208
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Physical and thermo-mechanical properties of PCL/PEG based shape memory polyurethane for orthodontic ligature application

, ORCID Icon, &
Pages 239-249 | Received 19 Sep 2022, Accepted 01 Dec 2022, Published online: 15 Dec 2022

References

  • da Silva, A. V. M.; de Mattos, G. V.; Kato, C. M.; Normando, D. In Vivo Color Changes of Esthetic Orthodontic Ligatures. Dental Press J. Orthod. 2012, 17, 76–80. DOI: 10.1590/S2176-94512012000500011.
  • Liu, Y.-F.; Wu, J.-L.; Zhang, J.-X.; Peng, W. Feasible Evaluation of the Thermo-Mechanical Properties of Shape Memory Polyurethane for Orthodontic Archwire. J. Med. Biol. Eng. 2017, 37, 666–674. DOI: 10.1007/s40846-017-0263-z.
  • Aldrees, A. M.; Al-Foraidi, S. A.; Murayshed, M. S.; Almoammar, K. A. Color Stability and Force Decay of Clear Orthodontic Elastomeric Chains: An In Vitro Study. Int. Orthod. 2015, 13, 287–301. DOI: 10.1016/j.ortho.2015.06.003.
  • Baty, D. L.; Storie, D. J.; von Fraunhofer, J. A. Synthetic Elastomeric Chains: A Literature Review. Am. J. Orthod. Dentofacial Orthop. 1994, 105, 536–542. DOI: 10.1016/S0889-5406(94)70137-7.
  • Eliades, T.; Bourauel, C. Intraoral Aging of Orthodontic Materials: The Picture we Miss and Its Clinical Relevance. Am. J. Orthod. Dentofacial Orthop. 2005, 127, 403–412. DOI: 10.1016/j.ajodo.2004.09.015.
  • Kim, K.-H.; Chung, C.-H.; Choy, K.; Lee, J.-S.; Vanarsdall, R. L. Effects of Prestretching on Force Degradation of Synthetic Elastomeric Chains. Am. J. Orthod. Dentofacial Orthop. 2005, 128, 477–482. DOI: 10.1016/j.ajodo.2004.04.027.
  • Xu, C.; Huang, Y.; Tang, L.; Hong, Y. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS Appl. Mater. Interfaces. 2017, 9, 2169–2180. DOI: 10.1021/acsami.6b15009.
  • Kishan, A. P.; Wilems, T.; Mohiuddin, S.; Cosgriff-Hernandez, E. M. Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2017, 3, 3493–3502. DOI: 10.1021/acsbiomaterials.7b00512.
  • Puskas, J. E.; Chen, Y. Biomedical Application of Commercial Polymers and Novel Polyisobutylene-Based Thermoplastic Elastomers for Soft Tissue Replacement. Biomacromolecules 2004, 5, 1141–1154. DOI: 10.1021/bm034513k.
  • Petrović, Z. S.; Ferguson, J. Polyurethane Elastomers. Prog. Polym. Sci. 1991, 16, 695–836. DOI: 10.1016/0079-6700(91)90011-9.
  • Sobczak, M. Biodegradable Polyurethane Elastomers for Biomedical Applications – Synthesis Methods and Properties. Polym. Plast. Technol. Eng. 2015, 54, 155–172. DOI: 10.1080/03602559.2014.955201.
  • Xie, W.; Ouyang, R.; Wang, H.; Zhou, C. Construction and Biocompatibility of Three-Dimensional Composite Polyurethane Scaffolds in Liquid Crystal State. ACS Biomater. Sci. Eng. 2020, 6, 2312–2322. DOI: 10.1021/acsbiomaterials.9b01838.
  • Goldberg, A. J.; Craig, R. G.; Filisko, F. E. Polyurethane Elastomers as Maxillofacial Prosthetic Materials. J. Dent. Res. 1978, 57, 563–569. DOI: 10.1177/00220345780570040501.
  • Mo, F.; Ren, H.; Chen, S.; Ge, Z. Novel Zwitterionic Polyurethanes with Good Biocompatibility and Antibacterial Activity. Mater. Lett. 2015, 145, 174–176. DOI: 10.1016/j.matlet.2015.01.092.
  • Li, C.; Goodman, S. L.; Albrecht, R. M.; Cooper, S. L. Morphology of Segmented Polybutadiene-Polyurethane Elastomers. Macromolecules 1988, 21, 2367–2375. DOI: 10.1021/ma00186a012.
  • Zhao, J.; Xu, R.; Luo, G.; Wu, J.; Xia, H. Self-Healing Poly(Siloxane-Urethane) Elastomers with Remoldability, Shape Memory and Biocompatibility. Polym. Chem. 2016, 7, 7278–7286. DOI: 10.1039/C6PY01499B.
  • Zhao, X.; Dong, R.; Guo, B.; Ma, P. X. Dopamine-Incorporated Dual Bioactive Electroactive Shape Memory Polyurethane Elastomers with Physiological Shape Recovery Temperature, High Stretchability, and Enhanced C2C12 Myogenic Differentiation. ACS Appl. Mater. Interfaces. 2017, 9, 29595–29611. DOI: 10.1021/acsami.7b10583.
  • Chien, Y.; Chuang, W.-T.; Jeng, U.-S.; Hsu, S. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers. ACS Appl. Mater. Interfaces. 2017, 9, 5419–5429. DOI: 10.1021/acsami.6b11993.
  • Mehrbakhsh, E.; Rezaei, M.; Babaie, A.; Mohammadi, A.; Mayan Sofla, R. L. Physical and Thermo-Mechanical Properties of Shape Memory Polyurethane Containing Reversible Chemical Cross-Links. J. Mech. Behav. Biomed. Mater. 2021, 116, 104336. DOI: 10.1016/j.jmbbm.2021.104336.
  • Cohn, D.; Stern, T.; González, M. F.; Epstein, J. Biodegradable Poly(Ethylene Oxide)/Poly(ϵ-Caprolactone) Multiblock Copolymers. J. Biomed. Mater. Res. 2002, 59, 273–281. DOI: 10.1002/jbm.1242.
  • Cha, K. J.; Lih, E.; Choi, J.; Joung, Y. K.; Ahn, D. J.; Han, D. K. Shape-Memory Effect by Specific Biodegradable Polymer Blending for Biomedical Applications. Macromol. Biosci. 2014, 14, 667–678. DOI: 10.1002/mabi.201300481.
  • Albers, P. T. M.; van der Ven, L. G. J.; van Benthem, R. A. T. M.; Esteves, A. C. C.; de With, G. Water Swelling Behavior of Poly(Ethylene Glycol)-Based Polyurethane Networks. Macromolecules 2020, 53, 862–874. DOI: 10.1021/acs.macromol.9b02275.
  • Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pH-Responsive Shape Memory Poly(Ethylene Glycol)–Poly(ε-Caprolactone)-Based Polyurethane/Cellulose Nanocrystals Nanocomposite. ACS Appl. Mater. Interfaces. 2015, 7, 12988–12999. DOI: 10.1021/acsami.5b02940.
  • Razzaghi, D.; Rezaei, M.; Babaie, A. The Effect of Incorporating Graphene and Polycaprolactone-Grafted Graphene Oxide Nanosheets on Thermal and Physico-Mechanical Properties, Microstructure and Biocompatibility of Electrospun Polyurethane Nanocomposite Mats. Compos. B Eng. 2021, 224, 109210. DOI: 10.1016/j.compositesb.2021.109210.
  • Nouri, N.; Rezaei, M.; Lotfi, R.; Sofla, M.; Babaie, A. Synthesis of Reduced Octadecyl Isocyanate-Functionalized Graphene Oxide Nanosheets and Investigation of Their Effect on Physical, Mechanical, and Shape Memory Properties of Polyurethane Nanocomposites. Compos. Sci. Technol. 2020, 194, 108170. DOI: 10.1016/j.compscitech.2020.108170.
  • Lotfi Mayan Sofla, R.; Rezaei, M.; Babaie, A. Investigation of the Effect of Graphene Oxide Functionalization on the Physical, Mechanical and Shape Memory Properties of Polyurethane/Reduced Graphene Oxide Nanocomposites. Diam. Relat. Mater. 2019, 95, 195–205. DOI: 10.1016/j.diamond.2019.04.012.
  • Eyvazzadeh Kalajahi, A.; Rezaei, M.; Abbasi, F.; Mir Mohamad Sadeghi, G. The Effect of Chain Extender Type on the Physical, Mechanical, and Shape Memory Properties of Poly (ε -Caprolactone)-Based Polyurethane-Ureas. Polym. Plast. Technol. Eng. 2017, 56, 1977–1985. DOI: 10.1080/03602559.2017.1298797.
  • Fu, H.; Yan, C.; Zhou, W.; Huang, H. Nano-SiO2/Fluorinated Waterborne Polyurethane Nanocomposite Adhesive for Laminated Films. J. Ind. Eng. Chem. 2014, 20, 1623–1632. DOI: 10.1016/j.jiec.2013.08.009.
  • Kasgoz, A. Mechanical, Tensile Creep and Viscoelastic Properties of Thermoplastic Polyurethane/Polycarbonate Blends. Fibers Polym. 2021, 22, 295–305. DOI: 10.1007/s12221-021-0113-z.
  • Deng, R.; Davies, P.; Bajaj, A. K. A Nonlinear Fractional Derivative Model for Large Uni-Axial Deformation Behavior of Polyurethane Foam. Signal Process. 2006, 86, 2728–2743. DOI: 10.1016/j.sigpro.2006.02.029.
  • Masoud, A. I.; Tsay, T. P.; BeGole, E.; Bedran-Russo, A. K. Force Decay Evaluation of Thermoplastic and Thermoset Elastomeric Chains: A Mechanical Design Comparison. Angle Orthod. 2014, 84, 1026–1033. DOI: 10.2319/010814-28.1.
  • Masoud, A. I.; Bulic, M.; Viana, G.; Bedran-Russo, A. K. Force Decay and Dimensional Changes of Thermoplastic and Novel Thermoset Elastomeric Ligatures. Angle Orthod. 2016, 86, 818–825. DOI: 10.2319/082815-581.1.
  • Joshi, R.; Shyagali, T.; Jha, R.; Gupta, A.; Tiwari, A.; Tiwari, T. Evaluation and Comparison of the Effect of Elastomeric Chain and Stainless Steel Ligature Wire on Maxillary Orthodontic Miniscrew Failure. Int. J. Appl. Basic Med. Res. 2021, 11, 100–105. DOI: 10.4103/ijabmr.IJABMR_191_20.
  • Babaie, A.; Rezaei, M.; Sofla, R. L. M. Investigation of the Effects of Polycaprolactone Molecular Weight and Graphene Content on Crystallinity, Mechanical Properties and Shape Memory Behavior of Polyurethane/Graphene Nanocomposites. J. Mech. Behav. Biomed. Mater. 2019, 96, 53–68. DOI: 10.1016/j.jmbbm.2019.04.034.
  • Sarabiyan Nejad, S.; Rezaei, M.; Bagheri, M. Polyurethane/Nitrogen-Doped Graphene Quantum Dot (N-GQD) Nanocomposites: synthesis, Characterization, Thermal, Mechanical and Shape Memory Properties. Polym. Plastics Technol. Mater. 2020, 59, 398–416. DOI: 10.1080/25740881.2019.1647243.
  • Naheed, S.; Zuber, M.; Barikani, M.; Salman, M. Molecular Engineering and Morphology of Polyurethane Elastomers Containing Various Molecular Weight of Macrodiol. Mater. Sci. Eng. B 2021, 264, 114960. DOI: 10.1016/j.mseb.2020.114960.
  • Castagna, A. M.; Fragiadakis, D.; Lee, H.; Choi, T.; Runt, J. The Role of Hard Segment Content on the Molecular Dynamics of Poly(Tetramethylene Oxide)-Based Polyurethane Copolymers. Macromolecules 2011, 44, 7831–7836. DOI: 10.1021/ma2017138.
  • Lan, B.; Li, P.; Luo, X.; Luo, H.; Yang, Q.; Gong, P. Hydrogen Bonding and Topological Network Effects on Optimizing Thermoplastic Polyurethane/Organic Montmorillonite Nanocomposite Foam. Polymer (Guildf) 2021, 212, 123159. DOI: 10.1016/j.polymer.2020.123159.
  • Miranda, A. G. F.; de Godoi, A. P. T.; de Menezes, C. C.; Vedovello Filho, M.; Venezian, G. C. The Influence of Elastomeric Ligatures Pigmentation on Smile Aesthetics during Orthodontic Treatment. Dental Press J. Orthod. 2021, 26, e2119199. DOI: 10.1590/2177-6709.26.2.e2119199.oar.
  • Pinto, L. S.; Nakane Matsumoto, M. A.; Romualdo, P. C.; Romano, F. L.; Silva, R. A. B. d.; Silva, L. A. B. d.; de Queiroz, A. M.; Nelson-Filho, P. Esthetic Elastomeric Ligatures: Quantification of Bacterial Endotoxin In Vitro and In Vivo. Am. J. Orthod. Dentofacial Orthop. 2021, 159, 660–665. DOI: 10.1016/j.ajodo.2020.02.015.
  • Sufarnap, E.; Harahap, K. I.; Terry, T. Effect of Sodium Fluoride in Chlorhexidine Mouthwashes on Force Decay and Permanent Deformation of Orthodontic Elastomeric Chain. Padjadjaran J. Dent. 2021, 33, 74. DOI: 10.24198/pjd.vol33no1.26370.
  • De Genova, D. C.; McInnes-Ledoux, P.; Weinberg, R.; Shaye, R. Force Degradation of Orthodontic Elastomeric Chains—a Product Comparison Study. Am. J. Orthod. 1985, 87, 377–384. DOI: 10.1016/0002-9416(85)90197-6.
  • Dadgar, S.; Sobouti, F.; Armin, M.; Ebrahiminasab, P.; Moosazadeh, M.; Rakhshan, V. Effects of 6 Different Chemical Treatments on Force Kinetics of Memory Elastic Chains versus Conventional Chains: An in Vitro Study. Int. Orthod. 2020, 18, 349–358. DOI: 10.1016/j.ortho.2020.02.003.
  • Zakizadeh, M.; Nourany, M.; Javadzadeh, M.; Wang, P. Y.; Shahsavarani, H. Analysis of Crystallization Kinetics and Shape Memory Performance of PEG-PCL/MWCNT Based PU Nanocomposite for Tissue Engineering Applications. Express Polym. Lett. 2021, 15, 418–432. DOI: 10.3144/expresspolymlett.2021.36.
  • Hu, J.; Feng, Z.; Xu, X.; Gao, W.; Ning, N.; Yu, B.; Zhang, L.; Tian, M. UV Reconfigurable Shape Memory Polyurethane with a High Recovery Ratio under Large Deformation. Ind. Eng. Chem. Res. 2021, 60, 2144–2153. DOI: 10.1021/acs.iecr.0c05036.
  • Lu, H.; Liu, Y.; Leng, J.; Du, S. Qualitative Separation of the Physical Swelling Effect on the Recovery Behavior of Shape Memory Polymer. Eur. Polym. J. 2010, 46, 1908–1914. DOI: 10.1016/j.eurpolymj.2010.06.013.
  • Taloumis, L. J.; Smith, T. M.; Hondrum, S. O.; Lorton, L. Force Decay and Deformation of Orthodontic Elastomeric Ligatures. Am. J. Orthod. Dentofacial Orthop. 1997, 111, 1–11. DOI: 10.1016/S0889-5406(97)70295-6.
  • Evans, K. S.; Wood, C. M.; Moffitt, A. H.; Colgan, J. A.; Holman, J. K.; Marshall, S. D.; Pope, D. S.; Sample, L. B.; Sherman, S. L.; Sinclair, P. M.; Trulove, T. S. Sixteen-Week Analysis of Unaltered Elastomeric Chain Relating in-Vitro Force Degradation with in-Vivo Extraction Space Tooth Movement. Am. J. Orthod. Dentofacial Orthop. 2017, 151, 727–734. DOI: 10.1016/j.ajodo.2016.10.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.