321
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Synthetic biodegradable polymeric materials in non-viral gene delivery

ORCID Icon & ORCID Icon
Pages 478-489 | Received 23 Sep 2022, Accepted 04 Jan 2023, Published online: 16 Jan 2023

References

  • Tambe, P.; Kumar, P.; Paknikar, K. M.; Gajbhiye, V. Smart Triblock Dendritic Unimolecular Micelles as Pioneering Nanomaterials: Advancement Pertaining to Architecture and Biomedical Applications. J. Control. Release 2019, 299, 64–89. DOI: 10.1016/j.jconrel.2019.02.026.
  • Ginn, S. L.; Amaya, A. K.; Alexander, I. E.; Edelstein, M.; Abedi, M. R. Gene Therapy Clinical Trials Worldwide to 2017: An Update. J. Gene Med. 2018, 20, e3015. DOI: 10.1002/jgm.3015.
  • Singhvi, M. S.; Zinjarde, S. S.; Gokhale, D. V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. DOI: 10.1111/jam.14290.
  • Shah, T. V.; Vasava, D. V. A Glimpse of Biodegradable Polymers and Their Biomedical Applications. e-Polymers 2019, 19, 385–410.
  • Muhammad, K.; Zhao, J.; Ullah, I.; Guo, J.; Ren, X. K.; Feng, Y. Ligand Targeting and Peptide Functionalized Polymers as Non-viral Carriers for Gene Therapy. Biomater. Sci. 2019, 8, 64–83. DOI: 10.1039/c9bm01112a.
  • Mondal, S.; Das, S.; Nandi, A. K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter 2020, 16, 1404–1454. DOI: 10.1039/c9sm02127b.
  • Lopes, C.; Cristovao, J.; Silverio, V.; Lino, P. R.; Fonte, P. Microfluidic Production of mRNA-Loaded Lipid Nanoparticles for Vaccine Applications. Expert Opin. Drug Deliv. 2022, 19, 1381–1395. DOI: 10.1080/17425247.2022.2135502.
  • Dey, S.; Gupta, A.; Saha, A.; Pal, S.; Kumar, S.; Manna, D. Sunlight-Mediated Thiol-Ene/Yne Click Reaction: Synthesis and DNA Transfection Efficiency of New Cationic Lipids. ACS Omega 2020, 5, 735–750. DOI: 10.1021/acsomega.9b03413.
  • Salameh, J. W.; Zhou, L.; Ward, S. M.; Santa Chalarca, C. F.; Emrick, T.; Figueiredo, M. L. Polymer-Mediated Gene Therapy: Recent Advances and Merging of Delivery Techniques. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1598.
  • Panchal, S. S.; Vasava, D. V. Fabricating Approaches for Synthesis of Miktoarm Star-Shaped Polymers Having Tailored Biodegradability. Int. J. Polym. Mater. Polym. Biomater. 2021, 71, 1407–1424. DOI: 10.1080/00914037.2021.1981319.
  • So, R. C.; Carreon-Asok, A. C. Molecular Design, Synthetic Strategies, and Applications of Cationic Polythiophenes. Chem. Rev. 2019, 119, 11442–11509. DOI: 10.1021/acs.chemrev.8b00773.
  • Panchal, S. S.; Vasava, D. V. Biodegradable Polymeric Materials: Synthetic Approach. ACS Omega 2020, 5, 4370–4379. DOI: 10.1021/acsomega.9b04422.
  • Gao, Y.; Li, Q.; Zhang, J.; Wu, C.; Shen, Z.; Xue, C.; Chang, H. T.; Wu, Z. S. Bead-String-Shaped DNA Nanowires with Intrinsic Structural Advantages and Their Potential for Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 3341–3353. DOI: 10.1021/acsami.9b16249.
  • Zavradashvili, N.; Sarisozen, C.; Titvinidze, G.; Otinashvili, G.; Kantaria, T.; Tugushi, D.; Puiggali, J.; Torchilin, V. P.; Katsarava, R. Library of Cationic Polymers Composed of Polyamines and Arginine as Gene Transfection Agents. ACS Omega 2019, 4, 2090–2101. DOI: 10.1021/acsomega.8b02977.
  • Chuah, J. A.; Numata, K. Stimulus-Responsive Peptide for Effective Delivery and Release of DNA in Plants. Biomacromolecules 2018, 19, 1154–1163. DOI: 10.1021/acs.biomac.8b00016.
  • Zhu, Z.; Shaginian, A.; Grady, L. C.; O'Keeffe, T.; Shi, X. E.; Davie, C. P.; Simpson, G. L.; Messer, J. A.; Evindar, G.; Bream, R. N.; et al. Design and Application of a DNA-Encoded Macrocyclic Peptide Library. ACS Chem. Biol. 2018, 13, 53–59. DOI: 10.1021/acschembio.7b00852.
  • Anwar, M.; Muhammad, F.; Akhtar, B. Biodegradable Nanoparticles as Drug Delivery Devices. J. Drug Deliv. Sci. Technol. 2021, 64, 102638–102646. DOI: 10.1016/j.jddst.2021.102638.
  • Sarvari, R.; Nouri, M.; Agbolaghi, S.; Roshangar, L.; Sadrhaghighi, A.; Seifalian, A. M.; Keyhanvar, P. A Summary on Non-viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 246–265. DOI: 10.1080/00914037.2020.1825081.
  • Rai, R.; Alwani, S.; Badea, I. Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers 2019, 11, 745–735. DOI: 10.3390/polym11040745.
  • Wen, Z.; Liu, F.; Chen, Q.; Xu, Y.; Li, H.; Sun, S. Recent Development in Biodegradable Nanovehicle Delivery System-Assisted Immunotherapy. Biomater. Sci. 2019, 7, 4414–4443. DOI: 10.1039/c9bm00961b.
  • Pardeshi, S. R.; Nikam, A.; Chandak, P.; Mandale, V.; Naik, J. B.; Giram, P. S. Recent Advances in PLGA Based Nanocarriers for Drug Delivery System: A State of the Art Review. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 49–78. DOI: 10.1080/00914037.2021.1985495.
  • Hajebi, S.; Yousefiasl, S.; Rahimmanesh, I.; Dahim, A.; Ahmadi, S.; Kadumudi, F. B.; Rahgozar, N.; Amani, S.; Kumar, A.; Kamrani, E.; et al. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv. Healthc. Mater. 2022, 11, e2201583. DOI: 10.1002/adhm.202201583.
  • Madhad, H. V.; Vasava, D. V. Review on Recent Progress in Synthesis of Graphene–Polyamide Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35, 570–598. DOI: 10.1177/0892705719880942.
  • Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K. T.; Chen, X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem. Rev. 2019, 119, 9559–9656. DOI: 10.1021/acs.chemrev.9b00099.
  • Ribeiro, M.; Carvalho, P.; Martins, T.; Faustino, C. Lipoaminoacids Enzyme-Based Production and Application as Gene Delivery Vectors. Catalysts 2019, 9, 977–995. DOI: 10.3390/catal9120977.
  • Liu, X. Y.; Yang, J. B.; Duan, T. T.; Wu, C. Y.; Tang, Q.; Lu, Z. L.; He, L.; Sun, W. Degradable Cationic Polyesters via Ring-Opening Copolymerization of Valerolactones as Nanocarriers for the Gene Delivery. Bioorg. Chem. 2021, 116, 105299. DOI: 10.1016/j.bioorg.2021.105299.
  • Kumari, L.; Badwaik, H. R. Polysaccharide-Based Nanogels for Drug and Gene Delivery. In Polysaccharide Carriers for Drug Delivery; Sabyasachi Maiti, S. J., Ed.; Elsevier: Sawston, Cambridge, 2019; pp 497–557.
  • Huang, Y. S.; Chen, J. K.; Kuo, S. W.; Hsieh, Y. A.; Yamamoto, S.; Nakanishi, J.; Huang, C. F. Synthesis of Poly(N-Vinylpyrrolidone)-Based Polymer Bottlebrushes by ATRPA and RAFT Polymerization: Toward Drug Delivery Application. Polymers 2019, 11, 1079. DOI: 10.3390/polym11061079.
  • Er, S.; Laraib, U.; Arshad, R.; Sargazi, S.; Rahdar, A.; Pandey, S.; Thakur, V. K.; Diez-Pascual, A. M. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. Nanomaterials 2021, 11, 3002–3036. DOI: 10.3390/nano11113002.
  • Higuchi, A.; Sung, T.-C.; Wang, T.; Ling, Q.-D.; Kumar, S. S.; Hsu, S.-T.; Umezawa, A. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polym. Rev. 2022. DOI: 10.1080/15583724.2022.2106490.
  • Danilovtseva, E. N.; Zelinskiy, S. N.; Pal’shin, V. A.; Kandasamy, G.; Krishnan, U. M.; Annenkov, V. V. Poly(1-Vinylimidazole) Prospects in Gene Delivery. Chin. J. Polym. Sci. 2019, 37, 637–645. DOI: 10.1007/s10118-019-2240-1.
  • Zu, H.; Gao, D. Non-Viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021, 23, 78. DOI: 10.1208/s12248-021-00608-7.
  • Luo, X.; Zeng, X.; Gong, L.; Ye, Y.; Sun, C.; Chen, T.; Zhang, Z.; Tao, Y.; Zeng, H.; Zou, Q.; et al. Nanomaterials in Tuberculosis DNA Vaccine Delivery: Historical Perspective and Current Landscape. Drug Deliv. 2022, 29, 2912–2924. DOI: 10.1080/10717544.2022.2120565.
  • Alasvand, N.; Kargozar, S.; Milan, P. B.; Chauhan, N. P. S.; Mozafari, M. Functionalized Polymers for Drug/Gene-Delivery Applications. In Advanced Functional Polymers for Biomedical Applications; Masoud Mozafari, N. P. S. C., Ed.; Elsevier: Amsterdam, Netherlands, 2019; pp 275–299.
  • Wang, H.; Zhu, W.; Liu, J.; Dong, Z.; Liu, Z. pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer. ACS Appl. Mater. Interfaces 2018, 10, 14475–14482. DOI: 10.1021/acsami.8b02080.
  • Jat, S. K.; Bhattacharya, J.; Sharma, M. K. Nanomaterial Based Gene Delivery: A Promising Method for Plant Genome Engineering. J. Mater. Chem. B 2020, 8, 4165–4175. DOI: 10.1039/d0tb00217h.
  • Linnik, D. S.; Tarakanchikova, Y. V.; Zyuzin, M. V.; Lepik, K. V.; Aerts, J. L.; Sukhorukov, G.; Timin, A. S. Layer-by-Layer Technique as a Versatile Tool for Gene Delivery Applications. Expert Opin. Drug Deliv. 2021, 18, 1047–1066. DOI: 10.1080/17425247.2021.1879790.
  • Mu, X.; Gan, S.; Wang, Y.; Li, H.; Zhou, G. Stimulus-Responsive Vesicular Polymer Nano-Integrators for Drug and Gene Delivery. Int. J. Nanomedicine 2019, 14, 5415–5434. DOI: 10.2147/IJN.S203555.
  • Bono, N.; Pennetta, C.; Bellucci, M. C.; Sganappa, A.; Malloggi, C.; Tedeschi, G.; Candiani, G.; Volonterio, A. Role of Generation on Successful DNA Delivery of PAMAM–(Guanidino)Neomycin Conjugates. ACS Omega 2019, 4, 6796–6807. DOI: 10.1021/acsomega.8b02757.
  • Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S. M.; Asim, M.; Saba, N. Natural Fiber Reinforced Polylactic Acid Composites: A Review. Polym. Compos. 2019, 40, 446–463. DOI: 10.1002/pc.24747.
  • Elmowafy, E. M.; Tiboni, M.; Soliman, M. E. Biocompatibility, Biodegradation and Biomedical Applications of Poly(Lactic Acid)/Poly(Lactic-co-Glycolic Acid) Micro and Nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. DOI: 10.1007/s40005-019-00439-x.
  • Su, Y.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-Based Biodegradable Microspheres in Drug Delivery: Recent Advances in Research and Application. Drug Deliv. 2021, 28, 1397–1418. DOI: 10.1080/10717544.2021.1938756.
  • Lostalé-Seijo, I.; Montenegro, J. Synthetic Materials at the Forefront of Gene Delivery. Nat. Rev. Chem. 2018, 2, 258–277. DOI: 10.1038/s41570-018-0039-1.
  • Ahmad, A.; Ansari, M. M.; Verma, R. K.; Khan, R. Aminocellulose-Grafted Polymeric Nanoparticles for Selective Targeting of CHEK2-Deficient Colorectal Cancer. ACS Appl. Bio Mater. 2021, 4, 5324–5335. DOI: 10.1021/acsabm.1c00437.
  • Thomas, T. J.; Tajmir-Riahi, H. A.; Pillai, C. K. S. Biodegradable Polymers for Gene Delivery. Molecules 2019, 24, 3744–3724. DOI: 10.3390/molecules24203744.
  • Plucinski, A.; Lyu, Z.; Schmidt, B. Polysaccharide Nanoparticles: From Fabrication to Applications. J. Mater. Chem. B 2021, 9, 7030–7062. DOI: 10.1039/d1tb00628b.
  • Jung, C. L.; Park, S. C.; Lim, H. Synthesis of Surface-Reinforced Biodegradable Chitosan Nanoparticles and Their Application in Nanostructured Antireflective and Self-Cleaning Surfaces. ACS Appl. Mater. Interfaces 2019, 11, 40835–40841. DOI: 10.1021/acsami.9b14009.
  • Chen, C. K.; Huang, P. K.; Law, W. C.; Chu, C. H.; Chen, N. T.; Lo, L. W. Biodegradable Polymers for Gene-Delivery Applications. Int. J. Nanomedicine 2020, 15, 2131–2150. DOI: 10.2147/IJN.S222419.
  • Zeng, M.; Alshehri, F.; Zhou, D.; Lara-Saez, I.; Wang, X.; Li, X.; A, S.; Xu, Q.; Zhang, J.; Wang, W. Efficient and Robust Highly Branched Poly(Beta-Amino Ester)/Minicircle COL7A1 Polymeric Nanoparticles for Gene Delivery to Recessive Dystrophic Epidermolysis Bullosa Keratinocytes. ACS Appl. Mater. Interfaces 2019, 11, 30661–30672. DOI: 10.1021/acsami.9b13135.
  • Karlsson, J.; Rhodes, K. R.; Green, J. J.; Tzeng, S. Y. Poly(Beta-Amino Ester)s as Gene Delivery Vehicles: Challenges and Opportunities. Expert Opin. Drug Deliv. 2020, 17, 1395–1410. DOI: 10.1080/17425247.2020.1796628.
  • Zeng, M.; Xu, Q.; Zhou, D.; A, S.; Alshehri, F.; Lara-Saez, I.; Zheng, Y.; Li, M.; Wang, W. Highly Branched Poly(Beta-Amino Ester)s for Gene Delivery in Hereditary Skin Diseases. Adv. Drug Deliv. Rev. 2021, 176, 113842. DOI: 10.1016/j.addr.2021.113842.
  • Lynn, D. M.; Langer, R. Degradable Poly(β-Amino Esters): Synthesis, Characterization, and Self-Assembly with Plasmid DNA. J. Am. Chem. Soc. 2000, 122, 10761–10768. DOI: 10.1021/ja0015388.
  • Huang, J. Y.; Gao, Y.; Cutlar, L.; O'Keeffe-Ahern, J.; Zhao, T.; Lin, F. H.; Zhou, D.; McMahon, S.; Greiser, U.; Wang, W.; Wang, W. Tailoring Highly Branched Poly(Beta-Amino Ester)s: A Synthetic Platform for Epidermal Gene Therapy. Chem. Commun. 2015, 51, 8473–8476. DOI: 10.1039/c5cc02193f.
  • Ren, S.; Wang, M.; Wang, C.; Wang, Y.; Sun, C.; Zeng, Z.; Cui, H.; Zhao, X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers 2021, 13, 3307–3328. DOI: 10.3390/polym13193307.
  • Pan, J.; Yuan, Y.; Wang, H.; Liu, F.; Xiong, X.; Chen, H.; Yuan, L. Efficient Transfection by Using PDMAEMA-Modified SiNWAs as a Platform for Ca(2+)-Dependent Gene Delivery. ACS Appl. Mater. Interfaces 2016, 8, 15138–15144. DOI: 10.1021/acsami.6b04689.
  • Tan, X.; Lu, X.; Jia, F.; Liu, X.; Sun, Y.; Logan, J. K.; Zhang, K. Blurring the Role of Oligonucleotides: Spherical Nucleic Acids as a Drug Delivery Vehicle. J. Am. Chem. Soc. 2016, 138, 10834–10837. DOI: 10.1021/jacs.6b07554.
  • Olden, B. R.; Cheng, E.; Cheng, Y.; Pun, S. H. Identifying Key Barriers in Cationic Polymer Gene Delivery to Human T Cells. Biomater. Sci. 2019, 7, 789–797. DOI: 10.1039/c8bm01262h.
  • Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. In Situ Programming of Leukaemia-Specific T Cells Using Synthetic DNA Nanocarriers. Nat. Nanotechnol. 2017, 12, 813–820. DOI: 10.1038/nnano.2017.57.
  • Wang, F.; Gao, J.; Xiao, J.; Du, J. Dually Gated Polymersomes for Gene Delivery. Nano Lett. 2018, 18, 5562–5568. DOI: 10.1021/acs.nanolett.8b01985.
  • Allen, J.; Najjar, K.; Erazo-Oliveras, A.; Kondow-McConaghy, H. M.; Brock, D. J.; Graham, K.; Hager, E. C.; Marschall, A. L. J.; Dübel, S.; Juliano, R. L.; Pellois, J.-P. Cytosolic Delivery of Macromolecules in Live Human Cells Using the Combined Endosomal Escape Activities of a Small Molecule and Cell Penetrating Peptides. ACS Chem. Biol. 2019, 14, 2641–2651. DOI: 10.1021/acschembio.9b00585.
  • Shrimali, P.; Peter, M.; Singh, A.; Dalal, N.; Dakave, S.; Chiplunkar, S. V.; Tayalia, P. Efficient In Situ Gene Delivery via PEG Diacrylate Matrices. Biomater. Sci. 2018, 6, 3241–3250. DOI: 10.1039/c8bm00916c.
  • Li, S.; Nie, H.; Gu, S.; Han, Z.; Han, G.; Zhang, W. Synthesis of Multicompartment Nanoparticles of ABC Miktoarm Star Polymers by Seeded RAFT Dispersion Polymerization. ACS Macro Lett. 2019, 8, 783–788. DOI: 10.1021/acsmacrolett.9b00371.
  • O'Keeffe Ahern, J.; A, S.; Zhou, D.; Gao, Y.; Lyu, J.; Meng, Z.; Cutlar, L.; Pierucci, L.; Wang, W. Brushlike Cationic Polymers with Low Charge Density for Gene Delivery. Biomacromolecules 2018, 19, 1410–1415. DOI: 10.1021/acs.biomac.7b01267.
  • Capasso Palmiero, U.; Sponchioni, M.; Manfredini, N.; Maraldi, M.; Moscatelli, D. Strategies to Combine ROP with ATRP or RAFT Polymerization for the Synthesis of Biodegradable Polymeric Nanoparticles for Biomedical Applications. Polym. Chem. 2018, 9, 4084–4099. DOI: 10.1039/C8PY00649K.
  • Yu, L.; Chen, Y.; Wu, M.; Cai, X.; Yao, H.; Zhang, L.; Chen, H.; Shi, J. “Manganese Extraction” Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. J. Am. Chem. Soc. 2016, 138, 9881–9894. DOI: 10.1021/jacs.6b04299.
  • Xia, F.; Wu, J.; Wu, X.; Hu, Q.; Dai, J.; Lou, X. Modular Design of Peptide- or DNA-Modified AIEgen Probes for Biosensing Applications. Acc. Chem. Res. 2019, 52, 3064–3074. DOI: 10.1021/acs.accounts.9b00348.
  • Tan, E.; Lv, J.; Hu, J.; Shen, W.; Wang, H.; Cheng, Y. Statistical versus Block Fluoropolymers in Gene Delivery. J. Mater. Chem. B 2018, 6, 7230–7238. DOI: 10.1039/c8tb01470a.
  • Jiang, C.; Chen, J.; Li, Z.; Wang, Z.; Zhang, W.; Liu, J. Recent Advances in the Development of Polyethylenimine-Based Gene Vectors for Safe and Efficient Gene Delivery. Expert Opin. Drug Deliv. 2019, 16, 363–376. DOI: 10.1080/17425247.2019.1604681.
  • Guo, Z.; Lin, L.; Chen, J.; Zhou, X.; Chan, H. F.; Chen, X.; Tian, H.; Chen, M. Poly(Ethylene Glycol)-Poly-l-Glutamate Complexed with Polyethyleneimine-Polyglycine for Highly Efficient Gene Delivery In Vitro and In Vivo. Biomater. Sci. 2018, 6, 3053–3062. DOI: 10.1039/c8bm00503f.
  • Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Dolatabadi, J. E. N.; Hamblin, M. R. PAMAM Dendrimers as Efficient Drug and Gene Delivery Nanosystems for Cancer Therapy. Appl. Mater. Today 2018, 12, 177–190. DOI: 10.1016/j.apmt.2018.05.002.
  • Jackson, M. A.; Werfel, T. A.; Curvino, E. J.; Yu, F.; Kavanaugh, T. E.; Sarett, S. M.; Dockery, M. D.; Kilchrist, K. V.; Jackson, A. N.; Giorgio, T. D.; Duvall, C. L. Zwitterionic Nanocarrier Surface Chemistry Improves siRNA Tumor Delivery and Silencing Activity Relative to Polyethylene Glycol. ACS Nano 2017, 11, 5680–5696. DOI: 10.1021/acsnano.7b01110.
  • Violatto, M. B.; Casarin, E.; Talamini, L.; Russo, L.; Baldan, S.; Tondello, C.; Messmer, M.; Hintermann, E.; Rossi, A.; Passoni, A.; et al. Dexamethasone Conjugation to Biodegradable Avidin-Nucleic-Acid-Nano-Assemblies Promotes Selective Liver Targeting and Improves Therapeutic Efficacy in an Autoimmune Hepatitis Murine Model. ACS Nano 2019, 13, 4410–4423. DOI: 10.1021/acsnano.8b09655.
  • Wessel, E. M.; Tomich, J. M.; Todd, R. B. Biodegradable Drug-Delivery Peptide Nanocapsules. ACS Omega 2019, 4, 20059–20063. DOI: 10.1021/acsomega.9b03245.
  • Peng, L.; Wagner, E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019, 20, 3613–3626. DOI: 10.1021/acs.biomac.9b00999.
  • Barba, A. A.; Bochicchio, S.; Dalmoro, A.; Lamberti, G. Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics 2019, 11, 360. DOI: 10.3390/pharmaceutics11080360.
  • Dharmalingam, P.; Rachamalla, H. K. R.; Lohchania, B.; Bandlamudi, B.; Thangavel, S.; Murugesan, M. K.; Banerjee, R.; Chaudhuri, A.; Voshavar, C.; Marepally, S. Green Transfection: Cationic Lipid Nanocarrier System Derivatized from Vegetable Fat, Palmstearin Enhances Nucleic Acid Transfections. ACS Omega 2017, 2, 7892–7903. DOI: 10.1021/acsomega.7b00935.
  • Liao, X.; Falcon, N. D.; Mohammed, A. A.; Paterson, Y. Z.; Mayes, A. G.; Guest, D. J.; Saeed, A. Synthesis and Formulation of Four-Arm PolyDMAEA-siRNA Polyplex for Transient Downregulation of Collagen Type III Gene Expression in TGF-beta1 Stimulated Tenocyte Culture. ACS Omega 2020, 5, 1496–1505. DOI: 10.1021/acsomega.9b03216.
  • Liao, X.; Walden, G.; Falcon, N. D.; Donell, S.; Raxworthy, M. J.; Wormstone, M.; Riley, G. P.; Saeed, A. A Direct Comparison of Linear and Star-Shaped Poly(Dimethylaminoethyl Acrylate) Polymers for Polyplexation with DNA and Cytotoxicity in Cultured Cell Lines. Eur. Polym. J. 2017, 87, 458–467. DOI: 10.1016/j.eurpolymj.2016.08.021.
  • Villar-Alvarez, E.; Leal, B. H.; Martínez-González, R.; Pardo, A.; Al-Qadi, S.; Juárez, J.; Váldez, M. A.; Cambón, A.; Barbosa, S.; Taboada, P. siRNA Silencing by Chemically Modified Biopolymeric Nanovectors. ACS Omega 2019, 4, 3904–3921. DOI: 10.1021/acsomega.8b02875.
  • Nakamoto, K.; Akao, Y.; Furuichi, Y.; Ueno, Y. Enhanced Intercellular Delivery of cRGD-siRNA Conjugates by an Additional Oligospermine Modification. ACS Omega 2018, 3, 8226–8232. DOI: 10.1021/acsomega.8b00850.
  • Sun, Y.; Ye, X.; Cai, M.; Liu, X.; Xiao, J.; Zhang, C.; Wang, Y.; Yang, L.; Liu, J.; Li, S.; et al. Osteoblast-Targeting-Peptide Modified Nanoparticle for siRNA/microRNA Delivery. ACS Nano 2016, 10, 5759–5768. DOI: 10.1021/acsnano.5b07828.
  • Liu, J.; Song, L.; Liu, S.; Jiang, Q.; Liu, Q.; Li, N.; Wang, Z. G.; Ding, B. A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. Nano Lett. 2018, 18, 3328–3334. DOI: 10.1021/acs.nanolett.7b04812.
  • Chanphai, P.; Thomas, T. J.; Tajmir-Riahi, H. A. Design of Functionalized Folic Acid-Chitosan Nanoparticles for Delivery of Tetracycline, Doxorubicin, and Tamoxifen. J. Biomol. Struct. Dyn. 2019, 37, 1000–1006. DOI: 10.1080/07391102.2018.1445559.
  • Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomas, H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem. Rev. 2015, 115, 8564–8608. DOI: 10.1021/cr500131f.
  • Singh, N. K.; Nguyen, Q. V.; Kim, B. S.; Lee, D. S. Nanostructure Controlled Sustained Delivery of Human Growth Hormone Using Injectable, Biodegradable, pH/Temperature Responsive Nanobiohybrid Hydrogel. Nanoscale 2015, 7, 3043–3054. DOI: 10.1039/c4nr05897f.
  • Liu, S.; Gao, Y.; Zhou, D.; Zeng, M.; Alshehri, F.; Newland, B.; Lyu, J.; O'Keeffe-Ahern, J.; Greiser, U.; Guo, T.; et al. Highly Branched Poly(Beta-Amino Ester) Delivery of Minicircle DNA for Transfection of Neurodegenerative Disease Related Cells. Nat. Commun. 2019, 10, 3307. DOI: 10.1038/s41467-019-11190-0.
  • Ji, S.; Thomforde, J.; Rogers, C.; Fu, I.; Broyde, S.; Tretyakova, N. Y. Transcriptional Bypass of DNA-Protein and DNA-Peptide Conjugates by T7 RNA Polymerase. ACS Chem. Biol. 2019, 14, 2564–2575. DOI: 10.1021/acschembio.9b00365.
  • Zhang, Y.; Ma, W.; Zhu, Y.; Shi, S.; Li, Q.; Mao, C.; Zhao, D.; Zhan, Y.; Shi, J.; Li, W.; et al. Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. Nano Lett. 2018, 18, 5652–5659. DOI: 10.1021/acs.nanolett.8b02166.
  • Xiong, F.; Han, Y.; Wang, S.; Li, G.; Qin, T.; Chen, Y.; Chu, F. Preparation and Formation Mechanism of Renewable Lignin Hollow Nanospheres with a Single Hole by Self-Assembly. ACS Sustain. Chem. Eng. 2017, 5, 2273–2281. DOI: 10.1021/acssuschemeng.6b02585.
  • Drew, V. J.; Huang, H.-Y.; Tsai, Z.-H.; Tsai, H.-H.; Tseng, C.-L. Preparation of Gelatin/Epigallocatechin Gallate Self-Assembly Nanoparticles for Transdermal Drug Delivery. J. Polym. Res. 2017, 24, 1–10. DOI: 10.1007/s10965-017-1342-0.
  • Hu, Y.; Wang, H.; Song, H.; Young, M.; Fan, Y.; Xu, F. J.; Qu, X.; Lei, X.; Liu, Y.; Cheng, G. Peptide-Grafted Dextran Vectors for Efficient and High-Loading Gene Delivery. Biomater. Sci. 2019, 7, 1543–1553. DOI: 10.1039/c8bm01341a.
  • Kang, Z.; Meng, Q.; Liu, K. Peptide-Based Gene Delivery Vectors. J. Mater. Chem. B 2019, 7, 1824–1841. DOI: 10.1039/c8tb03124j.
  • Raza, F.; Zafar, H.; You, X.; Khan, A.; Wu, J.; Ge, L. Cancer Nanomedicine: focus on Recent Developments and Self-Assembled Peptide Nanocarriers. J. Mater. Chem. B 2019, 7, 7639–7655. DOI: 10.1039/c9tb01842e.
  • Wu, H.; Li, F.; Shao, W.; Gao, J.; Ling, D. Promoting Angiogenesis in Oxidative Diabetic Wound Microenvironment Using a Nanozyme-Reinforced Self-Protecting Hydrogel. ACS Cent. Sci. 2019, 5, 477–485. DOI: 10.1021/acscentsci.8b00850.
  • Li, Q.; Hao, X.; Zaidi, S. S. A.; Guo, J.; Ren, X.; Shi, C.; Zhang, W.; Feng, Y. Oligohistidine and Targeting Peptide Functionalized TAT-NLS for Enhancing Cellular Uptake and Promoting Angiogenesis In Vivo. J. Nanobiotechnol. 2018, 16, 29. DOI: 10.1186/s12951-018-0358-x.
  • Gao, B.; Wang, X.; Wang, M.; Ren, X. K.; Guo, J.; Xia, S.; Zhang, W.; Feng, Y. From Single to a Dual-Gene Delivery Nanosystem: Coordinated Expression Matters for Boosting the Neovascularization In Vivo. Biomater. Sci. 2020, 8, 2318–2328. DOI: 10.1039/c9bm02000d.
  • Witzigmann, D.; Wu, D.; Schenk, S. H.; Balasubramanian, V.; Meier, W.; Huwyler, J. Biocompatible Polymer-Peptide Hybrid-Based DNA Nanoparticles for Gene Delivery. ACS Appl. Mater. Interfaces 2015, 7, 10446–10456. DOI: 10.1021/acsami.5b01684.
  • Raza, F.; Zafar, H.; Zhu, Y.; Ren, Y.; Ullah, A.; Khan, A. U.; He, X.; Han, H.; Aquib, M.; Boakye-Yiadom, K. O.; Ge, L. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers. Pharmaceutics 2018, 10, 16–21. DOI: 10.3390/pharmaceutics10010016.
  • Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R. J. Recent Advances in Self-Assembled Peptides: Implications for Targeted Drug Delivery and Vaccine Engineering. Adv. Drug Deliv. Rev. 2017, 110–111, 169–187. DOI: 10.1016/j.addr.2016.06.013.
  • Gao, B.; Zhang, Q.; Muhammad, K.; Ren, X.; Guo, J.; Xia, S.; Zhang, W.; Feng, Y. A Progressively Targeted Gene Delivery System with a pH Triggered Surface Charge-Switching Ability to Drive Angiogenesis In Vivo. Biomater. Sci. 2019, 7, 2061–2075. DOI: 10.1039/c9bm00132h.
  • Chuah, J. A.; Matsugami, A.; Hayashi, F.; Numata, K. Self-Assembled Peptide-Based System for Mitochondrial-Targeted Gene Delivery: Functional and Structural Insights. Biomacromolecules 2016, 17, 3547–3557. DOI: 10.1021/acs.biomac.6b01056.
  • Oba, M.; Ito, Y.; Umeno, T.; Kato, T.; Tanaka, M. Plasmid DNA Delivery Using Cell-Penetrating Peptide Foldamers Composed of Arg–Arg–Aib Repeating Sequences. ACS Biomater. Sci. Eng. 2019, 5, 5660–5668. DOI: 10.1021/acsbiomaterials.8b01451.
  • Yoshizumi, T.; Oikawa, K.; Chuah, J. A.; Kodama, Y.; Numata, K. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes. Biomacromolecules 2018, 19, 1582–1591. DOI: 10.1021/acs.biomac.8b00323.
  • Coutinho, E.; Batista, C.; Sousa, F.; Queiroz, J.; Costa, D. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria. Mol. Pharm. 2017, 14, 626–638. DOI: 10.1021/acs.molpharmaceut.6b00823.
  • Pawelczak, K. S.; Gavande, N. S.; VanderVere-Carozza, P. S.; Turchi, J. J. Modulating DNA Repair Pathways to Improve Precision Genome Engineering. ACS Chem. Biol. 2018, 13, 389–396. DOI: 10.1021/acschembio.7b00777.
  • Sun, Y.; Yang, Z.; Wang, C.; Yang, T.; Cai, C.; Zhao, X.; Yang, L.; Ding, P. Exploring the Role of Peptides in Polymer-Based Gene Delivery. Acta Biomater. 2017, 60, 23–37. DOI: 10.1016/j.actbio.2017.07.043.
  • Kim, H. Y.; Kang, J. A.; Ryou, J. H.; Lee, G. H.; Choi, D. S.; Lee, D. E.; Kim, H. S. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin. ACS Chem. Biol. 2017, 12, 2891–2897. DOI: 10.1021/acschembio.7b00562.
  • Lu, Z.; Paolella, B. R.; Truex, N. L.; Loftis, A. R.; Liao, X.; Rabideau, A. E.; Brown, M. S.; Busanovich, J.; Beroukhim, R.; Pentelute, B. L. Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids. ACS Chem. Biol. 2020, 15, 1358–1369. DOI: 10.1021/acschembio.9b01027.
  • Buck, J.; Grossen, P.; Cullis, P. R.; Huwyler, J.; Witzigmann, D. Lipid-Based DNA Therapeutics: Hallmarks of Non-viral Gene Delivery. ACS Nano 2019, 13, 3754–3782. DOI: 10.1021/acsnano.8b07858.
  • Nweke, C. E.; Stegemann, J. P. Modular Microcarrier Technologies for Cell-Based Bone Regeneration. J. Mater. Chem. B 2020, 8, 3972–3984. DOI: 10.1039/d0tb00116c.
  • Bauri, K.; Nandi, M.; De, P. Amino Acid-Derived Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2018, 9, 1257–1287. DOI: 10.1039/C7PY02014G.
  • Serrano, C. M.; Freeman, R.; Godbe, J.; Lewis, J. A.; Stupp, S. I. DNA-Peptide Amphiphile Nanofibers Enhance Aptamer Function. ACS Appl. Bio Mater. 2019, 2, 2955–2963. DOI: 10.1021/acsabm.9b00310.
  • Yadav, M. R.; Kumar, M.; Murumkar, P. R.; Hazari, P. P.; Mishra, A. K. Gemini Amphiphile-Based Lipoplexes for Efficient Gene Delivery: Synthesis, Formulation Development, Characterization, Gene Transfection, and Biodistribution Studies. ACS Omega 2018, 3, 11802–11816. DOI: 10.1021/acsomega.8b01014.
  • Piao, C.; Kim, G.; Ha, J.; Lee, M. Inhalable Gene Delivery System Using a Cationic RAGE-Antagonist Peptide for Gene Delivery to Inflammatory Lung Cells. ACS Biomater. Sci. Eng. 2019, 5, 2247–2257. DOI: 10.1021/acsbiomaterials.9b00004.
  • Song, J. H.; Kim, J. Y.; Piao, C.; Lee, S.; Kim, B.; Song, S. J.; Choi, J. S.; Lee, M. Delivery of the High-Mobility Group Box 1 Box a Peptide Using Heparin in the Acute Lung Injury Animal Models. J. Control. Release 2016, 234, 33–40. DOI: 10.1016/j.jconrel.2016.05.039.
  • Wang, M.; Zhang, X.; Peng, H.; Zhang, M.; Zhang, X.; Liu, Z.; Ma, L.; Wei, H. Optimization of Amphiphilic Miktoarm Star Copolymers for Anticancer Drug Delivery. ACS Biomater. Sci. Eng. 2018, 4, 2903–2910. DOI: 10.1021/acsbiomaterials.8b00678.
  • Bai, X.; Bi, W.; Dong, H.; Chen, P.; Tian, S.; Zhai, G.; Zhang, K. An Integrated Approach Based on a DNA Self-Assembly Technique for Characterization of Crosstalk among Combinatorial Histone Modifications. Anal. Chem. 2018, 90, 3692–3696. DOI: 10.1021/acs.analchem.7b05174.
  • Zhang, Q.; Kuang, G.; He, S.; Lu, H.; Cheng, Y.; Zhou, D.; Huang, Y. Photoactivatable Prodrug-Backboned Polymeric Nanoparticles for Efficient Light-Controlled Gene Delivery and Synergistic Treatment of Platinum-Resistant Ovarian Cancer. Nano Lett. 2020, 20, 3039–3049. DOI: 10.1021/acs.nanolett.9b04981.
  • Xu, X.; Hou, S.; Wattanatorn, N.; Wang, F.; Yang, Q.; Zhao, C.; Yu, X.; Tseng, H. R.; Jonas, S. J.; Weiss, P. S. Precision-Guided Nanospears for Targeted and High-Throughput Intracellular Gene Delivery. ACS Nano 2018, 12, 4503–4511. DOI: 10.1021/acsnano.8b00763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.