Rats. J. Stroke Cerebrovasc. Dis. 2015, 24, 2005–2016. DOI: 10.1016/j.jstrokecerebrovasdis.2015.04.049.
  • Tang, J.; Xiong, J.; Wu, T.; Tang, Z.; Ding, G.; Zhang, C.; Wang, S.; Liu, Y. Aspirin Treatment Improved Mesenchymal Stem Cell Immunomodulatory Properties via the 15d-PGJ2/PPARγ/TGF-β1 Pathway. Stem Cells Dev. 2014, 23, 2093–2103. DOI: 10.1089/scd.2014.0081.
  • Cao, Y.; Xiong, J.; Mei, S.; Wang, F.; Zhao, Z.; Wang, S.; Liu, Y. Aspirin Promotes Bone Marrow Mesenchymal Stem Cell-Based Calvarial Bone Regeneration in Mini Swine. Stem Cell Res. Ther. 2015, 6, 210. DOI: 10.1186/s13287-015-0200-4.
  • Depan, D.; Surya, P. V.; Girase, B.; Misra, R. Organic/Inorganic Hybrid Network Structure Nanocomposite Scaffolds Based on Grafted Chitosan for Tissue Engineering. Acta Biomater. 2011, 7, 2163–2175. DOI: 10.1016/j.actbio.2011.01.029.
  • Saekhor, K.; Udomsinprasert, W.; Honsawek, S.; Tachaboonyakiat, W. Preparation of an Injectable Modified Chitosan-Based Hydrogel Approaching for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 123, 167–173. DOI: 10.1016/j.ijbiomac.2018.11.041.
  • Lai, G.-J.; Shalumon, K.; Chen, S.-H.; Chen, J.-P. Composite Chitosan/Silk Fibroin Nanofibers for Modulation of Osteogenic Differentiation and Proliferation of Human Mesenchymal Stem Cells. Carbohydr. Polym. 2014, 111, 288–297. DOI: 10.1016/j.carbpol.2014.04.094.
  • Cho, M. H.; Kim, K. S.; Ahn, H. H.; Kim, M. S.; Kim, S. H.; Khang, G.; Lee, B.; Lee, H. B. Chitosan Gel as an in Situ–Forming Scaffold for Rat Bone Marrow Mesenchymal Stem Cells in Vivo. Tissue Eng. A 2008, 14, 1099–1108. DOI: 10.1089/ten.tea.2007.0305.
  • Re, F.; Sartore, L.; Moulisova, V.; Cantini, M.; Almici, C.; Bianchetti, A.; Chinello, C.; Dey, K.; Agnelli, S.; Manferdini, C.; et al. 3D Gelatin-Chitosan Hybrid Hydrogels Combined with Human Platelet Lysate Highly Support Human Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation. J. Tissue Eng. 2019, 10, 2041731419845852. DOI: 10.1177/2041731419845852.
  • Franceschi, R. T.; Xiao, G. Regulation of the Osteoblast‐Specific Transcription Factor, Runx2: Responsiveness to Multiple Signal Transduction Pathways. J. Cell. Biochem. 2003, 88, 446–454. DOI: 10.1002/jcb.10369.
  • Moshaverinia, A.; Chen, C.; Xu, X.; Akiyama, K.; Ansari, S.; Zadeh, H. H.; Shi, S. Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold. Tissue Eng. A 2014, 20, 611–621. DOI: 10.1089/ten.TEA.2013.0229.
  • Wang, L.; Stegemann, J. P. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration. Acta Biomater. 2011, 7, 2410–2417. DOI: 10.1016/j.actbio.2011.02.029.
  • Wei, J.-S.; Zeng, R.; Chen, S.-Y.; Lin, H.; Wu, S.-K.; Zheng, J.-C. Effects of Aspirin on Fracture Healing in OPF Rats. Asian Pac. J. Trop. Med. 2014, 7, 801–805. DOI: 10.1016/S1995-7645(14)60140-1.
  • Cauley, J. A.; Cawthon, P. M.; Peters, K. E.; Cummings, S. R.; Ensrud, K. E.; Bauer, D. C.; Taylor, B. C.; Shikany, J. M.; Hoffman, A. R.; Lane, N. E.; et al. Risk Factors for Hip Fracture in Older Men: The Osteoporotic Fractures in Men Study (MrOS). J. Bone Miner. Res. 2016, 31, 1810–1819. DOI: 10.1002/jbmr.2836.
  • Jahan, K.; Mekhail, M.; Tabrizian, M. One-Step Fabrication of Apatite-Chitosan Scaffold as a Potential Injectable Construct for Bone Tissue Engineering. Carbohydr. Polym. 2019, 203, 60–70. DOI: 10.1016/j.carbpol.2018.09.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.