493
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Polymer and biopolymer based nanocomposites for glucose sensing

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 490-521 | Received 29 Aug 2022, Accepted 30 Jan 2023, Published online: 16 Feb 2023

References

  • de Oliveira, A. D.; Beatrice, C. A. G. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites – Recent Evolutions; Sivasankaran, S., Ed; Intechopen: London, 2018; pp 103–104. DOI: 10.5772/intechopen.81329.
  • Chen, X.; Zhao, Y.; Li, L.; Wang, Y.; Wang, J.; Xiong, J.; Du, S.; Zhang, P.; Shi, X.; Yu, J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polym. Rev 2021, 61, 80–115. DOI: 10.1080/15583724.2020.1729179.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Alhuthali, A.; Low, I. M.; Dong, C. Characterisation of the Water Absorption, Mechanical and Thermal Properties of Recycled Cellulose Fibre Reinforced Vinyl-Ester Eco-Nanocomposites. Compos. B Eng. 2012, 43, 2772–2781. DOI: 10.1016/j.compositesb.2012.04.038.
  • Sethy, P. K.; Mohapatra, P.; Patra, S.; Bharatiya, D.; Swain, S. K. Antimicrobial and Barrier Properties of Polyacrylic Acid/GO Hybrid Nanocomposites for Packaging Application. Nano-Struct. 2021, 26, 100747. DOI: 10.1016/j.nanoso.2021.100747.
  • Lim, J. W.; Lim, W. S.; Lee, M. H.; Park, H. J. Barrier and Structural Properties of Polyethylene Terephthalate Film Coated with Poly(Acrylic Acid)/Montmorillonite Nanocomposites. Packag. Technol. Sci. 2021, 34, 141–150. DOI: 10.1002/pts.2547.
  • Atta, N. F.; Galal, A.; Ali, S. M.; El-Said, D. M. Improved Host–Guest Electrochemical Sensing of Dopamine in the Presence of Ascorbic and Uric Acids in a β-Cyclodextrin/Nafion®/Polymer Nanocomposite. Anal. Methods. 2014, 6, 5962–5971. DOI: 10.1039/C4AY00738G.
  • Sahu, D.; Sarkar, N.; Sahoo, G.; Mohapatra, P.; Swain, S. K. Nano Silver Imprinted Polyvinyl Alcohol Nanocomposite Thin Films for Hg2+ Sensor. Sens. Actuators B Chem. 2017, 246, 96–107. DOI: 10.1016/j.snb.2017.01.038.
  • Kumar, N.; Goyal, R. N.; Rosy  . Nanopalladium Grained Polymer Nanocomposite Based Sensor for the Sensitive Determination of Melatonin. Electrochim. Acta. 2016, 211, 18–26. DOI: 10.1016/j.electacta.2016.06.023.
  • Huang, X.; Wang, R.; Jiao, T.; Zou, G.; Zhan, F.; Yin, J.; Zhang, L.; Zhou, J.; Peng, Q. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega. 2019, 4, 1897–1906. DOI: 10.1021/acsomega.8b03615.
  • Buruga, K.; Kalathi, J. T.; Kim, K. H.; Ok, Y. S.; Danil, B. Polystyrene-Halloysite Nano Tube Membranes for Water Purification. J. Ind. Eng. Chem. 2018, 61, 169–180. DOI: 10.1016/j.jiec.2017.12.014.
  • Noamani, S.; Niroomand, S.; Rastgar, M.; Sadrzadeh, M. Carbon-Based Polymer Nanocomposite Membranes for Oily Wastewater Treatment. NPJ Clean Water. 2019, 2, 14. DOI: 10.1038/s41545-019-0044-z.
  • Bao, Z.; Hou, C.; Shen, Z.; Sun, H.; Zhang, G.; Luo, Z.; Dai, Z.; Wang, C.; Chen, X.; Li, L.; et al. Negatively Charged Nanosheets Significantly Enhance the Energy‐Storage Capability of Polymer‐Based Nanocomposites. Adv. Mater. 2020, 32, 1907227. DOI: 10.1002/adma.201907227.
  • Yin, J.; Zhan, F.; Jiao, T.; Deng, H.; Zou, G.; Bai, Z.; Zhang, Q.; Peng, Q. Highly Efficient Catalytic Performances of Nitro Compounds via Hierarchical PdNPs-Loaded MXene/Polymer Nanocomposites Synthesized through Electrospinning Strategy for Wastewater Treatment. Chin. Chem. Lett. 2020, 31, 992–995. DOI: 10.1016/j.cclet.2019.08.047.
  • Prusty, K.; Patra, S.; Swain, S. K. Nano ZnO Imprinted Dextran Hybrid Poly (N-Isopropylacrylamide)/Poly Ethylene Glycol Composite Hydrogels for in Vitro Release of Ciprofloxacin. Mater. Today Commun. 2021, 26, 101869. DOI: 10.1016/j.mtcomm.2020.101869.
  • Prabha, G.; Raj, V. Preparation and Characterization of Polymer Nanocomposites Coated Magnetic Nanoparticles for Drug Delivery Applications. J. Magn. Magn. Mater. 2016, 408, 26–34. DOI: 10.1016/j.jmmm.2016.01.070.
  • Wu, Y.; Wang, H.; Gao, F.; Xu, Z.; Dai, F.; Liu, W. An Injectable Supramolecular Polymer Nanocomposite Hydrogel for Prevention of Breast Cancer Recurrence with Theranostic and Mammoplastic Functions. Adv. Funct. Mater. 2018, 28, 1801000. DOI: 10.1002/adfm.201801000.
  • Ansari, M. A.; Yadav, M. K.; Rathore, D.; Svedberg, A.; Karim, Z. Applications of Nanostructured Polymer Composites for Gene Delivery. In Nanostructured Polymer Composites for Biomedical Applications; Swain, S. K.; Jawaid, M., Eds.; Elsevier: Amsterdam, 2019; pp 211–226.
  • Khan, M. U. A.; Haider, S.; Shah, S. A.; Razak, S. I. A.; Hassan, S. A.; Kadir, M. R. A.; Haider, A. Arabinoxylan-co-AA/HAp/TiO2 Nanocomposite Scaffold a Potential Material for Bone Tissue Engineering: An in Vitro Study. Int. J. Biol. Macromol. 2020, 151, 584–594. DOI: 10.1016/j.ijbiomac.2020.02.142.
  • Mohebali, A.; Abdouss, M.; Afshar, T. F. Fabrication of Biocompatible Antibacterial Nanowafers Based on HNT/PVA Nanocomposites Loaded with Minocycline for Burn Wound Dressing. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110685. DOI: 10.1016/j.msec.2020.110685.
  • Liang, H.; Mirinejad, M. S.; Asefnejad, A.; Baharifar, H.; Li, X.; Saber-Samandari, S.; Toghraie, D.; Khandan, A. Fabrication of Tragacanthin Gum-Carboxymethyl Chitosan Bio-Nanocomposite Wound Dressing with Silver-Titanium Nanoparticles Using Freeze-Drying Method. Mater. Chem. Phys. 2022, 279, 125770. DOI: 10.1016/j.matchemphys.2022.125770.
  • Rocha, R. G.; Cardoso, R. M.; Zambiazi, P. J.; Castro, S. V.; Ferraz, T. V.; Aparecido, G. D. O.; Bonacin, J. A.; Munoz, R. A.; Richter, E. M. Production of 3D-Printed Disposable Electrochemical Sensors for Glucose Detection Using a Conductive Filament Modified with Nickel Microparticles. Anal. Chim. Acta. 2020, 1132, 1–9. DOI: 10.1016/j.aca.2020.07.028.
  • Van Tam, T.; Hur, S. H.; Chung, J. S.; Choi, W. M. Novel Paper- and Fiber Optic-Based Fluorescent Sensor for Glucose Detection Using Aniline-Functionalized Graphene Quantum Dots. Sens. Actuators B Chem. 2021, 329, 129250. DOI: 10.1016/j.snb.2020.129250.
  • Maruthupandy, M.; Rajivgandhi, G.; Muneeswaran, T.; Vennila, T.; Quero, F.; Song, J. M. Chitosan/Silver Nanocomposites for Colorimetric Detection of Glucose Molecules. Int. J. Biol. Macromol. 2019, 121, 822–828. DOI: 10.1016/j.ijbiomac.2018.10.063.
  • Pastoriza-Santos, I.; Kinnear, C.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Plasmonic Polymer Nanocomposites. Nat. Rev. Mater. 2018, 3, 375–391. DOI: 10.1038/s41578-018-0050-7.
  • Egan, A. M.; Dinneen, S. F. What is Diabetes? Medicine. 2019, 47, 1–4. DOI: 10.1016/j.mpmed.2018.10.002.
  • Naikoo, G. A.; Salim, H.; Hassan, I. U.; Awan, T.; Arshad, F.; Pedram, M. Z.; Ahmed, W.; Qurashi, A. Advances in Non-Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management-A Review. Front. Chem. 2021, 9, 786. DOI: 10.3389/fchem.2021.748957.
  • Zhang, Y.; Li, N.; Xiang, Y.; Wang, D.; Zhang, P.; Wang, Y.; Lu, S.; Xu, R.; Zhao, J. A Flexible Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles Anchored on Laser-Induced Graphene. Carbon. 2020, 156, 506–513. DOI: 10.1016/j.carbon.2019.10.006.
  • Qasemi, S.; Ghaemy, M. Novel Superabsorbent Biosensor Nanohydrogel Based on Gum Tragacanth Polysaccharide for Optical Detection of Glucose. Int. J. Biol. Macromol. 2020, 151, 901–908. DOI: 10.1016/j.ijbiomac.2020.02.2312.
  • Shi, L.; Zhu, X.; Liu, T.; Zhao, H.; Lan, M. Encapsulating Cu Nanoparticles into Metal-Organic Frameworks for Nonenzymatic Glucose Sensing. Sens. Actuators B Chem. 2016, 227, 583–590. DOI: 10.1016/j.snb.2015.12.092.
  • Chen, J.; Zheng, J. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on Tremella-like Ni(OH)2 and Au Nanohybrid Films. J. Electroanal. Chem. 2015, 749, 83–88. DOI: 10.1016/j.jelechem.2015.04.039.
  • John, B. Polymer Nanocomposite-Based Electrochemical Sensors and Biosensors. In Nanorods and Nanocomposites; Sasani, G. M.; Dhara, S., Eds.; Intechopen: London, 2020; p 159.
  • Thakur, S.; Verma, A.; Alsanie, W. F.; Christie, G.; Thakur, V. K. On the Graphene and Its Derivative Based Polymer Nanocomposites for Glucose Sensing. Mater. Lett. 2022, 307, 130971. DOI: 10.1016/j.matlet.2021.130971.
  • Sehit, E.; Altintas, Z. Significance of Nanomaterials in Electrochemical Glucose Sensors: An Updated Review (2016–2020). Biosens. Bioelectron. 2020, 159, 112165. DOI: 10.1016/j.bios.2020.112165.
  • Shoaie, N.; Daneshpour, M.; Azimzadeh, M.; Mahshid, S.; Khoshfetrat, S. M.; Jahanpeyma, F.; Gholaminejad, A.; Omidfar, K.; Foruzandeh, M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Microchmi. Acta. 2019, 186, 1–29. DOI: 10.1007/s00604-019-3588-1.
  • Kaur, G.; Kaur, A.; Kaur, H. Review on Nanomaterials/Conducting Polymer Based Nanocomposites for the Development of Biosensors and Electrochemical Sensors. Polym. Plast. Technol. Mater. 2021, 60, 504–521. DOI: 10.1080/25740881.2020.1844233.
  • Shrivastava, S.; Jadon, N.; Jain, R. Next-Generation Polymer Nanocomposite-Based Electrochemical Sensors and Biosensors: A Review. TrAC-Trends Anal. Chem. 2016, 82, 55–67. DOI: 10.1016/j.trac.2016.04.005.
  • Lee, W. C.; Kim, K. B.; Gurudatt, N. G.; Hussain, K. K.; Choi, C. S.; Park, D. S.; Shim, Y. B. Comparison of Enzymatic and Non-Enzymatic Glucose Sensors Based on Hierarchical Au-Ni Alloy with Conductive Polymer. Biosens. Bioelectron. 2019, 130, 48–54. DOI: 10.1016/j.bios.2019.01.028.
  • Du, Y.; Zhang, W.; Wang, M. Sensing of Salivary Glucose Using Nano-Structured Biosensors. Biosensors. 2016, 6, 10. DOI: 10.3390/bios6010010.
  • Lee, H.; Hong, Y. J.; Baik, S.; Hyeon, T.; Kim, D. H. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv. Healthcare Mater. 2018, 7, 1701150. DOI: 10.1002/adhm.201701150.
  • Stolarczyk, K.; Rogalski, J.; Bilewicz, R. NAD (P)-Dependent Glucose Dehydrogenase: Applications for Biosensors, Bioelectrodes, and Biofuel Cells. Bioelectrochemistry. 2020, 135, 107574. DOI: 10.1016/j.bioelechem.2020.107574.
  • Rao, A. N.; Avula, M. N.; Grainger, D. W. Biomaterials Challenges in Continuous Glucose Monitors in Vivo. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Amsterdam, 2017; pp 755–770.
  • Tee, S. Y.; Teng, C. P.; Ye, E. Metal Nanostructures for Non-Enzymatic Glucose Sensing. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 1018–1030. DOI: 10.1016/j.msec.2016.04.009.
  • Poulos, N. G.; Hall, J. R.; Leopold, M. C. Functional Layer-By-Layer Design of Xerogel-Based First-Generation Amperometric Glucose Biosensors. Langmuir. 2015, 31, 1547–1555. DOI: 10.1021/la504358t.
  • Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis. 2001, 13, 983–988. DOI: 10.1002/1521-4109(200108)13:12%3C983::AID-ELAN983%3E3.0.CO;2-%23.
  • Yoo, E. H.; Lee, S. Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors. 2010, 10, 4558–4576. DOI: 10.3390/s100504558.
  • Loew, N.; Tsugawa, W.; Nagae, D.; Kojima, K.; Sode, K. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors. Sensors. 2017, 17, 2636. DOI: 10.3390/s17112636.
  • Hassan, M. H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors. 2021, 21, 4672. DOI: 10.3390/s21144672.
  • Rafighi, P.; Tavahodi, M.; Haghighi, B. Fabrication of a Third-Generation Glucose Biosensor Using Graphene-Polyethyleneimine-Gold Nanoparticles Hybrid. Sens. Actuators B Chem. 2016, 232, 454–461. DOI: 10.1016/j.snb.2016.03.147.
  • Mehmeti, E.; Stankovíc, D. M.; Chaiyo, S.; Zavasnik, J.; Žagar, K.; Kalcher, K. Wiring of Glucose Oxidase with Graphene Nanoribbons: An Electrochemical Third Generation Glucose Biosensor. Microchim. Acta. 2017, 184, 1127–1134. DOI: 10.1007/s00604-017-2115-5.
  • Degani, Y.; Heller, A. Electrical Communication between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers. J. Am. Chem. Soc. 1989, 111, 2357–2358. DOI: 10.1021/ja00188a091.
  • Fruk, L.; Kuo, C. H.; Torres, E.; Niemeyer, C. M. Apoenzyme Reconstitution as a Chemical Tool for Structural Enzymology and Biotechnology. Angew. Chem. Int. Ed. Engl. 2009, 48, 1550–1574. DOI: 10.1002/anie.200803098.
  • Zayats, M.; Willner, B.; Willner, I. Design of Amperometric Biosensors and Biofuel Cells by the Reconstitution of Electrically Contacted Enzyme Electrodes. Electroanalysis 2008, 20, 583–601. DOI: 10.1002/elan.200704128.
  • Lee, I.; Loew, N.; Tsugawa, W.; Ikebukuro, K.; Sode, K. Development of a Third-Generation Glucose Sensor Based on the Open Circuit Potential for Continuous Glucose Monitoring. Biosens. Bioelectron. 2019, 124-125, 216–223. DOI: 10.1016/j.bios.2018.09.099.
  • Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode. Anal. Chim. Acta. 2012, 709, 47–53. DOI: 10.1016/j.aca.2011.10.025.
  • Lankauf, K.; Ostrowska, K.; Górnicka, K.; Karczewski, J.; Jasiński, P.; Molin, S. Tetrahedrally Modified MnMe0.1Co1.9O4 (Me = Zn, Mg, Li) Spinels for Non-Enzymatic Glucose Sensing. Mater. Lett. 2022, 323, 132574. DOI: 10.1016/j.matlet.2022.132574.
  • Pletcher, D. Electrocatalysis – Present and Future. J. Appl. Electrochem. 1984, 14, 403–415. DOI: 10.1007/BF00610805.
  • Hwang, D. W.; Lee, S.; Seo, M.; Chung, T. D. Recent Advances in Electrochemical Non-Enzymatic Glucose Sensors–a Review. Anal. Chim. Acta. 2018, 1033, 1–34. DOI: 10.1016/j.aca.2018.05.051.
  • Tian, K.; Prestgard, M.; Tiwari, A. A Review of Recent Advances in Nonenzymatic Glucose Sensors. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 100–118. DOI: 10.1016/j.msec.2014.04.013.
  • Burke, L. D. Premonolayer Oxidation and Its Role in Electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848. DOI: 10.1016/0013-4686(94)85173-5.
  • Niu, X.; Li, X.; Pan, J.; He, Y.; Qiu, F.; Yan, Y. Recent Advances in Non-Enzymatic Electrochemical Glucose Sensors Based on Non-Precious Transition Metal Materials: opportunities and Challenges. RSC Adv. 2016, 6, 84893–84905. DOI: 10.1039/C6RA12506A.
  • Witkowska Nery, E.; Kundys, M.; Jeleń, P. S.; Jönsson-Niedziółka, M. Electrochemical Glucose Sensing: Is There Still Room for Improvement? Anal. Chem. 2016, 88, 11271–11282. DOI: 10.1021/acs.analchem.6b03151.
  • Zaidi, S. A.; Shin, J. H. Recent Developments in Nanostructure Based Electrochemical Glucose Sensors. Talanta. 2016, 149, 30–42. DOI: 10.1016/j.talanta.2015.11.033.
  • Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. DOI: 10.1021/cr068069y.
  • Ou, L.; Liu, G.; Xia, N, School of Medical Technology, Yongzhou Vocational Technical Colledge, Yongzhou 425100, Hunan, China. Research Progress and Application Prospects of Electrochemical Glucose Sensors. Int. J. Electrochem. Sci. 2021, 16, 210633. DOI: 10.20964/2021.06.42.
  • Gao, Y.; Yu, Q.; Du, Y.; Yang, M.; Gao, L.; Rao, S.; Yang, Z.; Lan, Q.; Yang, Z. Synthesis of Co3O4–NiO Nano-Needles for Amperometric Sensing of Glucose. J. Electroanal. Chem. 2019, 838, 41–47. DOI: 10.1016/j.jelechem.2019.02.049.
  • Paul, A.; Vyas, G.; Paul, P.; Srivastava, D. N. Gold-Nanoparticle-Encapsulated ZIF-8 for a Mediator-Free Enzymatic Glucose Sensor by Amperometry. ACS Appl. Nano Mater. 2018, 1, 3600–3607. DOI: 10.1021/acsanm.8b00748.
  • Kim, D. M.; Moon, J. M.; Lee, W. C.; Yoon, J. H.; Choi, C. S.; Shim, Y. B. A Potentiometric Non-Enzymatic Glucose Sensor Using a Molecularly Imprinted Layer Bonded on a Conducting Polymer. Biosens. Bioelectron. 2017, 91, 276–283. DOI: 10.1016/j.bios.2016.12.046.
  • Baghayeri, M.; Amiri, A.; Alizadeh, Z.; Veisi, H.; Hasheminejad, E. Non-Enzymatic Voltammetric Glucose Sensor Made of Ternary NiO/Fe3O4-SH/Para-Amino Hippuric Acid Nanocomposite. J. Electroanal. Chem. 2018, 810, 69–77. DOI: 10.1016/j.jelechem.2018.01.007.
  • Ahammad, A. J.; Al Mamun, A.; Akter, T.; Mamun, M. A.; Faraezi, S.; Monira, F. Z. Enzyme-Free Impedimetric Glucose Sensor Based on Gold Nanoparticles/Polyaniline Composite Film. J. Solid State Electrochem. 2016, 20, 1933–1939. DOI: 10.1007/s10008-016-3199-2.
  • Mahadeva, S. K.; Kim, J. Conductometric Glucose Biosensor Made with Cellulose and Tin Oxide Hybrid Nanocomposite. Sens. Actuators B Chem. 2011, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046.
  • Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Adv. 2013, 3, 4473–4491. DOI: 10.1039/C2RA22351A.
  • Park, S.; Boo, H.; Chung, T. D. Electrochemical Non-Enzymatic Glucose Sensors. Anal. Chim. Acta. 2006, 556, 46–57. DOI: 10.1016/j.aca.2005.05.080.
  • Adeel, M.; Rahman, M. M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent Advances of Electrochemical and Optical Enzyme-Free Glucose Sensors Operating at Physiological Conditions. Biosens. Bioelectron. 2020, 165, 112331. DOI: 10.1016/j.bios.2020.112331.
  • Clark, L. C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N Y Acad. Sci. 1962, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.
  • Komkova, M. A.; Orlov, A. K.; Galushin, A. A.; Andreev, E. A.; Karyakin, A. A. Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis. Anal. Chem. 2021, 93, 12116–12121. DOI: 10.1021/acs.analchem.1c02664.
  • Mello, G. P.; Simões, E. F.; Crista, D. M.; Leitão, J. M.; Pinto da Silva, L.; Esteves da Silva, J. C. Glucose Sensing by Fluorescent Nanomaterials. Crit. Rev. Anal. Chem. 2019, 49, 542–552. DOI: 10.1080/10408347.2019.1565984.
  • Harper, A.; Anderson, M. R. Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction. Sensors. 2010, 10, 8248–8274. DOI: 10.3390/s100908248.
  • Gonzales, W. V.; Mobashsher, A. T.; Abbosh, A. The Progress of Glucose monitoring-A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors. 2019, 19, 800. DOI: 10.3390/s19040800.
  • Baghayeri, M. Glucose Sensing by a Glassy Carbon Electrode Modified with Glucose Oxidase and a Magnetic Polymeric Nanocomposite. RSC Adv. 2015, 5, 18267–18274. DOI: 10.1039/C4RA15888A.
  • Muthusankar, E.; Ragupathy, D. Graphene/Poly (Aniline-co-Diphenylamine) Nanohybrid for Ultrasensitive Electrochemical Glucose Sensor. Nano-Struct. 2019, 20, 100390. DOI: 10.1016/j.nanoso.2019.100390.
  • Jin, X.; Li, G.; Xu, T.; Su, L.; Yan, D.; Zhang, X. Ruthenium‐Based Conjugated Polymer and Metal‐Organic Framework Nanocomposites for Glucose Sensing. Electroanalysis. 2021, 33, 1902–1910. DOI: 10.1002/elan.202100148.
  • Solairaj, D.; Rameshthangam, P.; Muthukumaran, P.; Wilson, J. Studies on Electrochemical Glucose Sensing, Antimicrobial Activity and Cytotoxicity of Fabricated Copper Nanoparticle Immobilized Chitin Nanostructure. Int. J. Biol. Macromol. 2017, 101, 668–679. DOI: 10.1016/j.ijbiomac.2017.03.147.
  • Updike, S. J.; Hicks, G. P. The Enzyme Electrode. Nature. 1967, 214, 986–988. DOI: 10.1038/214986a0.
  • Gernet, S.; Koudelka, M.; De Rooij, N. F. Fabrication and Characterization of a Planar Electrochemical Cell and Its Application as a Glucose Sensor. Sensors and Actuators. 1989, 18, 59–70. DOI: 10.1016/0250-6874(89)87025-8.
  • Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical Non-Enzymatic Glucose Sensors: Recent Progress and Perspectives. Chem Commun 2020, 56, 14553–14569. DOI: 10.1039/D0CC05650B.
  • Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. Sensors. 2022, 22, 355. DOI: 10.3390/s22010355.
  • Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. DOI: 10.1039/D0CS00304B.
  • Reghunath, R.; Devi, K.; Singh, K. K. Recent Advances in Graphene Based Electrochemical Glucose Sensor. Nano-Struct. 2021, 26, 100750. DOI: 10.1016/j.nanoso.2021.100750.
  • Zhang, C.; Zhang, Z.; Yang, Q.; Chen, W. Graphene‐Based Electrochemical Glucose Sensors: Fabrication and Sensing Properties. Electroanalysis. 2018, 30, 2504–2524. DOI: 10.1002/elan.201800522.
  • Dong, Q.; Ryu, H.; Lei, Y. Metal Oxide Based Non-Enzymatic Electrochemical Sensors for Glucose Detection. Electrochim. Acta. 2021, 370, 137744. DOI: 10.1016/j.electacta.2021.137744.
  • Wang, L.; Xu, M.; Xie, Y.; Qian, C.; Ma, W.; Wang, L.; Song, Y. Ratiometric Electrochemical Glucose Sensor Based on Electroactive Schiff Base Polymers. Sens. Actuators B Chem. 2019, 285, 264–270. DOI: 10.1016/j.snb.2019.01.061.
  • Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N. V.; Aslam, M. Enzymatic and Non-Enzymatic Electrochemical Glucose Sensor Based on Carbon Nano-Onions. Appl. Surf. Sci. 2018, 442, 332–341. DOI: 10.1016/j.apsusc.2018.02.124.
  • Khalaf, N.; Ahamad, T.; Naushad, M.; Al-Hokbany, N.; Al-Saeedi, S. I.; Almotairi, S.; Alshehri, S. M. Chitosan Polymer Complex Derived Nanocomposite (AgNPs/NSC) for Electrochemical Non-Enzymatic Glucose Sensor. Int. J. Biol. Macromol. 2020, 146, 763–772. DOI: 10.1016/j.ijbiomac.2019.11.193.
  • Tong, Y.; Xu, J.; Jiang, H.; Gao, F.; Lu, Q. One-Step Synthesis of Novel Cu@ Polymer Nanocomposites through a Self-Activated Route and Their Application as Nonenzymatic Glucose Sensors. Dalton Trans. 2017, 46, 9918–9924. DOI: 10.1039/C7DT01931A.
  • Sedghi, R.; Pezeshkian, Z. Fabrication of Non-Enzymatic Glucose Sensor Based on Nanocomposite of MWCNTs-COOH-Poly (2-Aminothiophenol)-Au NPs. Sens. Actuators B Chem. 2015, 219, 119–124. DOI: 10.1016/j.snb.2015.04.097.
  • Xiao, X.; Zhou, B.; Zhu, L.; Xu, L.; Tan, L.; Tang, H.; Zhang, Y.; Xie, Q.; Yao, S. An Reagentless Glucose Biosensor Based on Direct Electrochemistry of Glucose Oxidase Immobilized on Poly (Methylene Blue) Doped Silica Nanocomposites. Sens. Actuators B Chem. 2012, 165, 126–132. DOI: 10.1016/j.snb.2012.02.029.
  • Wu, L. N.; Zhong, J. P.; Waqas, M.; Jiang, Z.; Fan, Y. J.; Sun, Y.; Li, J.; Chen, W. Controllable Synthesis of Six Corner Star-like Cu2O/PEDOT-MWCNT Composites and Their Performance toward Electrochemical Glucose Sensing. Electrochim. Acta 2019, 318, 837–846. DOI: 10.1016/j.electacta.2019.06.124.
  • Ghanbari, K.; Babaei, Z. Fabrication and Characterization of Non-Enzymatic Glucose Sensor Based on Ternary NiO/CuO/Polyaniline Nanocomposite. Anal. Biochem. 2016, 498, 37–46. DOI: 10.1016/j.ab.2016.01.006.
  • Bilal, S.; Ullah, W.; Ali Shah, A-u-H Polyaniline@ CuNi Nanocomposite: A Highly Selective, Stable and Efficient Electrode Material for Binder Free Non-Enzymatic Glucose Sensor. Electrochim. Acta. 2018, 284, 382–391. DOI: 10.1016/j.electacta.2018.07.165.
  • Liu, L.; Chen, Y.; Lv, H.; Wang, G.; Hu, X.; Wang, C. Construction of a Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles/Poly (o-Phenylenediamine) Nanocomposites. J. Solid State Electrochem. 2015, 19, 731–738. DOI: 10.1007/s10008-014-2659-9.
  • Lu, X.; Ye, Y.; Xie, Y.; Song, Y.; Chen, S.; Li, P.; Chen, L.; Wang, L. Copper Coralloid Granule/Polyaniline/Reduced Graphene Oxide Nanocomposites for Nonenzymatic Glucose Detection. Anal. Methods. 2014, 6, 4643–4651. DOI: 10.1039/c4ay00421c.
  • Hui, N.; Wang, S.; Xie, H.; Xu, S.; Niu, S.; Luo, X. Nickel Nanoparticles Modified Conducting Polymer Composite of Reduced Graphene Oxide Doped Poly (3, 4-Ethylenedioxythiophene) for Enhanced Nonenzymatic Glucose Sensing. Sens. Actuators B Chem. 2015, 221, 606–613. DOI: 10.1016/j.snb.2015.07.011.
  • Majumdar, S.; Mahanta, D. Deposition of an Ultra-Thin Polyaniline Coating on a TiO2 Surface by Vapor Phase Polymerization for Electrochemical Glucose Sensing and Photocatalytic Degradation. RSC Adv. 2020, 10, 17387–17395. DOI: 10.1039/d0ra01571g.
  • Wu, S.; Su, F.; Dong, X.; Ma, C.; Pang, L.; Peng, D.; Wang, M.; He, L.; Zhang, Z. Development of Glucose Biosensors Based on Plasma Polymerization-Assisted Nanocomposites of Polyaniline, Tin Oxide, and Three-Dimensional Reduced Graphene Oxide. Appl. Surf. Sci. 2017, 401, 262–270. DOI: 10.1016/j.apsusc.2017.01.024.
  • Azharudeen, A. M.; Karthiga, R.; Rajarajan, M.; Suganthi, A. Enhancement of Electrochemical Sensor for the Determination of Glucose Based on Mesoporous VO2/PVA Nanocomposites. Surf. Interfaces. 2019, 16, 164–173. DOI: 10.1016/j.surfin.2019.05.005.
  • Azharudeen, A. M.; Karthiga, R.; Rajarajan, M.; Suganthi, A. Selective Enhancement of Non-Enzymatic Glucose Sensor by Used PVP Modified on α-MoO3 Nanomaterials. Microchem. J. 2020, 157, 105006. DOI: 10.1016/j.microc.2020.105006.
  • Farid, M. M.; Goudini, L.; Piri, F.; Zamani, A.; Saadati, F. Molecular Imprinting Method for Fabricating Novel Glucose Sensor: Polyvinyl Acetate Electrode Reinforced by MnO2/CuO Loaded on Graphene Oxide Nanoparticles. Food Chem. 2016, 194, 61–67. DOI: 10.1016/j.foodchem.2015.07.128.
  • Gao, Q.; Guo, Y.; Liu, J.; Yuan, X.; Qi, H.; Zhang, C. A Biosensor Prepared by co-Entrapment of a Glucose Oxidase and a Carbon Nanotube within an Electrochemically Deposited Redox Polymer Multilayer. Bioelectrochemistry. 2011, 81, 109–113. DOI: 10.1016/j.bioelechem.2011.04.003.
  • Luo, S.; Chen, Y.; Zhou, M.; Yao, C.; Xi, H.; Kong, Y.; Deng, L. Palygorskite-Poly (o-Phenylenediamine) Nanocomposite: An Enhanced Electrochemical Platform for Glucose Biosensing. Appl. Clay Sci. 2013, 86, 59–63. DOI: 10.1016/j.clay.2013.10.013.
  • Fang, Y.; Ni, Y.; Zhang, G.; Mao, C.; Huang, X.; Shen, J. Biocompatibility of CS–PPy Nanocomposites and Their Application to Glucose Biosensor. Bioelectrochemistry. 2012, 88, 1–7. DOI: 10.1016/j.bioelechem.2012.05.006.
  • Al-Mokaram, A. M. A. A.; Yahya, R.; Abdi, M. M.; Mahmud, H. N. M. E. One-Step Electrochemical Deposition of Polypyrrole–Chitosan–Iron Oxide Nanocomposite Films for Non-Enzymatic Glucose Biosensor. Mater. Lett. 2016, 183, 90–93. DOI: 10.1016/j.matlet.2016.07.049.
  • Hui, N.; Wang, J. Electrodeposited Honeycomb-like Cobalt Nanostructures on Graphene Oxide Doped Polypyrrole Nanocomposite for High Performance Enzymeless Glucose Sensing. J. Electroanal. Chem. 2017, 798, 9–16. DOI: 10.1016/j.jelechem.2017.05.021.
  • Yang, J.; Lin, Q.; Yin, W.; Jiang, T.; Zhao, D.; Jiang, L. A Novel Nonenzymatic Glucose Sensor Based on Functionalized PDDA-Graphene/CuO Nanocomposites. Sens. Actuators B Chem. 2017, 253, 1087–1095. DOI: 10.1016/j.snb.2017.07.008.
  • Kailasa, S.; Rani, B. G.; Reddy, M. S. B.; Jayarambabu, N.; Munindra, P.; Sharma, S.; Rao, K. V. NiO Nanoparticles-Decorated Conductive Polyaniline Nanosheets for Amperometric Glucose Biosensor. Mater. Chem. Phys. 2020, 242, 122524. DOI: 10.1016/j.matchemphys.2019.122524.
  • Maity, D.; C R, M.; R T, R. K. Glucose Oxidase Immobilized Amine Terminated Multiwall Carbon Nanotubes/Reduced Graphene Oxide/Polyaniline/Gold Nanoparticles Modified Screen-Printed Carbon Electrode for Highly Sensitive Amperometric Glucose Detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110075. DOI: 10.1016/j.msec.2019.110075.
  • Lakhdari, D.; Guittoum, A.; Benbrahim, N.; Belgherbi, O.; Berkani, M.; Seid, L.; Khtar, S. A.; Saeed, M. A.; Lakhdari, N. Elaboration and Characterization of Ni (NPs)-PANI Hybrid Material by Electrodeposition for Non-Enzymatic Glucose Sensing. Journal of Elec. Materi. 2021, 50, 5250–5258. DOI: 10.1007/s11664-021-09031-2.
  • Ahmad, M. W.; Verma, S.; Yang, D. J.; Islam, M. U.; Choudhury, A. Synthesis of Silver Nanoparticles-Decorated Poly (m-Aminophenol) Nanofibers and Their Application in a Non-Enzymatic Glucose Biosensor. J. Macromol. Sci. A. 2021, 58, 461–471. DOI: 10.1080/10601325.2021.1886585.
  • Al-Mokaram, A.; Amir, M. A.; Yahya, R.; Abdi, M. M.; Mahmud, H. N. M. E. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films. Nanomaterials. 2017, 7, 129. DOI: 10.3390/nano7060129.
  • Guan, H.; Gong, D.; Song, Y.; Han, B.; Zhang, N. Biosensor Composed of Integrated Glucose Oxidase with Liposome Microreactors/Chitosan Nanocomposite for Amperometric Glucose Sensing. Colloids Surf. A Physicochem. Eng. Asp. 2019, 574, 260–267. DOI: 10.1016/j.colsurfa.2019.04.076.
  • Fang, H.; Kaur, G.; Wang, B. Progress in Boronic Acid-Based Fluorescent Glucose Sensors. J. Fluoresc. 2004, 14, 481–489. DOI: 10.1023/B:JOFL.0000039336.51399.3b.
  • Dehghan, G.; Shaghaghi, M.; Alizadeh, P. A Novel Ultrasensitive and Non-Enzymatic “Turn-on-off” Fluorescence Nanosensor for Direct Determination of Glucose in the Serum: As an Alternative Approach to the Other Optical and Electrochemical Methods. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 214, 459–468. DOI: 10.1016/j.saa.2019.02.054.
  • Liu, Z.; Liu, L.; Sun, M.; Su, X. A Novel and Convenient near-Infrared Fluorescence “Turn off–on” Nanosensor for Detection of Glucose and Fluoride Anions. Biosens. Bioelectron. 2015, 65, 145–151. DOI: 10.1016/j.bios.2014.10.008.
  • Basiruddin, S. K.; Swain, S. K. Phenylboronic Acid Functionalized Reduced Graphene Oxide Based Fluorescence Nano Sensor for Glucose Sensing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 103–109. DOI: 10.1016/j.msec.2015.07.068.
  • Wen, J.; Li, N.; Li, D.; Zhang, M.; Lin, Y.; Liu, Z.; Lin, X.; Shui, L. Cesium-Doped Graphene Quantum Dots as Ratiometric Fluorescence Sensors for Blood Glucose Detection. ACS Appl. Nano Mater. 2021, 4, 8437–8446. DOI: 10.1021/acsanm.1c01730.
  • Naaz, S.; Poddar, S.; Bayen, S. P.; Mondal, M. K.; Roy, D.; Mondal, S. K.; Chowdhury, P.; Saha, S. K. Tenfold Enhancement of Fluorescence Quantum Yield of Water Soluble Silver Nanoclusters for Nano-Molar Level Glucose Sensing and Precise Determination of Blood Glucose Level. Sens. Actuators B Chem. 2018, 255, 332–340. DOI: 10.1016/j.snb.2017.07.143.
  • Miao, Y.; Yang, M.; Yan, G. Self-Assembly of Phosphorescent Quantum Dots/Boronic-Acid-Substituted Viologen Nanohybrids Based on Photoinduced Electron Transfer for Glucose Detection in Aqueous Solution. RSC Adv. 2016, 6, 8588–8593. DOI: 10.1039/C5RA19911E.
  • Tang, B.; Cao, L.; Xu, K.; Zhuo, L.; Ge, J.; Li, Q.; Yu, L. A New Nanobiosensor for Glucose with High Sensitivity and Selectivity in Serum Based on Fluorescence Resonance Energy Transfer (FRET) between CdTe Quantum Dots and Au Nanoparticles. Chemistry. 2008, 14, 3637–3644. DOI: 10.1002/chem.200701871.
  • Pickup, J. C.; Hussain, F.; Evans, N. D.; Rolinski, O. J.; Birch, D. J. Fluorescence-Based Glucose Sensors. Biosens. Bioelectron. 2005, 20, 2555–2565. DOI: 10.1016/j.bios.2004.10.002.
  • Klonoff, D. C. Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future. J. Diabetes Sci. Technol. 2012, 6, 1242–1250. DOI: 10.1177/193229681200600602.
  • Hu, H.; Wei, Y.; Wang, D.; Su, N.; Chen, X.; Zhao, Y.; Liu, G.; Yang, Y. Glucose Monitoring in Living Cells with Single Fluorescent Protein-Based Sensors. RSC Adv. 2018, 8, 2485–2489. DOI: 10.1039/C7RA11347A.
  • Cummins, B. M.; Garza, J. T.; Coté, G. L. Optimization of a Concanavalin A-Based Glucose Sensor Using Fluorescence Anisotropy. Anal. Chem. 2013, 85, 5397–5404. DOI: 10.1021/ac303689j.
  • Fang, G.; Wang, H.; Bian, Z.; Sun, J.; Liu, A.; Fang, H.; Liu, B.; Yao, Q.; Wu, Z. Recent Development of Boronic Acid-Based Fluorescent Sensors. RSC Adv. 2018, 8, 29400–29427. DOI: 10.1039/C8RA04503H.
  • Jiang, S.; Zhang, Y.; Yang, Y.; Huang, Y.; Ma, G.; Luo, Y.; Huang, P.; Lin, J. Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection. ACS Appl. Mater. Interfaces. 2019, 11, 10554–10558. DOI: 10.1021/acsami.9b00010.
  • Holzinger, M.; Buzzetti, P. H. M.; Cosnier, S. Polymers and Nano-Objects, a Rational Combination for Developing Health Monitoring Biosensors. Sens. Actuators B Chem. 2021, 348, 130700. DOI: 10.1016/j.snb.2021.130700.
  • Sargazi, S.; Fatima, I.; Kiani, M. H.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Diez-Pascual, A. M.; Behzadmehr, R. Fluorescent-Based Nanosensors for Selective Detection of a Wide Range of Biological Macromolecules: A Comprehensive Review. Int. J. Biol. Macromol. 2022, 206, 115–147. DOI: 10.1016/j.ijbiomac.2022.02.137.
  • Shan, X.; Chai, L.; Ma, J.; Qian, Z.; Chen, J.; Feng, H. B-Doped Carbon Quantum Dots as a Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection. Analyst. 2014, 139, 2322–2325. DOI: 10.1039/C3AN02222F.
  • Mousavi, S. M.; Hashemi, S. A.; Gholami, A.; Mazraedoost, S.; Chiang, W. H.; Arjmand, O.; Omidifar, N.; Babapoor, A. Precise Blood Glucose Sensing by Nitrogen-Doped Graphene Quantum Dots for Tight Control of Diabetes. J. Sensors. 2021, 2021, 1–14. DOI: 10.1155/2021/5580203.
  • Shen, P.; Xia, Y. Synthesis-Modification Integration: one-Step Fabrication of Boronic Acid Functionalized Carbon Dots for Fluorescent Blood Sugar Sensing. Anal. Chem. 2014, 86, 5323–5329. DOI: 10.1021/ac5001338.
  • Du, P.; Niu, Q.; Chen, J.; Chen, Y.; Zhao, J.; Lu, X. “Switch-On” Fluorescence Detection of Glucose with High Specificity and Sensitivity Based on Silver Nanoparticles Supported on Porphyrin Metal–Organic Frameworks. Anal. Chem. 2020, 92, 7980–7986. DOI: 10.1021/acs.analchem.0c01651.
  • Mai, H. H.; Janssens, E. Au Nanoparticle–Decorated ZnO Nanorods as Fluorescent Non-Enzymatic Glucose Probe. Microchim. Acta. 2020, 187, 1–11. DOI: 10.1007/s00604-020-04563-6.
  • Chen, H.; Fang, A.; He, L.; Zhang, Y.; Yao, S. Sensitive Fluorescent Detection of H2O2 and Glucose in Human Serum Based on Inner Filter Effect of Squaric Acid-Iron (III) on the Fluorescence of Upconversion Nanoparticle. Talanta. 2017, 164, 580–587. DOI: 10.1016/j.talanta.2016.10.008.
  • Shi, Y.; Huang, J.; Wang, J.; Su, P.; Yang, Y. A Magnetic Nanoscale Fe3O4/Pβ-CD Composite as an Efficient Peroxidase Mimetic for Glucose Detection. Talanta. 2015, 143, 457–463. DOI: 10.1016/j.talanta.2015.05.025.
  • Saikia, A.; Karak, N. Cellulose Nanofiber-Polyaniline Nanofiber-Carbon Dot Nanohybrid and Its Nanocomposite with Sorbitol Based Hyperbranched Epoxy: Physical, Thermal, Biological and Sensing Properties. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 584, 124049. DOI: 10.1016/j.colsurfa.2019.124049.
  • Dong, L. Y.; Wang, L. Y.; Wang, X. F.; Liu, Y.; Liu, H. L.; Xie, M. X. Development of Fluorescent FRET Probe for Determination of Glucose Based on β-Cyclodextrin Modified ZnS-Quantum Dots and Natural Pigment 3-Hydroxyflavone. Dyes Pigm. 2016, 128, 170–178. DOI: 10.1016/j.dyepig.2016.01.032.
  • Ebralidze, I. I.; Laschuk, N. O.; Poisson, J.; Zenkina, O. V. Colorimetric Sensors and Sensor Arrays. In Nanomaterials Design for Sensing Applications; Zenkina, O. V., Ed.; Elsevier: Amsterdam, 2019; pp 1–39.
  • Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci: Nano. 2020, 7, 2195–2213. DOI: 10.1039/D0EN00449A.
  • Ortiz-Gómez, I.; Salinas-Castillo, A.; García, A. G.; Álvarez-Bermejo, J. A.; de Orbe-Payá, I.; Rodríguez-Diéguez, A.; Capitán-Vallvey, L. F. Microfluidic Paper-Based Device for Colorimetric Determination of Glucose Based on a Metal-Organic Framework Acting as Peroxidase Mimetic. Microchim. Acta. 2018, 185, 8. DOI: 10.1007/s00604-017-2575-7.
  • Zhao, Z.; Pang, J.; Liu, W.; Lin, T.; Ye, F.; Zhao, S. A Bifunctional Metal Organic Framework of Type Fe(III)-BTC for Cascade (Enzymatic and Enzyme-Mimicking) Colorimetric Determination of Glucose. Microchim. Acta. 2019, 186, 1–8. DOI: 10.1007/s00604-019-3416-7.
  • Xiao, J.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal. Chem. 2019, 91, 14803–14807. DOI: 10.1021/acs.analchem.9b03110.
  • Chi, J.; Guo, M.; Zhang, C.; Zhang, Y.; Ai, S.; Hou, J.; Wu, P.; Li, X. Glucose Oxidase and Au Nanocluster co-Encapsulated Metal–Organic Frameworks as a Sensitive Colorimetric Sensor for Glucose Based on a Cascade Reaction. New J. Chem. 2020, 44, 13344–13349. DOI: 10.1039/C9NJ06339K.
  • Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. ACS Appl. Mater. Interfaces. 2017, 9, 10027–10033. DOI: 10.1021/acsami.7b01616.
  • Lu, N.; Zhang, M.; Ding, L.; Zheng, J.; Zeng, C.; Wen, Y.; Liu, G.; Aldalbahi, A.; Shi, J.; Song, S.; et al. Yolk–Shell Nanostructured Fe3O4@C Magnetic Nanoparticles with Enhanced Peroxidase-like Activity for Label-Free Colorimetric Detection of H2O2 and Glucose. Nanoscale. 2017, 9, 4508–4515. DOI: 10.1039/C7NR00819H.
  • Chen, H.; Yuan, C.; Yang, X.; Cheng, X.; Elzatahry, A. A.; Alghamdi, A.; Su, J.; He, X.; Deng, Y. Hollow Mesoporous Carbon Nanospheres Loaded with Pt Nanoparticles for Colorimetric Detection of Ascorbic Acid and Glucose. ACS Appl. Nano Mater. 2020, 3, 4586–4598. DOI: 10.1021/acsanm.0c00638.
  • Guo, Y.; Yan, L.; Zhang, R.; Ren, H.; Liu, A. CoO-Supported Ordered Mesoporous Carbon Nanocomposite Based Nanozyme with Peroxidase-like Activity for Colorimetric Detection of Glucose. Process Biochem. 2019, 81, 92–98. DOI: 10.1016/j.procbio.2019.03.005.
  • Rivero, P. J.; Ibañez, E.; Goicoechea, J.; Urrutia, A.; Matias, I. R.; Arregui, F. J. A Self-Referenced Optical Colorimetric Sensor Based on Silver and Gold Nanoparticles for Quantitative Determination of Hydrogen Peroxide. Sens. Actuators B Chem. 2017, 251, 624–631. DOI: 10.1016/j.snb.2017.05.110.
  • Jiang, Y.; Zhao, H.; Lin, Y.; Zhu, N.; Ma, Y.; Mao, L. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles. Angew. Chem. 2010, 122, 4910–4914. DOI: 10.1002/ange.201001057.
  • Dogra, N.; Li, X.; Kohli, P. Investigating Ligand–Receptor Interactions at Bilayer Surface Using Electronic Absorption Spectroscopy and Fluorescence Resonance Energy Transfer. Langmuir. 2012, 28, 12989–12998. DOI: 10.1021/la300724z.
  • Wang, H.; Zhang, K. Q. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors. Sensors. 2013, 13, 4192–4213. DOI: 10.3390/s130404192.
  • Ding, W.; Liu, H.; Zhao, W.; Wang, J.; Zhang, L.; Yao, Y.; Yao, C.; Song, C. A Hybrid of FeS2 Nanoparticles Encapsulated by Two-Dimensional Carbon Sheets as Excellent Nanozymes for Colorimetric Glucose Detection. ACS Appl. Bio Mater. 2020, 3, 5905–5912. DOI: 10.1021/acsabm.0c00605.
  • Mauriz, E. Clinical Applications of Visual Plasmonic Colorimetric Sensing. Sensors. 2020, 20, 6214. DOI: 10.3390/s20216214.
  • Piriya VSA.; Joseph, P.; Daniel S C G, K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric Sensors for Rapid Detection of Various Analytes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1231–1245. DOI: 10.1016/j.msec.2017.05.018.
  • Sun, J.; Lu, Y.; He, L.; Pang, J.; Yang, F.; Liu, Y. Colorimetric Sensor Array Based on Gold Nanoparticles: Design Principles and Recent Advances. Trends Analyt. Chem. 2020, 122, 115754. DOI: 10.1016/j.trac.2019.115754.
  • Alle, M.; Park, S. C.; Bandi, R.; Lee, S. H.; Kim, J. C. Rapid in-Situ Growth of Gold Nanoparticles on Cationic Cellulose Nanofibrils: recyclable Nanozyme for the Colorimetric Glucose Detection. Carbohydr. Polym. 2021, 253, 117239. DOI: 10.1016/j.carbpol.2020.117239.
  • Chu, Q.; Medvetz, D. A.; Pang, Y. A Polymeric Colorimetric Sensor with Excited-State Intramolecular Proton Transfer for Anionic Species. Chem. Mater. 2007, 19, 6421–6429. DOI: 10.1021/cm0713982.
  • Yoon, B.; Ham, D. Y.; Yarimaga, O.; An, H.; Lee, C. W.; Kim, J. M. Inkjet Printing of Conjugated Polymer Precursors on Paper Substrates for Colorimetric Sensing and Flexible Electrothermochromic Display. Adv. Mater. 2011, 23, 5492–5497. DOI: 10.1002/adma.201103471.
  • Honda, M.; Kataoka, K.; Seki, T.; Takeoka, Y. Confined Stimuli-Responsive Polymer Gel in Inverse Opal Polymer Membrane for Colorimetric Glucose Sensor. Langmuir. 2009, 25, 8349–8356. DOI: 10.1021/la804262b.
  • Chen, J.; Ge, J.; Zhang, L.; Li, Z.; Qu, L. Poly (Styrene Sulfonate) and Pt Bifunctionalized Graphene Nanosheets as an Artificial Enzyme to Construct a Colorimetric Chemosensor for Highly Sensitive Glucose Detection. Sens. Actuators B Chem. 2016, 233, 438–444. DOI: 10.1016/j.snb.2016.04.118.
  • Zhang, X. Z.; Zhou, Y.; Zhang, W.; Zhang, Y.; Gu, N. Polystyrene@Au@ Prussian Blue Nanocomposites with Enzyme-like Activity and Their Application in Glucose Detection. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 291–299. DOI: 10.1016/j.colsurfa.2015.11.035.
  • Qiao, F.; Qi, Q.; Wang, Z.; Xu, K.; Ai, S. MnSe-Loaded g-C3N4 Nanocomposite with Synergistic Peroxidase-like Catalysis: Synthesis and Application toward Colorimetric Biosensing of H2O2 and Glucose. Sens. Actuators B Chem. 2016, 229, 379–386. DOI: 10.1016/j.snb.2015.12.109.
  • Liu, H.; Hua, Y.; Cai, Y.; Feng, L.; Li, S.; Wang, H. Mineralizing Gold-Silver Bimetals into Hemin-Melamine Matrix: A Nanocomposite Nanozyme for Visual Colorimetric Analysis of H2O2 and Glucose. Anal. Chim. Acta. 2019, 1092, 57–65. DOI: 10.1016/j.aca.2019.09.025.
  • Gunatilake, U. B.; Garcia-Rey, S.; Ojeda, E.; Basabe-Desmonts, L.; Benito-Lopez, F. TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: lactate and Glucose. ACS Appl. Mater. Interfaces. 2021, 13, 37734–37745. DOI: 10.1021/acsami.1c11446.
  • Chen, J.; Ge, J.; Zhang, L.; Li, Z.; Zhou, S.; Qu, L. PSS-GN Nanocomposites as Highly-Efficient Peroxidase Mimics and Their Applications in Colorimetric Detection of Glucose in Serum. RSC Adv. 2015, 5, 90400–90407. DOI: 10.1039/C5RA15837K.
  • Fan, X.; Lim, J.; Li, Z.; Wang, T.; Jiang, L.; Liu, S.; Zhou, L.; He, C. GOX-Hemin Nanogels with Enhanced Cascade Activity for Sensitive One-Step Glucose Detection. J. Mater. Chem. B. 2021, 9, 3509–3514. DOI: 10.1039/D1TB00191D.
  • Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. One-Pot Synthesis of Fe3O4 Nanoparticle Loaded 3D Porous Graphene Nanocomposites with Enhanced Nanozyme Activity for Glucose Detection. ACS Appl. Mater. Interfaces. 2017, 9, 7465–7471. DOI: 10.1021/acsami.6b16034.
  • Ding, Y.; Chen, M.; Wu, K.; Chen, M.; Sun, L.; Liu, Z.; Shi, Z.; Liu, Q. High-Performance Peroxidase Mimics for Rapid Colorimetric Detection of H2O2 and Glucose Derived from Perylene Diimides Functionalized Co3O4 Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 558–565. DOI: 10.1016/j.msec.2017.06.020.
  • Singh, G.; Kushwaha, A.; Sharma, M. Intriguing Peroxidase-Mimic for H2O2 and Glucose Sensing: A Synergistic Ce2(MoO4)3/rGO Nanocomposites. J. Alloys Compd. 2020, 825, 154134. DOI: 10.1016/j.jallcom.2020.154134.
  • Bakhtiar, R. Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a Biochemist’s Toolbox. J. Chem. Educ. 2013, 90, 203–209. DOI: 10.1021/ed200549g.
  • Guo, X. Surface Plasmon Resonance Based Biosensor Technique: A Review. J. Biophotonics. 2012, 5, 483–501. DOI: 10.1002/jbio.201200015.
  • Yang, X.; Yuan, Y.; Dai, Z.; Liu, F.; Huang, J. Optical Property and Adsorption Isotherm Models of Glucose Sensitive Membrane Based on Prism SPR Sensor. Sens. Actuators B Chem. 2016, 237, 150–158. DOI: 10.1016/j.snb.2016.06.090.
  • Verma, R.; Gupta, B. D. A Novel Approach for Simultaneous Sensing of Urea and Glucose by SPR Based Optical Fiber Multianalyte Sensor. Analyst. 2014, 139, 1449–1455. DOI: 10.1039/C3AN01983G.
  • Zheng, W.; Han, B.; Siyu, E.; Sun, Y.; Li, X.; Cai, Y.; Zhang, Y. N. Highly-Sensitive and Reflective Glucose Sensor Based on Optical Fiber Surface Plasmon Resonance. Microchem. J. 2020, 157, 105010. DOI: 10.1016/j.microc.2020.105010.
  • Xu, X. Y.; Tian, X. G.; Cai, L. G.; Xu, Z. L.; Lei, H. T.; Wang, H.; Sun, Y. M. Molecularly Imprinted Polymer Based Surface Plasmon Resonance Sensors for Detection of Sudan Dyes. Anal. Methods. 2014, 6, 3751–3757. DOI: 10.1039/C3AY42230E.
  • Yola, M. L.; Atar, N.; Erdem, A. Oxytocin Imprinted Polymer Based Surface Plasmon Resonance Sensor and Its Application to Milk Sample. Sens. Actuators B Chem. 2015, 221, 842–848. DOI: 10.1016/j.snb.2015.07.004.
  • Abdullah, S.; Azeman, N. H.; Mobarak, N. N.; Zan, M. S. D.; Bakar, A. A. A. Sensitivity Enhancement of Localized SPR Sensor towards Pb (II) Ion Detection Using Natural Bio-Polymer Based Carrageenan. Optik. 2018, 168, 784–793. DOI: 10.1016/j.ijleo.2018.05.016.
  • Omar, N. A. S.; Fen, Y. W.; Saleviter, S.; Kamil, Y. M.; Daniyal, W. M. E. M. M.; Abdullah, J.; Mahdi, M. A. Experimental Evaluation on Surface Plasmon Resonance Sensor Performance Based on Sensitive Hyperbranched Polymer Nanocomposite Thin Films. Sens. Actuator A Phys. 2020, 303, 111830. DOI: 10.1016/j.sna.2020.111830.
  • Mishra, S. K.; Tripathi, S. N.; Choudhary, V.; Gupta, B. D. SPR Based Fibre Optic Ammonia Gas Sensor Utilizing Nanocomposite Film of PMMA/Reduced Graphene Oxide Prepared by in Situ Polymerization. Sens. Actuators B Chem. 2014, 199, 190–200. DOI: 10.1016/j.snb.2014.03.109.
  • Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-Based SERS Biosensor: From Substrate Design to Sensing and Bioapplication. NPG Asia Mater. 2021, 13, 36. DOI: 10.1038/s41427-020-00278-5.
  • Cialla, D.; März, A.; Böhme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-Enhanced Raman Spectroscopy (SERS): Progress and Trends. Anal. Bioanal. Chem. 2012, 403, 27–54. DOI: 10.1007/s00216-011-5631-x.
  • Botta, R.; Rajanikanth, A.; Bansal, C. Silver Nanocluster Films for Glucose Sensing by Surface Enhanced Raman Scattering (SERS). Sens. Bio-Sens. Res. 2016, 9, 13–16. DOI: 10.1016/j.sbsr.2016.05.001.
  • Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2003, 125, 588–593. DOI: 10.1021/ja028255v.
  • Wang, D.; Xu, G.; Zhang, X.; Gong, H.; Jiang, L.; Sun, G.; Li, Y.; Liu, G.; Li, Y.; Yang, S.; Liang, X. Dual-Functional Ultrathin Wearable 3D Particle-in-Cavity SF-AAO-Au SERS Sensors for Effective Sweat Glucose and Lab-on-Glove Pesticide Detection. Sens. Actuators B Chem. 2022, 359, 131512. DOI: 10.1016/j.snb.2022.131512.
  • Dinish, U. S.; Yaw, F. C.; Agarwal, A.; Olivo, M. Development of Highly Reproducible Nanogap SERS Substrates: Comparative Performance Analysis and Its Application for Glucose Sensing. Biosens. Bioelectron. 2011, 26, 1987–1992. DOI: 10.1016/j.bios.2010.08.069.
  • Cui, X.; Li, J.; Li, Y.; Liu, M.; Qiao, J.; Wang, D.; Cao, H.; He, W.; Feng, Y.; Yang, Z. Detection of Glucose in Diabetic Tears by Using Gold Nanoparticles and MXene Composite Surface-Enhanced Raman Scattering Substrates. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 266, 120432. DOI: 10.1016/j.saa.2021.120432.
  • Fateixa, S.; Nogueira, H. I.; Trindade, T. Hybrid Nanostructures for SERS: materials Development and Chemical Detection. Phys. Chem. Chem. Phys. 2015, 17, 21046–21071. DOI: 10.1039/C5CP01032B.
  • Pham, X. H.; Seong, B.; Hahm, E.; Huynh, K. H.; Kim, Y. H.; Kim, J.; Lee, S. H.; Jun, B. H. Glucose Detection of 4-Mercaptophenylboronic Acid-Immobilized Gold-Silver Core-Shell Assembled Silica Nanostructure by Surface Enhanced Raman Scattering. Nanomaterials. 2021, 11, 948. DOI: 10.3390/nano11040948.
  • Sadrolhosseini, A. R.; Moozarm Nia, P.; Naseri, M.; Mohammadi, A.; Wing Fen, Y.; Shafie, S.; Kamari, H. M. Surface Plasmon Resonance Sensor Based on Polypyrrole–Chitosan–BaFe2O4 Nanocomposite Layer to Detect the Sugar. Appl. Sci. 2020, 10, 2855. DOI: 10.3390/app10082855.
  • Cai, J.; Huang, J.; Ge, M.; Iocozzia, J.; Lin, Z.; Zhang, K. Q.; Lai, Y. Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO2 Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. Small. 2017, 13, 1604240. DOI: 10.1002/smll.201604240.
  • Ma, Y.; Li, N.; Yang, C.; Yang, X. One-Step Synthesis of Water-Soluble Gold Nanoparticles/Polyaniline Composite and Its Application in Glucose Sensing. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 269, 1–6. DOI: 10.1016/j.colsurfa.2005.04.030.
  • Luong, J. H.; Narayan, T.; Solanki, S.; Malhotra, B. D. Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. JFB. 2020, 11, 71. DOI: 10.3390/jfb11040071.
  • Hashemi, S. A.; Mousavi, S. M.; Bahrani, S.; Ramakrishna, S. Polythiophene Silver Bromide Nanostructure as Ultra-Sensitive Non-Enzymatic Electrochemical Glucose Biosensor. Eur. Polym. J. 2020, 138, 109959. DOI: 10.1016/j.eurpolymj.2020.109959.
  • Harraz, F. A.; Faisal, M.; Jalalah, M.; Almadiy, A. A.; Al-Sayari, S. A.; Al-Assiri, M. S. Conducting Polythiophene/α-Fe2O3 Nanocomposite for Efficient Methanol Electrochemical Sensor. Appl. Surf. Sci. 2020, 508, 145226. DOI: 10.1016/j.apsusc.2019.145226.
  • Wang, J.; Hui, N. Electrochemical Functionalization of Polypyrrole Nanowires for the Development of Ultrasensitive Biosensors for Detecting microRNA. Sens. Actuators B Chem. 2019, 281, 478–485. DOI: 10.1016/j.snb.2018.10.131.
  • Adhikari, A.; De, S.; Rana, D.; Nath, J.; Ghosh, D.; Dutta, K.; Chakraborty, S.; Chattopadhyay, S.; Chakraborty, M.; Chattopadhyay, D. Selective Sensing of Dopamine by Sodium Cholate Tailored Polypyrrole-Silver Nanocomposite. Synth. Met. 2020, 260, 116296. DOI: 10.1016/j.synthmet.2020.116296.
  • Wang, D.; Wang, J.; Song, Z.; Hui, N. Highly Selective and Antifouling Electrochemical Biosensors for Sensitive MicroRNA Assaying Based on Conducting Polymer Polyaniline Functionalized with Zwitterionic Peptide. Anal. Bioanal. Chem. 2021, 413, 543–553. DOI: 10.1007/s00216-020-03025-5.Online]
  • Liu, S.; Ma, Y.; Cui, M.; Luo, X. Enhanced Electrochemical Biosensing of Alpha-Fetoprotein Based on Three-Dimensional Macroporous Conducting Polymer Polyaniline. Sens. Actuators B Chem. 2018, 255, 2568–2574. DOI: 10.1016/j.snb.2017.09.062.
  • Zhao, Y.; Cao, L.; Li, L.; Cheng, W.; Xu, L.; Ping, X.; Pan, L.; Shi, Y. Conducting Polymers and Their Applications in Diabetes Management. Sensors. 2016, 16, 1787. DOI: 10.3390/s16111787.
  • German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers. 2021, 13, 2173. DOI: 10.3390/polym13132173.
  • Shahnavaz, Z.; Lorestani, F.; Alias, Y.; Woi, P. M. Polypyrrole–ZnFe2O4 Magnetic Nano-Composite with Core–Shell Structure for Glucose Sensing. Appl. Surf. Sci. 2014, 317, 622–629. DOI: 10.1016/j.apsusc.2014.08.194.
  • Manafi-Yeldaghermani, R.; Shahrokhian, S.; Kahnamouei, M. H. Facile Preparation of a Highly Sensitive Non-Enzymatic Glucose Sensor Based on the Composite of Cu(OH)2 Nanotubes Arrays and Conductive Polypyrrole. Microchem. J. 2021, 169, 106636. DOI: 10.1016/j.microc.2021.106636.
  • Sheng, Q.; Liu, D.; Zheng, J. NiCo Alloy Nanoparticles Anchored on Polypyrrole/Reduced Graphene Oxide Nanocomposites for Nonenzymatic Glucose Sensing. New J. Chem. 2016, 40, 6658–6665. DOI: 10.1039/C6NJ01264G.
  • Lamiri, L.; Belgherbi, O.; Dehchar, C.; Laidoudi, S.; Tounsi, A.; Nessark, B.; Habelhames, H.; Hamam, A.; Gourari, B. Performance of Polybithiophene-Palladium Particles Modified Electrode for Non-Enzymatic Glucose Detection. Synth. Met. 2020, 266, 116437. DOI: 10.1016/j.synthmet.2020.116437.
  • Mazeiko, V.; Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Balevicius, Z.; Ramanavicius, A. Ramanavicius, Gold Nanoparticle and Conducting Polymer-Polyaniline-Based Nanocomposites for Glucose Biosensor Design. Sens. Actuators B Chem. 2013, 189, 187–193. DOI: 10.1016/j.snb.2013.03.140.
  • Kuznetsova, L. S.; Arlyapov, V. A.; Kamanina, O. A.; Lantsova, E. A.; Tarasov, S. E.; Reshetilov, A. N. Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor. Polymers. 2022, 14, 1543. DOI: 10.3390/polym14081543.
  • Saravanan, N.; Rajasekar, R.; Mahalakshmi, S.; Sathishkumar, T.; Sasikumar, K.; Sahoo, S. Graphene and Modified Graphene-Based Polymer nanocomposites – A Review. J. Reinf. Plast. Compos. 2014, 33, 1158–1170. DOI: 10.1177/0731684414524847.
  • Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent Advances in Graphene Based Polymer Composites. Prog. Polym. Sci. 2010, 35, 1350–1375. DOI: 10.1016/j.progpolymsci.2010.07.005.
  • Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer. 2011, 52, 5–25. DOI: 10.1016/j.polymer.2010.11.042.
  • Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Glucose Oxidase–Graphene–Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing. Biosens. Bioelectron. 2009, 25, 901–905. DOI: 10.1016/j.bios.2009.09.004.
  • Dey, R. S. Development of Biosensors from Polymer Graphene Composites. In Graphene-Based Polymer Nanocomposites in Electronics; Sadasivuni, K.K.; Ponnamma, D.; Kim J.; Thomas, S., Eds.; Springer: Cham, 2015; pp 277–305.
  • Liu, Y.; Dong, X.; Chen, P. Biological and Chemical Sensors Based on Graphene Materials. Chem. Soc. Rev. 2012, 41, 2283–2307. DOI: 10.1039/c1cs15270j.
  • Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene‐Based Electrochemical Sensors. Small. 2013, 9, 1160–1172. DOI: 10.1002/smll.201202896.
  • Fan, Y.; Liu, J. H.; Yang, C. P.; Yu, M.; Liu, P. Graphene–Polyaniline Composite Film Modified Electrode for Voltammetric Determination of 4-Aminophenol. Sens. Actuators B Chem. 2011, 157, 669–674. DOI: 10.1016/j.snb.2011.05.053.
  • Leong, K. L.; Ho, M. Y.; Lee, X. Y.; Yee, M. S. L. A Review on the Development of Non-Enzymatic Glucose Sensor Based on Graphene-Based Nanocomposites. Nano. 2020, 15, 2030004. DOI: 10.1142/S1793292020300042.
  • Guan, L. Z.; Zhao, L.; Wan, Y. J.; Tang, L. C. Three-Dimensional Graphene-Based Polymer Nanocomposites: preparation, Properties and Applications. Nanoscale. 2018, 10, 14788–14811. DOI: 10.1039/c8nr03044h.
  • De, S.; Mohanty, S.; Nayak, S. K. Nano-CeO2 Decorated Graphene Based Chitosan Nanocomposites as Enzymatic Biosensing Platform: fabrication and Cellular Biocompatibility Assessment. Bioprocess Biosyst. Eng. 2015, 38, 1671–1683. DOI: 10.1007/s00449-015-1408-5.
  • Eryiğit, M.; Cepni, E.; Urhan, B. K.; Doğan, H. Ö.; Özer, T. Ö. Nonenzymatic Glucose Sensor Based on Poly (3, 4-Ethylene Dioxythiophene)/Electroreduced Graphene Oxide Modified Gold Electrode. Synth. Met. 2020, 268, 116488. DOI: 10.1016/j.synthmet.2020.116488.
  • Anand, V. K.; Bukke, A.; Bhatt, K.; Kumar, S.; Sharma, S.; Goyal, R.; Virdi, G. S. Highly Sensitive and Reusable Cu+ 2/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink-Based Non-Enzymatic Glucose Sensor. Appl. Phys. A. 2020, 126, 1–11. DOI: 10.1007/s00339-020-03620-4.
  • Bairagi, P. K.; Verma, N. Electro-Polymerized Polyacrylamide Nano Film Grown on a Ni-Reduced Graphene Oxide-Polymer Composite: A Highly Selective Non-Enzymatic Electrochemical Recognition Element for Glucose. Sens. Actuators B Chem. 2019, 289, 216–225. DOI: 10.1016/j.snb.2019.03.057.
  • Lu, W.; Qin, X.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Facile Synthesis of Novel Ni (II)-Based Metal–Organic Coordination Polymer Nanoparticle/Reduced Graphene Oxide Nanocomposites and Their Application for Highly Sensitive and Selective Nonenzymatic Glucose Sensing. Analyst. 2013, 138, 429–433. DOI: 10.1039/c2an36194a.
  • Deshmukh, M. A.; Kang, B. C.; Ha, T. J. Non-Enzymatic Electrochemical Glucose Sensors Based on Polyaniline/Reduced-Graphene-Oxide Nanocomposites Functionalized with Silver Nanoparticles. J. Mater. Chem. C. 2020, 8, 5112–5123. DOI: 10.1039/C9TC06836H.
  • Zheng, W.; Hu, L.; Lee, L. Y. S.; Wong, K. Y. Copper Nanoparticles/Polyaniline/Graphene Composite as a Highly Sensitive Electrochemical Glucose Sensor. J. Electroanal. Chem. 2016, 781, 155–160. DOI: 10.1016/j.jelechem.2016.08.004.
  • Hui, N.; Wang, W.; Xu, G.; Luo, X. Graphene Oxide Doped Poly (3, 4-Ethylenedioxythiophene) Modified with Copper Nanoparticles for High Performance Nonenzymatic Sensing of Glucose. J. Mater. Chem. B. 2015, 3, 556–561. DOI: 10.1039/c4tb01831a.
  • Batool, R.; Akhtar, M. A.; Hayat, A.; Han, D.; Niu, L.; Ahmad, M. A.; Nawaz, M. H. A Nanocomposite Prepared from Magnetite Nanoparticles, Polyaniline and Carboxy-Modified Graphene Oxide for Non-Enzymatic Sensing of Glucose. Microchim. Acta. 2019, 186, 1–10. DOI: 10.1007/s00604-019-3364-2.
  • Zhang, L. J.; Xia, L.; Xie, H. Y.; Zhang, Z. L.; Pang, D. W. Quantum Dot Based Biotracking and Biodetection. Anal. Chem. 2019, 91, 532–547. DOI: 10.1021/acs.analchem.8b04721.
  • Díaz-González, M.; de la Escosura-Muñiz, A.; Fernandez-Argüelles, M. T.; García Alonso, F. J.; Costa-Fernandez, J. M. Quantum Dot Bioconjugates for Diagnostic Applications. In Surface-Modified Nanobiomaterials for Electrochemical and Biomedicine Applications; Puente-Santiago, A. R.; Rodríguez-Padrón, D., Eds.; Springer: Cham, 2020; pp 133–176.
  • Freeman, R.; Willner, I. Optical Molecular Sensing with Semiconductor Quantum Dots (QDs). Chem. Soc. Rev. 2012, 41, 4067–4085. DOI: 10.1039/c2cs15357b.
  • Zheng, M.; Cui, Y.; Li, X.; Liu, S.; Tang, Z. Photoelectrochemical Sensing of Glucose Based on Quantum Dot and Enzyme Nanocomposites. J. Electroanal. Chem. 2011, 656, 167–173. DOI: 10.1016/j.jelechem.2010.11.036.
  • Saran, A. D.; Sadawana, M. M.; Srivastava, R.; Bellare, J. R. An Optimized Quantum Dot-Ligand System for Biosensing Applications: Evaluation as a Glucose Biosensor. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 384, 393–400. DOI: 10.1016/j.colsurfa.2011.04.022.
  • Kovačova, M.; Špitalska, E.; Markovic, Z.; Špitálský, Z. Carbon Quantum Dots as Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications. Part. Part. Syst. Charact. 2020, 37, 1900348. DOI: 10.1002/ppsc.201900348.
  • Shehab, M.; Ebrahim, S.; Soliman, M. Graphene Quantum Dots Prepared from Glucose as Optical Sensor for Glucose. J. Lumin. 2017, 184, 110–116. DOI: 10.1016/j.jlumin.2016.12.006.
  • Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, P.; Amin, G.; Nur, O.; Willander, M.; Nötzel, R. Highly Efficient Potentiometric Glucose Biosensor Based on Functionalized InN Quantum Dots. Appl. Phys. Lett. 2012, 101, 153110. DOI: 10.1063/1.4758701.
  • Facure, M. H.; Schneider, R.; Mercante, L. A.; Correa, D. S. A Review on Graphene Quantum Dots and Their Nanocomposites: From Laboratory Synthesis towards Agricultural and Environmental Applications. Environ. Sci: Nano. 2020, 7, 3710–3734. DOI: 10.1039/D0EN00787K.
  • Feng, Z.; Adolfsson, K. H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon Dot/Polymer Nanocomposites: From Green Synthesis to Energy, Environmental and Biomedical Applications. Sustainable MaterTechnol. 2021, 29, e00304. DOI: 10.1016/j.susmat.2021.e00304.
  • Zhang, J.; Jin, J.; Wan, J.; Jiang, S.; Wu, Y.; Wang, W.; Gong, X.; Wang, H. Quantum Dots-Based Hydrogels for Sensing Applications. Chem. Eng. J. 2021, 408, 127351. DOI: 10.1016/j.cej.2020.127351.
  • Tian, K.; Nie, F.; Luo, K.; Zheng, X.; Zheng, J. A Sensitive Electrochemiluminescence Glucose Biosensor Based on Graphene Quantum Dot Prepared from Graphene Oxide Sheets and Hydrogen Peroxide. J. Electroanal. Chem. 2017, 801, 162–170. DOI: 10.1016/j.jelechem.2017.07.019.
  • Ran, P.; Song, J.; Mo, F.; Wu, J.; Liu, P.; Fu, Y. Nitrogen-Doped Graphene Quantum Dots Coated with Gold Nanoparticles for Electrochemiluminescent Glucose Detection Using Enzymatically Generated Hydrogen Peroxide as a Quencher. Microchim. Acta. 2019, 186, 1–7. DOI: 10.1007/s00604-019-3397-6.
  • Sadrolhosseini, A. R.; Rashid, S. A.; Jamaludin, N.; Noor, A. S. M.; Isloor, A. M. Surface Plasmon Resonance Sensor Using Polypyrrole-Chitosan/Graphene Quantum Dots Layer for Detection of Sugar. Mater. Res. Express. 2019, 6, 075028. DOI: 10.1088/2053-1591/ab0b7a.
  • Wang, D.; Liang, Y.; Su, Y.; Shang, Q.; Zhang, C. Sensitivity Enhancement of Cloth-Based Closed Bipolar Electrochemiluminescence Glucose Sensor via Electrode Decoration with Chitosan/Multi-Walled Carbon Nanotubes/Graphene Quantum Dots-Gold Nanoparticles. Biosens. Bioelectron. 2019, 130, 55–64. DOI: 10.1016/j.bios.2019.01.027.
  • Rosddi, N. N. M.; Fen, Y. W.; Anas, N. A. A.; Omar, N. A. S.; Ramdzan, N. S. M.; Daniyal, W. M. E. M. M. Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application. Crystals. 2020, 10, 875. DOI: 10.3390/cryst10100875.
  • Yao, J.; Ji, P.; Wang, B.; Wang, H.; Chen, S. Color-Tunable Luminescent Macrofibers Based on CdTe QDs-Loaded Bacterial Cellulose Nanofibers for pH and Glucose Sensing. Sens. Actuators B Chem. 2018, 254, 110–119. DOI: 10.1016/j.snb.2017.07.071.
  • Nashruddin, S.; Abdullah, J.; Mohammad Haniff, M.; Mat Zaid, M.; Choon, O.; Mohd Razip Wee, M. Label Free Glucose Electrochemical Biosensor Based on Poly (3, 4-Ethylenedioxy Thiophene): Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. Biosensors. 2021, 11, 267. DOI: 10.3390/bios11080267.
  • Xu, Y.; Xu, Y. Hierarchical Materials. In Modern Inorganic Synthetic Chemistry; Xu, R., Ed.; Elsevier: Amsterdam, 2017; pp 545–574.
  • Sood, A.; Gupta, A.; Agrawal, G. Recent Advances in Polysaccharides Based Biomaterials for Drug Delivery and Tissue Engineering Applications. Carbohydr. Poly. Technol. Appl. 2021, 2, 100067. DOI: 10.1016/j.carpta.2021.100067.
  • Kownacka, A. E.; Vegelyte, D.; Joosse, M.; Anton, N.; Toebes, B. J.; Lauko, J.; Buzzacchera, I.; Lipinska, K.; Wilson, D. A.; Duijvestijn, N. G.; Wilson, C. J. Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules. 2018, 19, 4504–4511. DOI: 10.1021/acs.biomac.8b01429.
  • Wen, Y.; Oh, J. K. Recent Strategies to Develop Polysaccharide‐Based Nanomaterials for Biomedical Applications. Macromol. Rapid Commun. 2014, 35, 1819–1832. DOI: 10.1002/marc.201400406.
  • Soares, P. I.; Echeverria, C.; Baptista, A. C.; João, C. F.; Fernandes, S. N.; Almeida, A. P.; Silva, J. C.; Godinho, M. H.; Borges, J. P. Hybrid Polysaccharide-Based Systems for Biomedical Applications. In Hybrid Polymer Composite Materials; Thakur, V. K.; Thakur, M. K.; Pappu, A., Eds.; Woodhead Publishing: UK, 2017; pp 107–149.]
  • Tummalapalli, M.; Singh, S.; Sanwaria, S.; Gurave, P. M. Design and Development of Advanced Glucose Biosensors via Tuned Interactions between Marine Polysaccharides and Diagnostic Elements–a Survey. Sens. Int. 2022, 3, 100170. DOI: 10.1016/j.sintl.2022.100170.
  • Bagal-Kestwal, D. R.; Chiang, B. H. Exploration of Chitinous Scaffold-Based Interfaces for Glucose Sensing Assemblies. Polymers. 2019, 11, 1958. DOI: 10.3390/polym11121958.
  • Esmaeili, C.; Abdi, M. M.; Mathew, A. P.; Jonoobi, M.; Oksman, K.; Rezayi, M. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. Sensors. 2015, 15, 24681–24697. DOI: 10.3390/s151024681.
  • Nguyen, L. H.; Naficy, S.; Chandrawati, R.; Dehghani, F. Nanocellulose for Sensing Applications. Adv. Materials Inter. 2019, 6, 1900424. DOI: 10.1002/admi.201900424.
  • Golmohammadi, H.; Morales-Narváez, E.; Naghdi, T.; Merkoçi, A. Nanocellulose in Sensing and Biosensing. Chem. Mater. 2017, 29, 5426–5446. DOI: 10.1021/acs.chemmater.7b01170.
  • Anusha, J. R.; Raj, C. J.; Cho, B. B.; Fleming, A. T.; Yu, K. H.; Kim, B. C. Amperometric Glucose Biosensor Based on Glucose Oxidase Immobilized over Chitosan Nanoparticles from Gladius of Uroteuthis Duvauceli. Sens. Actuators B Chem. 2015, 215, 536–543. DOI: 10.1016/j.snb.2015.03.110.
  • Qiu, J. D.; Huang, J.; Liang, R. P. Nanocomposite Film Based on Graphene Oxide for High Performance Flexible Glucose Biosensor. Sens. Actuators B Chem. 2011, 160, 287–294. DOI: 10.1016/j.snb.2011.07.049.
  • Yang, J.; Yu, J. H.; Strickler, J. R.; Chang, W. J.; Gunasekaran, S. Nickel Nanoparticle–Chitosan-Reduced Graphene Oxide-Modified Screen-Printed Electrodes for Enzyme-Free Glucose Sensing in Portable Microfluidic Devices. Biosens. Bioelectron. 2013, 47, 530–538. DOI: 10.1016/j.bios.2013.03.051.
  • Shukla, S. K.; Deshpande, S. R.; Shukla, S. K.; Tiwari, A. Fabrication of a Tunable Glucose Biosensor Based on Zinc Oxide/Chitosan-Graft-Poly (Vinyl Alcohol) Core-Shell Nanocomposite. Talanta. 2012, 99, 283–287. DOI: 10.1016/j.talanta.2012.05.052.
  • Rassas, I.; Braiek, M.; Bonhomme, A.; Bessueille, F.; Raffin, G.; Majdoub, H.; Jaffrezic-Renault, N. Highly Sensitive Voltammetric Glucose Biosensor Based on Glucose Oxidase Encapsulated in a Chitosan/Kappa-Carrageenan/Gold Nanoparticle Bionanocomposite. Sensors. 2019, 19, 154. DOI: 10.3390/s19010154.
  • Shrestha, B. K.; Ahmad, R.; Mousa, H. M.; Kim, I. G.; Kim, J. I.; Neupane, M. P.; Park, C. H.; Kim, C. S. High-Performance Glucose Biosensor Based on Chitosan-Glucose Oxidase Immobilized Polypyrrole/Nafion/Functionalized Multi-Walled Carbon Nanotubes Bio-Nanohybrid Film. J. Colloid Interface Sci. 2016, 482, 39–47. DOI: 10.1016/j.jcis.2016.07.067.
  • Fang, Y.; Zhang, D.; Guo, Y.; Guo, Y.; Chen, Q. Simple One-Pot Preparation of Chitosan-Reduced Graphene oxide-Au Nanoparticles Hybrids for Glucose Sensing. Sens. Actuators B Chem. 2015, 221, 265–272. DOI: 10.1016/j.snb.2015.06.098.
  • Niu, X.; Wang, F.; Wang, W.; Wang, Y.; Huang, Y.; Zhang, J. Microwave-Assisted Synthesis of Pd3Ag Nanocomposite via Nature Polysaccharide Applied to Glucose Detection. Int. J. Biol. Macromol. 2018, 118, 2065–2070. DOI: 10.1016/j.ijbiomac.2018.07.071.
  • Wang, F.; Niu, X.; Wang, W.; Jing, W.; Huang, Y.; Zhang, J. Green Synthesis of Pd Nanoparticles via Extracted Polysaccharide Applied to Glucose Detection. J. Taiwan Inst. Chem. Eng. 2018, 93, 87–93. DOI: 10.1016/j.jtice.2018.08.022.
  • Figiela, M.; Wysokowski, M.; Galinski, M.; Jesionowski, T.; Stepniak, I. Synthesis and Characterization of Novel Copper Oxide-Chitosan Nanocomposites for Non-Enzymatic Glucose Sensing. Sens. Actuators B Chem. 2018, 272, 296–307. DOI: 10.1016/j.snb.2018.05.173.
  • Liu, Z.; Guo, Y.; Dong, C. A High Performance Nonenzymatic Electrochemical Glucose Sensor Based on Polyvinylpyrrolidone–Graphene Nanosheets–Nickel Nanoparticles–Chitosan Nanocomposite. Talanta. 2015, 137, 87–93. DOI: 10.1016/j.talanta.2015.01.037.
  • Unal, B.; Yalcinkaya, E. E.; Gumustas, S.; Sonmez, B.; Ozkan, M.; Balcan, M.; Demirkol, D. O.; Timur, S. Polyglycolide–Montmorillonite as a Novel Nanocomposite Platform for Biosensing Applications. New J. Chem. 2017, 41, 9371–9379. DOI: 10.1039/C7NJ01751K.
  • Emre, F. B.; Kesik, M.; Kanik, F. E.; Akpinar, H. Z.; Aslan-Gurel, E.; Rossi, R. M.; Toppare, L. A Benzimidazole-Based Conducting Polymer and a PMMA–Clay Nanocomposite Containing Biosensor Platform for Glucose Sensing. Synth. Met. 2015, 207, 102–109. DOI: 10.1016/j.synthmet.2015.06.015.
  • Apetrei, R. M.; Camurlu, P. The Effect of Montmorillonite Functionalization on the Performance of Glucose Biosensors Based on Composite Montmorillonite/PAN Nanofibers. Electrochim. Acta. 2020, 353, 136484. DOI: 10.1016/j.electacta.2020.136484.
  • Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly Selective and Stable Glucose Biosensor Based on Incorporation of Platinum Nanoparticles into Polyaniline-Montmorillonite Hybrid Composites. Microchem. J. 2020, 152, 104266. DOI: 10.1016/j.microc.2019.104266.
  • Bee, S. L.; Abdullah, M. A. A.; Bee, S. T.; Sin, L. T.; Rahmat, A. R. Polymer Nanocomposites Based on Silylated-Montmorillonite: A Review. Prog. Polym. Sci. 2018, 85, 57–82. DOI: 10.1016/j.progpolymsci.2018.07.003.
  • Wypych, F.; Bergaya, F.; Schoonheydt, R. A. From Polymers to Clay Polymer Nanocomposites. Dev. Clay Sci. 2018, 9, 331–359. DOI: 10.1016/B978-0-08-102432-4.00010-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.