94
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

The research status of biodegradable polymers in repair of Achilles tendon defects

, , , , ORCID Icon &
Pages 771-784 | Received 09 Dec 2022, Accepted 19 Apr 2023, Published online: 04 May 2023

References

  • Ganestam, A.; Kallemose, T.; Troelsen, A.; Barfod, K. W. Increasing Incidence of Acute Achilles Tendon Rupture and a Noticeable Decline in Surgical Treatment from 1994 to 2013. A Nationwide Registry Study of 33,160 Patients. Knee. Surg. Sports Traumatol. Arthrosc. 2016, 24, 3730–3737. DOI: 10.1007/s00167-015-3544-5.
  • Chan, J. J.; Chen, K. K.; Sarker, S.; Hasija, R.; Huang, H.-H.; Guzman, J. Z.; Vulcano, E. Epidemiology of Achilles Tendon Injuries in Collegiate Level Athletes in the United States. Int. Orthop. 2020, 44, 585–594. DOI: 10.1007/s00264-019-04471-2.
  • Park, K. H.; Park, J. H.; Yoon, Y. K.; Kwon, J. B.; Kim, J. H.; Lee, E.; Roh, Y.; Han, S. H.; Lee, J. W. Association between Outdoor Temperature and Achilles Tendon Repair: A 14-Years Nationwide Population-Based Cohort Study. PLoS One. 2022, 17, e0265041. DOI: 10.1371/journal.pone.0265041.
  • Aminlari, A.; Stone, J.; McKee, R.; Subramony, R.; Nadolski, A.; Tolia, V.; Hayden, S. R. Diagnosing Achilles Tendon Rupture with Ultrasound in Patients Treated Surgically: A Systematic Review and Meta-Analysis. J. Emerg. Med. 2021, 61, 558–567. DOI: 10.1016/j.jemermed.2021.09.008.
  • Chinen, T.; Sasabuchi, Y.; Matsui, H.; Yasunaga, H. Association between Third-Generation Fluoroquinolones and Achilles Tendon Rupture: A Self-Controlled Case Series Analysis. Ann. Fam. Med. 2021, 19, 212–216. DOI: 10.1370/afm.2673.
  • Meter, J.; Bascharon, R.; Amesur, A.; Gupta, S.; Arias, D.; Anthony, T.; Hoang, V. Revision Achilles Tendon Repair Using Posterior Tibial Tendon Allograft and Flexor Hallucis Longus Transfer. Arthrosc. Tech. 2022, 11, e359–e363. DOI: 10.1016/j.eats.2021.11.001.
  • Ando, J.; Sakuraba, M.; Sugawara, A.; Goto, A.; Azuma, S.; Mitsuhashi, N.; Sasaki, K.; Sone, I. Free Flap Reconstruction of Achilles Tendon and Overlying Skin Defect Using ALT and TFL Fabricated Chimeric Flap. Case Rep. Plast. Surg. Hand. Surg. 2019, 6, 82–85. DOI: 10.1080/23320885.2019.1635023.
  • Zhou, L.; Wei, J.; Liu, L.; Tao, S.; Dong, Z. Composite Sural Neurocutaneous Flap with Gastrocnemius Tendon for Repairing Defects of Achilles Tendon and Overlying Soft Tissue. J. Orthop. Surg. 2020, 28, 2309499020971863. DOI: 10.1177/2309499020971863.
  • Mariotti, F.; Caravelli, S.; Mosca, M.; Massimi, S.; Casadei, R.; Zaffagnini, S. Achilles Tendon Reconstruction with Peroneus Tendon Transfer following Epithelioid Sarcoma Resection: A Rare Case Report at 5 Years Follow-up. J Exp. Ortop. 2020, 7, 1–5. DOI: 10.1186/s40634-020-00233-x.
  • Nguyen, T. A.; Duong, M. H.; Vu, T. H.; et al. Using Medial Fasciocutaneous Flap to Reconstruct Tissue Defect at Achilles Tendon Area. Plast. Reconstr. Surg. Glob. Open. 2021, 9, e3824. DOI: 10.1097/GOX.0000000000003824.
  • Lee, Y. K.; Lee, M. Treatment of Infected Achilles Tendinitis and Overlying Soft Tissue Defect Using an Anterolateral Thigh Free Flap in an Elderly Patient: A Case Report. Medicine. 2018, 97, e11995. DOI: 10.1097/MD.0000000000011995.
  • Kelahmetoglu, O.; Gules, M. E.; Elmadag, N. M.; Guneren, E.; Sonmez Ergun, S. Double-Layer Reconstruction of the Achilles’ Tendon Using a Modified Lindholm’s Technique and Vascularized Fascia Lata. J. Hand. Microsurg. 2018, 10, 49–51. DOI: 10.1055/s-0037-1608745.
  • Haghverdian, J. C.; Gross, C. E.; Hsu, A. R. Knotless Reconstruction of Chronic Achilles Tendon Ruptures with < 3-cm Defects. Technique. Tip. Foot Ankle. Orthopaed. 2021, 6, 24730114211050565.
  • Nambi, G. I.; Salunke, A. A.; Pathak, S.; Sahijwani, H.; Menon, P.; Chaudhari, M.; Yongsheng, C.; Kamani, M.; Moon, P. “Repair and Flap Technique”: A Retrospective Analysis of Single Stage Reconstruction Method for Treatment of Chronic Open Achilles Tendon Defect with Proximal Turndown Flap and Reverse Sural Flap. Indian J. Orthop. 2021, 55, 149–156. DOI: 10.1007/s43465-020-00278-1.
  • Park, S.; Lee, M. S.; Jeon, J.; Lim, J.; Jo, C. H.; Bhang, S. H.; Yang, H. S. Micro-Groove Patterned PCL Patches with DOPA for Rat Achilles Tendon Regeneration. J. Ind. Eng. Chem. 2022, 105, 352–364. DOI: 10.1016/j.jiec.2021.09.037.
  • Zhang, H.; Pei, Z.; Wang, C.; Li, M.; Zhang, H.; Qu, J. Electrohydrodynamic 3D Printing Scaffolds for Repair of Achilles Tendon Defect in Rats. Tissue Eng. Part. A. 2021, 27, 1343–1354. DOI: 10.1089/ten.TEA.2020.0290.
  • Li, W.; Midgley, A. C.; Bai, Y.; Zhu, M.; Chang, H.; Zhu, W.; Wang, L.; Wang, Y.; Wang, H.; Kong, D.; et al. Subcutaneously Engineered Autologous Extracellular Matrix Scaffolds with Aligned Microchannels for Enhanced Tendon Regeneration: Aligned Microchannel Scaffolds for Tendon Repair. Biomaterials. 2019, 224, 119488. DOI: 10.1016/j.biomaterials.2019.119488.
  • Li, P.; Liu, S.; Huang, J.; et al. In Vitro Preparation and Characterization of Dual Biomimetic Electrospun Wharton’s Jelly‐Derived Extra Cellular Matrix/Polycaprolactone Sub‐Micron Fibrous Band‐Aid for Superior Achilles Tendon Recovery. Int. J. Clin. Exp. Med. 2017, 10, 11563–11575.
  • Abdulmalik, S.; Gallo, J.; Nip, J.; Katebifar, S.; Arul, M.; Lebaschi, A.; Munch, L. N.; Bartly, J. M.; Choudhary, S.; Kalajzic, I.; et al. Nanofiber Matrix Formulations for the Delivery of Exendin-4 for Tendon Regeneration: In Vitro and In Vivo Assessment. Bioact. Mater. 2023, 25, 42–60. DOI: 10.1016/j.bioactmat.2023.01.013.
  • Zhao, T.; Qi, Y.; Xiao, S.; Ran, J.; Wang, J.; Ghamor-Amegavi, E. P.; Zhou, X.; Li, H.; He, T.; Gou, Z.; et al. Integration of Mesenchymal Stem Cell Sheet and bFGF-Loaded Fibrin Gel in Knitted PLGA Scaffolds Favorable for Tendon Repair. J. Mater. Chem. B. 2019, 7, 2201–2211. DOI: 10.1039/c8tb02759e.
  • Lantto, I.; Heikkinen, J.; Flinkkila, T.; Ohtonen, P.; Siira, P.; Laine, V.; Leppilahti, J. A Prospective Randomized Trial Comparing Surgical and Nonsurgical Treatments of Acute Achilles Tendon Ruptures. Am. J. Sports. Med. 2016, 44, 2406–2414. DOI: 10.1177/0363546516651060.
  • Zhang, W.; Yang, Y.; Zhang, K.; Li, Y.; Fang, G. Weft-Knitted Silk-Poly (Lactide-co-Glycolide) Mesh Scaffold Combined with Collagen Matrix and Seeded with Mesenchymal Stem Cells for Rabbit Achilles Tendon Repair. Connect. Tissue. Res. 2015, 56, 25–34. DOI: 10.3109/03008207.2014.976309.
  • Sahoo, S.; Toh, S. L.; Goh, J. C. H. A bFGF-Releasing Silk/PLGA-Based Biohybrid Scaffold for Ligament/Tendon Tissue Engineering Using Mesenchymal Progenitor Cells. Biomaterials. 2010, 31, 2990–2998. DOI: 10.1016/j.biomaterials.2010.01.004.
  • Wang, W.; Deng, D.; Wang, B.; Zhou, G.; Zhang, W.; Cao, Y.; Zhang, P.; Liu, W. Comparison of Autologous, Allogeneic, and Cell-Free Scaffold Approaches for Engineered Tendon Repair in a Rabbit Model-a Pilot Study. Tissue. Eng. Part. A. 2017, 23, 750–761. DOI: 10.1089/ten.TEA.2016.0447.
  • Rodkey, W. G.; Cabaud, H. E.; Feagin, J. A.; Perlik, P. C. A Partially Biodegradable Material Device for Repair and Reconstruction of Injured Tendons. Am. J. Sports. Med. 1985, 13, 242–247. DOI: 10.1177/036354658501300405.
  • Stoll, C.; John, T.; Conrad, C.; Lohan, A.; Hondke, S.; Ertel, W.; Kaps, C.; Endres, M.; Sittinger, M.; Ringe, J.; et al. Healing Parameters in a Rabbit Partial Tendon Defect following Tenocyte/Biomaterial Implantation. Biomaterials. 2011, 32, 4806–4815. DOI: 10.1016/j.biomaterials.2011.03.026.
  • Bednarek, M.; Borska, K.; Kubisa, P. New Polylactide-Based Materials by Chemical Crosslinking of PLA. Polym. Rev. 2021, 61, 493–519. DOI: 10.1080/15583724.2020.1855194.
  • Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers. 2019, 11, 306. DOI: 10.3390/polym11020306.
  • Puthumana, M.; Santhana Gopala Krishnan, P.; Nayak, S. K. Chemical Modifications of PLA through Copolymerization. Int. J. Polym. Anal. Charact. 2020, 25, 634–648. DOI: 10.1080/1023666X.2020.1830650.
  • Keivani, F.; Shokrollahi, P.; Zandi, M.; Irani, S.; Khorasani, S. C; Shokrolahi, F. Engineered Electrospun Poly (Caprolactone)/Polycaprolactone-g-Hydroxyapatite Nano-Fibrous Scaffold Promotes Human Fibroblasts Adhesion and Proliferation. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 68, 78–88. DOI: 10.1016/j.msec.2016.05.098.
  • Asghari Niari, S.; Rahbarghazi, R.; Salehi, R.; Kazemi, L.; Fathi Karkan, S.; Karimipour, M. Fabrication, Characterization and Evaluation of the Effect of PLGA and PLGA–PEG Biomaterials on the Proliferation and Neurogenesis Potential of Human Neural SH‐SY5Y Cells. Microsc. Res. Tech. 2022, 85, 1433–1443. DOI: 10.1002/jemt.24006.
  • Ilyas, R.; Zuhri, M.; Aisyah, H.; Asyraf, M.; Hassan, S.; Zainudin, E.; Sapuan, S.; Sharma, S.; Bangar, S.; Jumaidin, R.; et al. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers. 2022, 14, 202. DOI: 10.3390/polym14010202.
  • More, N.; Avhad, M.; Utekar, S.; More, A. Polylactic Acid (PLA) Membrane—Significance, Synthesis, and Applications: A Review. Polym. Bull. 2023, 80, 1117–1153. DOI: 10.1007/s00289-022-04135-z.
  • Liu, W.; Lipner, J.; Moran, C. H.; Feng, L.; Li, X.; Thomopoulos, S.; Xia, Y. Generation of Electrospun Nanofibers with Controllable Degrees of Crimping through a Simple, Plasticizer‐Based Treatment. Adv. Mater. 2015, 27, 2583–2588. DOI: 10.1002/adma.201500329.
  • Pal, S.; Ak, K. R.; Bhat, P.; et al. A Comparative Microbiological Study of Polyglycolic Acid and Silk Sutures in Oral Surgical Procedures. Minerva. Dent. Oral Sci. 2021, 70, 239–247.
  • Sharifi-Aghdam, M.; Faridi-Majidi, R.; Derakhshan, M. A.; Chegeni, A.; Azami, M. Preparation of Collagen/Polyurethane/Knitted Silk as a Composite Scaffold for Tendon Tissue Engineering. Proc. Inst. Mech. Eng. H. 2017, 231, 652–662. DOI: 10.1177/0954411917697751.
  • Carriel, V.; Vizcaíno-López, G.; Chato-Astrain, J.; Durand-Herrera, D.; Alaminos, M.; Campos, A.; Sánchez-Montesinos, I.; Campos, F. Scleral Surgical Repair through the Use of Nanostructured Fibrin/Agarose-Based Films in Rabbits. Exp. Eye. Res. 2019, 186, 107717. DOI: 10.1016/j.exer.2019.107717.
  • Kawakami, Y.; Nonaka, K.; Fukase, N.; Amore, A. D.; Murata, Y.; Quinn, P.; Luketich, S.; Takayama, K.; Patel, K. G.; Matsumoto, T.; et al. A Cell-Free Biodegradable Synthetic Artificial Ligament for the Reconstruction of Anterior Cruciate Ligament in a Rat Model. Acta. Biomater. 2021, 121, 275–287. DOI: 10.1016/j.actbio.2020.10.037.
  • Wu, P.-T.; Jou, I.-M.; Kuo, L.-C.; Su, F.-C. Intratendinous Injection of Hyaluronate Induces Acute Inflammation: A Possible Detrimental Effect. PLoS One. 2016, 11, e0155424. DOI: 10.1371/journal.pone.0155424.
  • Gong, F.; Cui, L.; Zhang, X.; Zhan, X.; Gong, X.; Wen, Y. Piperine Ameliorates Collagenase-Induced Achilles Tendon Injury in the Rat. Connect. Tissue. Res. 2018, 59, 21–29. DOI: 10.1080/03008207.2017.1289188.
  • Fernandes de Jesus, J.; Spadacci-Morena, D. D.; Rabelo, N. D. D. A.; Pinfildi, C. E.; Fukuda, T. Y.; Plapler, H. Photobiomodulation of Matrix Metalloproteinases in Rat Calcaneal Tendons. Photobiomodul. Photomed. Laser. Surg. 2019, 37, 421–427. DOI: 10.1089/photob.2019.4633.
  • Baldwin, S. J.; Kreplak, L.; Lee, J. M. MMP-9 Selectively Cleaves non-D-Banded Material on Collagen Fibrils with Discrete Plasticity Damage in Mechanically-Overloaded Tendon. J. Mech. Behav. Biomed. Mater. 2019, 95, 67–75. DOI: 10.1016/j.jmbbm.2019.03.020.
  • Nguyen, Q. T.; Norelli, J. B.; Graver, A.; Ekstein, C.; Schwartz, J.; Chowdhury, F.; Drakos, M. C.; Grande, D. A.; Chahine, N. O. Therapeutic Effects of Doxycycline on the Quality of Repaired and Unrepaired Achilles Tendons. Am. J. Sports. Med. 2017, 45, 2872–2881. DOI: 10.1177/0363546517716637.
  • Sobhani-Eraghi, A.; Panahi, M.; Shirani, A.; Pazoki-Toroudi, H. The Effect of Doxycycline on Achilles Tendon Repair in a Rat Model. Malays. Orthop. J. 2020, 14, 155–160. DOI: 10.5704/MOJ.2011.024.
  • Weng, C.-J.; Lee, D.; Ho, J.; Liu, S.-J. Doxycycline-Embedded Nanofibrous Membranes Help Promote Healing of Tendon Rupture. Int J Nanomedicine 2020, 15, 125–136. DOI: 10.2147/IJN.S217697.
  • Weng, C.-J.; Liao, C.-T.; Hsu, M.-Y.; Chang, F.-P.; Liu, S.-J. Simvastatin-Loaded Nanofibrous Membrane Efficiency on the Repair of Achilles Tendons. Int. J. Nanomedicine. 2022, 17, 1171–1184. DOI: 10.2147/IJN.S353066.
  • Yan, Z.; Meng, X.; Su, Y.; Chen, Y.; Zhang, L.; Xiao, J. Double Layer Composite Membrane for Preventing Tendon Adhesion and Promoting Tendon Healing. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 123, 111941. DOI: 10.1016/j.msec.2021.111941.
  • T G, D.; Chen, C.-H.; Kuo, C.-Y.; Shalumon, K. T.; Chien, Y.-M.; Kao, H.-H.; Chen, J.-P. Development of High Resilience Spiral Wound Suture-Embedded Gelatin/PCL/Heparin Nanofiber Membrane Scaffolds for Tendon Tissue Engineering. Int. J. Biol. Macromol. 2022, 221, 314–333. DOI: 10.1016/j.ijbiomac.2022.09.001.
  • Tempfer, H.; Kaser-Eichberger, A.; Lehner, C.; Gehwolf, R.; Korntner, S.; Kunkel, N.; Wagner, A.; Gruetz, M.; Heindl, L. M.; Schroedl, F.; et al. Bevacizumab Improves Achilles Tendon Repair in a Rat Model. Cell. Physiol. Biochem. 2018, 46, 1148–1158. DOI: 10.1159/000489057.
  • Ye, Y.-J.; Zhou, Y.-Q.; Jing, Z.-Y.; Liu, Y.-Y.; Yin, D.-C. Electrospun Heparin‐Loaded Core–Shell Nanofiber Sutures for Achilles Tendon Regeneration in Vivo. Macromol. Biosci. 2018, 18, 1800041. DOI: 10.1002/mabi.201800041.
  • Evrova, O.; Bürgisser, G. M.; Ebnöther, C.; Adathala, A.; Calcagni, M.; Bachmann, E.; Snedeker, J. G.; Scalera, C.; Giovanoli, P.; Vogel, V.; et al. Elastic and Surgeon Friendly Electrospun Tubes Delivering PDGF-BB Positively Impact Tendon Rupture Healing in a Rabbit Achilles Tendon Model. Biomaterials. 2020, 232, 119722. DOI: 10.1016/j.biomaterials.2019.119722.
  • Yao, Z.; Xue, T.; Cai, C.; Li, J.; Lu, M.; Liu, X.; Jin, T.; Wu, F.; Liu, S.; Fan, C.; et al. Parathyroid Hormone‐Loaded Microneedle Promotes Tendon Healing through Activation of mTOR. Adv. Therap. 2020, 3, 2000025. DOI: 10.1002/adtp.202000025.
  • Sadat-Hosseini, S. M. A.; Moslemi, H. R.; Nourbakhsh, M. S.; et al. Evaluating the Effect of Electrospun Polyvinyl Alcohol Nanofiber Containing Eucalyptus Globules Extract on the Healing of Experimental Achilles Tendon Injury in Rat. Iran. J. Vet. Surg. 2021, 16, 12–18.
  • Allur Subramanian, S.; Oh, S.; Mariadoss, A. V. A.; Chae, S.; Dhandapani, S.; Parasuraman, P. S.; Song, S. Y.; Woo, C.; Dong, X.; Choi, J.-Y.; et al. Tunable Mechanical Properties of Mo3Se3-Poly Vinyl Alcohol-Based/Silk Fibroin-Based Nanowire Ensure the Regeneration Mechanism in Tenocytes Derived from Human Bone Marrow Stem Cells. Int. J. Biol. Macromol. 2022, 210, 196–207. DOI: 10.1016/j.ijbiomac.2022.04.211.
  • Zhang, C.; Wang, X.; Zhang, E.; Yang, L.; Yuan, H.; Tu, W.; Zhang, H.; Yin, Z.; Shen, W.; Chen, X.; et al. An Epigenetic Bioactive Composite Scaffold with Well-Aligned Nanofibers for Functional Tendon Tissue Engineering. Acta. Biomater. 2018, 66, 141–156. DOI: 10.1016/j.actbio.2017.09.036.
  • Yuan, H.; Li, X.; Lee, M.-S.; Zhang, Z.; Li, B.; Xuan, H.; Li, W.-J.; Zhang, Y. Collagen and Chondroitin Sulfate Functionalized Bioinspired Fibers for Tendon Tissue Engineering Application. Int. J. Biol. Macromol. 2021, 170, 248–260. DOI: 10.1016/j.ijbiomac.2020.12.152.
  • Liu, S.; Hu, C.; Li, F.; Li, X-j.; Cui, W.; Fan, C. Prevention of Peritendinous Adhesions with Electrospun Ibuprofen-Loaded Poly (L-Lactic Acid)-Polyethylene Glycol Fibrous Membranes. Tissue. Eng. Part. A. 2013, 19, 529–537. DOI: 10.1089/ten.TEA.2012.0208.
  • Liu, S.; Qin, M.; Hu, C.; Wu, F.; Cui, W.; Jin, T.; Fan, C. Tendon Healing and anti-Adhesion Properties of Electrospun Fibrous Membranes Containing bFGF Loaded Nanoparticles. Biomaterials. 2013, 34, 4690–4701. DOI: 10.1016/j.biomaterials.2013.03.026.
  • Vuornos, K.; Björninen, M.; Talvitie, E.; Paakinaho, K.; Kellomäki, M.; Huhtala, H.; Miettinen, S.; Seppänen-Kaijansinkko, R.; Haimi, S. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds is a Potential Approach for Tendon Tissue Engineering. Tissue. Eng. Part. A. 2016, 22, 513–523. DOI: 10.1089/ten.tea.2015.0276.
  • Komatsu, I.; Wang, J. H.-C.; Iwasaki, K.; Shimizu, T.; Okano, T. The Effect of Tendon Stem/Progenitor Cell (TSC) Sheet on the Early Tendon Healing in a Rat Achilles Tendon Injury Model. Acta Biomater. 2016, 42, 136–146. DOI: 10.1016/j.actbio.2016.06.026.
  • Hsieh, C.-F.; Alberton, P.; Loffredo-Verde, E.; Volkmer, E.; Pietschmann, M.; Müller, P.; Schieker, M.; Docheva, D. Scaffold-Free Scleraxis-Programmed Tendon Progenitors Aid in Significantly Enhanced Repair of Full-Size Achilles Tendon Rupture. Nanomedicine 2016, 11, 1153–1167. DOI: 10.2217/nnm.16.34.
  • Jo, C. H.; Chai, J. W.; Jeong, E. C.; Oh, S.; Shin, J. S.; Shim, H.; Yoon, K. S. Intra-Articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritis of the Knee: A 2-Year Follow-up Study. Am. J. Sports. Med. 2017, 45, 2774–2783. DOI: 10.1177/0363546517716641.
  • Xie, S.; Zhou, Y.; Tang, Y.; Chen, C.; Li, S.; Zhao, C.; Hu, J.; Lu, H. Book‐Shaped Decellularized Tendon Matrix Scaffold Combined with Bone Marrow Mesenchymal Stem Cells‐Sheets for Repair of Achilles Tendon Defect in Rabbit. J. Orthop. Res. 2019, 37, 887–897. DOI: 10.1002/jor.24255.
  • Su, M.; Zhang, Q.; Zhu, Y.; Wang, S.; Lv, J.; Sun, J.; Qiu, P.; Fan, S.; Jin, K.; Chen, L.; et al. Preparation of Decellularized Triphasic Hierarchical Bone‐Fibrocartilage‐Tendon Composite Extracellular Matrix for Enthesis Regeneration. Adv. Healthcare. Mater. 2019, 8, 1900831. DOI: 10.1002/adhm.201900831.
  • Wang, L.; Li, Y.; Zhang, M.; Huang, K.; Peng, S.; Xiao, J. Application of Nanomaterials in Regulating the Fate of Adipose-Derived Stem Cells. Curr. Stem. Cell. Res. Ther. 2021, 16, 3–13. DOI: 10.2174/1574888X15666200502000343.
  • Liu, T. M. Application of Mesenchymal Stem Cells Derived from Human Pluripotent Stem Cells in Regenerative Medicine. World. J. Stem. Cells. 2021, 13, 1826–1844. DOI: 10.4252/wjsc.v13.i12.1826.
  • Xu, Y.; Zhang, W.-X.; Wang, L.-N.; Ming, Y.-Q.; Li, Y.-L.; Ni, G.-X. Stem Cell Therapies in Tendon-Bone Healing. World J. Stem. Cells. 2021, 13, 753–775. DOI: 10.4252/wjsc.v13.i7.753.
  • McQuilling, J. P.; Sanders, M.; Poland, L.; et al. Dehydrated Amnion/Chorion Improves Achilles Tendon Repair in a Diabetic Animal Model. Wounds. 2019, 31, 19.
  • Gabler, C.; Saß, J.-O.; Gierschner, S.; Lindner, T.; Bader, R.; Tischer, T. In Vivo Evaluation of Different Collagen Scaffolds in an Achilles Tendon Defect Model. Biomed. Res. Int. 2018, 2018, 1–11. DOI: 10.1155/2018/6432742.
  • Sun, J.; Mou, C.; Shi, Q.; Chen, B.; Hou, X.; Zhang, W.; Li, X.; Zhuang, Y.; Shi, J.; Chen, Y.; et al. Controlled Release of Collagen-Binding SDF-1α from the Collagen Scaffold Promoted Tendon Regeneration in a Rat Achilles Tendon Defect Model. Biomaterials. 2018, 162, 22–33. DOI: 10.1016/j.biomaterials.2018.02.008.
  • Wong, C.-C.; Huang, Y.-M.; Chen, C.-H.; Lin, F.-H.; Yeh, Y.-Y.; Bai, M.-Y. Cytokine and Growth Factor Delivery from Implanted Platelet-Rich Fibrin Enhances Rabbit Achilles Tendon Healing. Int. J. Mol. Sci. 2020, 21, 3221. DOI: 10.3390/ijms21093221.
  • Peter, I.; Wu, K.; Diaz, R. Platelet-Rich Plasma. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 825–853. DOI: 10.1016/j.pmr.2016.06.002.
  • Oliva, F.; Maffulli, N.; Gissi, C.; Veronesi, F.; Calciano, L.; Fini, M.; Brogini, S.; Gallorini, M.; Antonetti Lamorgese Passeri, C.; Bernardini, R.; et al. Combined Ascorbic Acid and T 3 Produce Better Healing Compared to Bone Marrow Mesenchymal Stem Cells in an Achilles Tendon Injury Rat Model: A Proof of Concept Study. J. Orthop. Surg. Res. 2019, 14, 1–10. DOI: 10.1186/s13018-019-1098-9.
  • Giza, E.; Frizzell, L.; Farac, R.; Williams, J.; Kim, S. Augmented Tendon Achilles Repair Using a Tissue Reinforcement Scaffold: A Biomechanical Study. Foot. Ankle. Int. 2011, 32, 545–549. DOI: 10.3113/FAI.2011.0545.
  • Berlet, G. C.; Hyer, C. F.; Lee, T. H.; Blum, B. E. Collagen Ribbon Augmentation of Achilles Tendon Tears: A Biomechanical Evaluation. J. Foot. Ankle. Surg. 2014, 53, 298–302. DOI: 10.1053/j.jfas.2014.02.001.
  • Backus, J. D.; Marchetti, D. C.; Slette, E. L.; Dahl, K. D.; Turnbull, T. L.; Clanton, T. O. Effect of Suture Caliber and Number of Core Strands on Repair of Acute Achilles Ruptures: A Biomechanical Study. Foot. Ankle. Int. 2017, 38, 564–570. DOI: 10.1177/1071100716687368.
  • Cook, K. D.; Clark, G.; Lui, E.; et al. Strength of Braided Polyblend Polyethylene Sutures versus Braided Polyester Sutures in Achilles Tendon Repair: A Cadaveric Study. J. Am. Podiat. Med. Assoc. 2010, 100, 185–188.
  • Kocaoglu, B.; Ulku, T. K.; Gereli, A.; Karahan, M.; Turkmen, M. Evaluation of Absorbable and Nonabsorbable Sutures for Repair of Achilles Tendon Rupture with a Suture-Guiding Device. Foot. Ankle. Int. 2015, 36, 691–695. DOI: 10.1177/1071100714568868.
  • Petranto, R. D.; Lubin, M.; Floros, R. C.; Pfeiffer, D. A.; Spiess, K.; Lenz, R.; Crowell, A.; Ahmad, H.; Chandrani, S.; Landsman, A. S.; et al. Soft Tissue Reconstruction with Artelon for Multiple Foot and Ankle Applications. Clin. Podiatr. Med. Surg. 2018, 35, 331–342. DOI: 10.1016/j.cpm.2018.02.008.
  • Heikkinen, J.; Lantto, I.; Flinkkilä, T.; Ohtonen, P.; Pajala, A.; Siira, P.; Leppilahti, J. Augmented Compared with Nonaugmented Surgical Repair after Total Achilles Rupture: Results of a Prospective Randomized Trial with Thirteen or More Years of Follow-up. J. Bone. Joint. Surg. Am. 2016, 98, 85–92. DOI: 10.2106/JBJS.O.00496.
  • Ofili, K. P.; Pollard, J. D.; Schuberth, J. M. The Neglected Achilles Tendon Rupture Repaired with Allograft: A Review of 14 Cases. J. Foot. Ankle. Surg. 2016, 55, 1245–1248. DOI: 10.1053/j.jfas.2016.01.001.
  • De Prado, M.; Cuervas-Mons, M.; De Prado, V. Open vs Minimally Invasive Surgery: Advantages and Disadvantages [M]//Foot and Ankle Disorders. Springer: Cham, 2022; pp. 43–69.
  • Idarraga, A. J.; Bohl, D. D.; Barnard, E.; Movassaghi, K.; Hamid, K. S.; Schiff, A. P. Adverse Events following Minimally Invasive Achilles Tendon Repair. Foot. Ankle. Spec. 2022, 15, 236–243. DOI: 10.1177/1938640020950895.
  • Ghaddaf, A. A.; Alomari, M. S.; Alsharef, J. F.; Alakkas, E.; Alshehri, M. S. Early versus Late Weightbearing in Conservative Management of Acute Achilles Tendon Rupture: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Injury. 2022, 53, 1543–1551. DOI: 10.1016/j.injury.2022.01.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.