118
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Enhancement of bioavailability of therapeutics using drug conjugation approach: an in-depth review

, , , &
Pages 1101-1116 | Received 12 Jun 2023, Accepted 28 Jul 2023, Published online: 10 Aug 2023

References

  • Liao, J.; Liu, B.; Liu, J.; Zhang, J.; Chen, K.; Liu, H. Cell-Specific Aptamers and Their Conjugation with Nanomaterials for Targeted Drug Delivery. Expert Opin. Drug Deliv. 2015, 12, 493–506. DOI: 10.1517/17425247.2015.966681.
  • Vhora, I.; Patil, S.; Bhatt, P.; Misra, A. Protein–and Peptide–Drug Conjugates: An Emerging Drug Delivery Technology. Adv. Protein Chem. Struct. Biol. 2015, 98, 1–55. DOI: 10.1016/bs.apcsb.2014.11.001.
  • Sinha, V. R.; Kumria, R. Polysaccharides in Colon-Specific Drug Delivery. Int. J. Pharm. 2001, 224, 19–38. DOI: 10.1016/S0378-5173(01)00720-7.
  • Farokhzad, O. C.; Jon, S.; Khademhosseini, A.; Tran, T. N.; LaVan, D. A.; Langer, R. Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells. Cancer Res. 2004, 64, 7668–7672. DOI: 10.1158/0008-5472.CAN-04-2550.
  • Badenhorst, C. P.; van der Sluis, R.; Erasmus, E.; van Dijk, A. A. Glycine Conjugation: importance in Metabolism, the Role of Glycine N-Acyltransferase, and Factors That Influence Interindividual Variation. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1139–1153. DOI: 10.1517/17425255.2013.796929.
  • Aryal, S.; Hu, C. M.; Zhang, L. Polymeric Nanoparticles with Precise Ratiometric Control over Drug Loading for Combination Therapy. Mol. Pharm. 2011, 8, 1401–1407. DOI: 10.1021/mp200243k.
  • Pawar, R.; Jadhav, W.; Bhusare, S.; Borade, R.; Farber, S.; Itzkowitz, D.; Domb, A. Polysaccharides as Carriers of Bioactive Agents for Medical Applications. In Natural-Based Polymers for Biomedical Applications. Woodhead Publishing: Cambridge, 2008; pp 3–53. DOI: 10.1533/9781845694814.1.3.
  • Pang, X.; Du, H. L.; Zhang, H. Q.; Zhai, Y. J.; Zhai, G. X. Polymer–Drug Conjugates: Present State of Play and Future Perspectives. Drug Discov. Today 2013, 18, 1316–1322. DOI: 10.1016/j.drudis.2013.09.007.
  • Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG—A Versatile Conjugating Ligand for Drugs and Drug Delivery Systems. J. Control. Release 2014, 192, 67–81. DOI: 10.1016/j.jconrel.2014.06.046.
  • Gaberc-Porekar, V.; Zore, I.; Podobnik, B.; Menart, V. Obstacles and Pitfalls in the PEGylation of Therapeutic Proteins. Curr. Opin. Drug Discov. Devel. 2008, 11, 242–250.
  • Bilkova, E.; Imramovsky, A.; Sedlak, M. Recent Advances in the Design and Synthesis of Prednisolone and Methylprednisolone Conjugates. CPD 2011, 17, 3577–3595. DOI: 10.2174/138161211798194530.
  • Bansal, S. A.; Kumar, V.; Karimi, J.; Singh, A. P.; Kumar, S. Role of Gold Nanoparticles in Advanced Biomedical Applications. Nanoscale Adv. 2020, 2, 3764–3787. DOI: 10.1039/D0NA00472C.
  • Takalani, F.; Kumar, P.; Kondiah, P. P.; Choonara, Y. E.; Pillay, V. Lipid–Drug Conjugates and Associated Carrier Strategies for Enhanced Antiretroviral Drug Delivery. Pharm. Dev. Technol. 2020, 25, 267–280. DOI: 10.1080/10837450.2019.1694037.
  • Date, T.; Paul, K.; Singh, N.; Jain, S. Drug–Lipid Conjugates for Enhanced Oral Drug Delivery. AAPS PharmSciTech 2019, 20, 41. DOI: 10.1208/s12249-018-1272-0.
  • Irby, D.; Du, C.; Li, F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017, 14, 1325–1338. DOI: 10.1021/acs.molpharmaceut.6b01027.
  • Chu, H. M.; Zhang, R. X.; Huang, Q.; Bai, C. C.; Wang, Z. Z. Chemical Conjugation with Cyclodextrins as a Versatile Tool for Drug Delivery. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 29–38. DOI: 10.1007/s10847-017-0743-3.
  • Shen, B.-Q.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K. L.; Tien, J.; Yu, S.-F.; Mai, E.; et al. Conjugation Site Modulates the In Vivo Stability and Therapeutic Activity of Antibody-Drug Conjugates. Nat. Biotechnol. 2012, 30, 184–189. DOI: 10.1038/nbt.2108.
  • Pasut, G.; Veronese, F. M. Polymer–Drug Conjugation, Recent Achievements, and General Strategies. Prog. Polym. Sci. 2007, 32, 933–961. DOI: 10.1016/j.progpolymsci.2007.05.008.
  • Sanyakamdhorn, S.; Bekale, L.; Agudelo, D.; Tajmir-Riahi, H. A. Structural Analysis of Doxorubicin-Polymer Conjugates. Colloids Surf. B Biointerfaces 2015, 135, 175–182. DOI: 10.1016/j.colsurfb.2015.07.070.
  • Bailon, P.; Won, C. Y. PEG-Modified Biopharmaceuticals. Expert Opin. Drug Deliv. 2009, 6, 1–16. DOI: 10.1517/17425240802650568.
  • Li, W.; Zhan, P.; De Clercq, E.; Lou, H.; Liu, X. Current Drug Research on PEGylation with Small Molecular Agents. Prog. Polym. Sci. 2013, 38, 421–444. DOI: 10.1016/j.progpolymsci.2012.07.006.
  • Li, C.; Wallace, S. Polymer-Drug Conjugates: Recent Development in Clinical Oncology. Adv. Drug Delivery Rev. 2008, 60, 886–898. DOI: 10.1016/j.addr.2007.11.009.
  • Greco, F.; Vicent, M. J. Combination Therapy: Opportunities and Challenges for Polymer–Drug Conjugates as Anticancer Nanomedicines. Adv. Drug Deliv. Rev. 2009, 61, 1203–1213. DOI: 10.1016/j.addr.2009.05.006.
  • Saravanakumar, G.; Park, J. H.; Kim, K.; Kwon, I. C. Polysaccharide‐Based Drug Conjugates for Tumor Targeting. In Drug Delivery in Oncology: From Basic Research to Cancer Therapy, Kratz, F.; Senter, P.; Steinhagen, H., Eds.; Wiley: New York, 2011; pp 701–746. DOI: 10.1002/9783527634057.ch23.
  • Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A. G. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front. Chem. 2020, 8, 571. DOI: 10.3389/fchem.2020.00571.
  • Modi, S.; Prakash Jain, J.; Domb, A. J.; Kumar, N. Exploiting EPR in Polymer Drug Conjugate Delivery for Tumor Targeting. Curr. Pharm. Des. 2006, 12, 4785–4796. DOI: 10.2174/138161206779026272.
  • Nolting, B. Linker Technologies for Antibody–Drug Conjugates. Methods Mol. Biol. 2013, 1045, 71–100. DOI: 10.1007/978-1-62703-541-5_5.
  • Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and Challenges for the Next Generation of Antibody–Drug Conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. DOI: 10.1038/nrd.2016.268.
  • Tsuchikama, K.; An, Z. Antibody-Drug Conjugates: recent Advances in Conjugation and Linker Chemistries. Protein Cell. 2018, 9, 33–46. DOI: 10.1007/s13238-016-0323-0.
  • Poudel, Y. B.; Chowdari, N. S.; Cheng, H.; Iwuagwu, C. I.; King, H. D.; Kotapati, S.; Passmore, D.; Rampulla, R.; Mathur, A.; Vite, G.; Gangwar, S. Chemical Modification of Linkers Provides Stable Linker–Payloads for the Generation of Antibody–Drug Conjugates. ACS Med. Chem. Lett. 2020, 11, 2190–2194. DOI: 10.1021/acsmedchemlett.0c00325.
  • Jain, N.; Smith, S. W.; Ghone, S.; Tomczuk, B. Current ADC Linker Chemistry. Pharm. Res. 2015, 32, 3526–3540. DOI: 10.1007/s11095-015-1657-7.
  • Kern, J. C.; Cancilla, M.; Dooney, D.; Kwasnjuk, K.; Zhang, R.; Beaumont, M.; Figueroa, I.; Hsieh, S.; Liang, L.; Tomazela, D.; et al. Discovery of Pyrophosphate Diesters as Tunable, Soluble, and Bioorthogonal Linkers for Site-Specific Antibody–Drug Conjugates. J. Am. Chem. Soc. 2016, 138, 1430–1445. DOI: 10.1021/jacs.5b12547.
  • Rock, B. M.; Tometsko, M. E.; Patel, S. K.; Hamblett, K. J.; Fanslow, W. C.; Rock, D. A. Intracellular Catabolism of an Antibody Drug Conjugate with a Noncleavable Linker. Drug Metab. Dispos. 2015, 43, 1341–1344. DOI: 10.1124/dmd.115.064253.
  • Saito, G.; Swanson, J. A.; Lee, K. D. Drug Delivery Strategy Utilizing Conjugation via Reversible Disulfide Linkages: Role and Site of Cellular Reducing Activities. Adv. Drug Deliv. Rev. 2003, 55, 199–215. DOI: 10.1016/S0169-409X(02)00179-5.
  • Walles, M.; Connor, A.; Hainzl, D. ADME and Safety Aspects of Non-Cleavable Linkers in Drug Discovery and Development. Curr. Top. Med. Chem. 2017, 17, 3463–3475. DOI: 10.2174/1568026618666180118153502.
  • Zhang, W.; Ntai, I.; Bolla, M. L.; Malcolmson, S. J.; Kahne, D.; Kelleher, N. L.; Walsh, C. T. Nine Enzymes Are Required for Assembly of the Pacidamycin Group of Peptidyl Nucleoside Antibiotics. J. Am. Chem. Soc. 2011, 133, 5240–5243. DOI: 10.1021/ja2011109.
  • Mckertish, C. M.; Kayser, V. Advances and Limitations of Antibody Drug Conjugates for Cancer. Biomedicines 2021, 9, 872. DOI: 10.3390/biomedicines9080872.
  • Duan, Z.; Chen, C.; Qin, J.; Liu, Q.; Wang, Q.; Xu, X.; Wang, J. Cell-Penetrating Peptide Conjugates to Enhance the Antitumor Effect of Paclitaxel on Drug-Resistant Lung Cancer. Drug Deliv. 2017, 24, 752–764. DOI: 10.1080/10717544.2017.1321060.
  • Casi, G.; Neri, D. Antibody–Drug Conjugates and Small Molecule–Drug Conjugates: Opportunities and Challenges for the Development of Selective Anticancer Cytotoxic Agents: Miniperspective. J. Med. Chem. 2015, 58, 8751–8761. DOI: 10.1021/acs.jmedchem.5b00457.
  • Dovgan, I.; Koniev, O.; Kolodych, S.; Wagner, A. Antibody–Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug. Chem. 2019, 30, 2483–2501. DOI: 10.1021/acs.bioconjchem.9b00306.
  • Kholodenko, R. V.; Kalinovsky, D. V.; Doronin, I. I.; Ponomarev, E. D.; Kholodenko, I. V. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr. Med. Chem. 2019, 26, 396–426. DOI: 10.2174/0929867324666170817152554.
  • Matsuda, Y.; Mendelsohn, B. A. An Overview of Process Development for Antibody-Drug Conjugates Produced by Chemical Conjugation Technology. Expert Opin. Biol. Ther. 2021, 21, 963–975. DOI: 10.1080/14712598.2021.1846714.
  • Hong, K. B.; An, H. Degrader–Antibody Conjugates: Emerging New Modality. J. Med. Chem. 2023, 66, 140–148. DOI: 10.1021/acs.jmedchem.2c01791.
  • Francis, A. P.; Jayakrishnan, A. Conjugating Doxorubicin to Polymannose: A New Strategy for Target-Specific Delivery to Lung Cancer Cells. J. Biomater. Sci. Polym. Ed. 2019, 30, 1471–1488. DOI: 10.1080/09205063.2019.1646475.
  • Liu, M.; Zhu, Y.; Wu, T.; Cheng, J.; Liu, Y. Nanobody‐Ferritin Conjugate for Targeted Photodynamic Therapy. Chemistry 2020, 26, 7442–7450. DOI: 10.1002/chem.202000075.
  • Burger, A. M.; Hartung, G.; Stehle, G.; Sinn, H.; Fiebig, H. H. Pre‐Clinical Evaluation of a Methotrexate–Albumin Conjugate [MTX‐HSA] in Human Tumor Xenografts In Vivo. Int. J. Cancer 2001, 92, 718–724. DOI: 10.1002/1097-0215(20010601)92:5%3C718::AID-IJC1257%3E3.0.CO;2-D.
  • Kratz, F.; Beyer, U.; Collery, P.; Lechenault, F.; Cazabat, A.; Schumacher, P.; Falken, U.; Unger, C. Preparation, Characterization and In Vitro Efficacy of Albumin Conjugates of Doxorubicin. Biol. Pharm. Bull. 1998, 21, 56–61. DOI: 10.1248/bpb.21.56.
  • Nakase, I.; Gallis, B.; Takatani-Nakase, T.; Oh, S.; Lacoste, E.; Singh, N. P.; Goodlett, D. R.; Tanaka, S.; Futaki, S.; Lai, H.; Sasaki, T. Transferrin Receptor-Dependent Cytotoxicity of Artemisinin–Transferrin Conjugates on Prostate Cancer Cells and Induction of Apoptosis. Cancer Lett. 2009, 274, 290–298. DOI: 10.1016/j.canlet.2008.09.023.
  • Tu, J.; Zhong, S.; Li, P. Studies on Acyclovir–Dextran Conjugate: synthesis and Pharmacokinetics. Drug Dev. Ind. Pharm. 2004, 30, 959–965. DOI: 10.1081/DDC-200037232.
  • Mehvar, R. Preparative and Analytical Separation of Insulin-Dextran Conjugates from Native Insulin: Application to Preparation and Characterization of Insulin-Dextran Conjugates. Drug Dev. Ind. Pharm. 1994, 20, 395–404. DOI: 10.3109/03639049409050192.
  • Darlington, D. N.; Gonzales, M. D. HPLC Determination of Valproic Acid in Plasma by Conjugation to a Hydrazide. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 2209–2219. DOI: 10.1080/10826076.2012.717059.
  • Mendoza-Cardozo, S.; Pedro-Hernández, L. D.; Organista-Mateos, U.; Allende-Alarcón, L. I.; Martínez-Klimova, E.; Ramírez-Ápan, T.; Martínez-García, M. In Vitro Activity of Resorcinarene–Chlorambucil Conjugates for Therapy in Human Chronic Myelogenous Leukemia Cells. Drug Dev. Ind. Pharm. 2019, 45, 683–688. DOI: 10.1080/03639045.2019.1569036.
  • Abioye, A. O.; Kola-Mustapha, A. Formulation Studies on Ibuprofen Sodium–Cationic Dextran Conjugate: Effect on Tableting and Dissolution Characteristics of Ibuprofen. Drug Dev. Ind. Pharm. 2016, 42, 39–59. DOI: 10.3109/03639045.2015.1024684.
  • Pednekar, P. P.; Jadhav, K. R.; Kadam, V. J. Aptamer-Dendrimer Bioconjugate: A Nanotool for Therapeutics, Diagnosis, and Imaging. Expert Opin. Drug Deliv. 2012, 9, 1273–1288. DOI: 10.1517/17425247.2012.716421.
  • Bilthariya, U.; Jain, N.; Rajoriya, V.; Jain, A. K. Folate-Conjugated Albumin Nanoparticles for Rheumatoid Arthritis-Targeted Delivery of Etoricoxib. Drug Dev. Ind. Pharm. 2015, 41, 95–104. DOI: 10.3109/03639045.2013.850705.
  • Doillon, C. J.; Côté, M. F.; Pietrucha, K.; Laroche, G.; C.-Gaudreault, R. Porosity and Biological Properties of Polyethylene Glycol-Conjugated Collagen Materials. J. Biomater. Sci. Polym. Ed. 1994, 6, 715–728. DOI: 10.1163/156856295X00102.
  • Cooke, D. G.; Blackwell, L. F. Conjugation of Estrone Glucuronide with Human Lysozyme. J. Immunoassay Immunochem. 2015, 36, 532–546. DOI: 10.1080/15321819.2015.1008143.
  • Mundlia, J.; Ahuja, M.; Kumar, P. Enhanced Biological Activity of Polyphenols on Conjugation with Gellan Gum. Int. J. Polymer. Mater. Polymer. Biomater. 2021, 70, 712–729. DOI: 10.1080/00914037.2020.1760273.
  • Gregus, Z.; Halaszi, E.; Klaassen, C. D. Effect of Chlorophenoxyacetic Acid Herbicides on Glycine Conjugation of Benzoic Acid. Xenobiotica 1999, 29, 547–559. DOI: 10.1080/004982599238371.
  • Park, B. K.; Kitteringham, N. R. Drug-Protein Conjugation and Its Immunological Consequences. Drug Metab. Rev. 1990, 22, 87–144. DOI: 10.3109/03602539008991445.
  • Moghimipour, E.; Rezaei, M.; Kouchak, M.; Ramezani, Z.; Amini, M.; Ahmadi Angali, K.; Saremy, S.; Abedin Dorkoosh, F.; Handali, S. A Mechanistic Study of the Effect of Transferrin Conjugation on Cytotoxicity of Targeted Liposomes. J. Microencapsul. 2018, 35, 548–558. DOI: 10.1080/02652048.2018.1547325.
  • Chanphai, P.; Cloutier, F.; Oufqir, Y.; Leclerc, M. F.; Eijan, A. M.; Reyes-Moreno, C.; Bérubé, G.; Tajmir-Riahi, H. A. Biomolecular Study and Conjugation of Two Para-Aminobenzoic Acid Derivatives with Serum Proteins: drug Binding Efficacy and Protein Structural Analysis. J. Biomol. Struct. Dyn. 2021, 39, 79–90. DOI: 10.1080/07391102.2020.1719889.
  • He, W.; Tian, L.; Zhang, S.; Pan, S. A Novel Method to Prepare Protein-Polysaccharide Conjugates with High Grafting and Low Browning: Application in Encapsulating Curcumin. LWT 2021, 145, 111349. DOI: 10.1016/j.lwt.2021.111349.
  • Schmid, B.; Chung, D. E.; Warnecke, A.; Fichtner, I.; Kratz, F. Albumin-Binding Prodrugs of Camptothecin and Doxorubicin with an Ala-Leu-Ala-Leu-Linker That Are Cleaved by Cathepsin B: Synthesis and Antitumor Efficacy. Bioconjug. Chem. 2007, 18, 702–716. DOI: 10.1021/bc0602735.
  • Temming, K.; Lacombe, M.; Van Der Hoeven, P.; Prakash, J.; Gonzalo, T.; Dijkers, E. C.; Orfi, L.; Kéri, G.; Poelstra, K.; Molema, G.; Kok, R. J. Delivery of the p38 MAPkinase Inhibitor SB202190 to Angiogenic Endothelial Cells: Development of Novel RGD-Equipped and PEGylated Drug − Albumin Conjugates Using Platinum [II]-Based Drug Linker Technology. Bioconjug. Chem. 2006, 17, 1246–1255. DOI: 10.1021/bc0600158.
  • Stehle, G.; Wunder, A.; Sinn, H.; Schrenk, H. H.; Schütt, S.; Frei, E.; Hartung, G.; Maier-Borst, W.; Heene, D. L. Pharmacokinetics of Methotrexate–Albumin Conjugates in Tumor-Bearing Rats. Anticancer. Drugs 1997, 8, 835–844. DOI: 10.1097/00001813-199710000-00004.
  • Haag, R.; Kratz, F. Polymer Therapeutics: Concepts and Applications. Angew. Chem. Int. Ed. Engl. 2006, 45, 1198–1215. DOI: 10.1002/anie.200502113.
  • Kratz, F.; Beyer, U.; Roth, T.; Tarasova, N.; Collery, P.; Lechenault, F.; Cazabat, A.; Schumacher, P.; Unger, C.; Falken, U. Transferrin Conjugates of Doxorubicin: Synthesis, Characterization, Cellular Uptake, and In Vitro Efficacy. J. Pharm. Sci. 1998, 87, 338–346. DOI: 10.1021/js970246a.
  • Kratz, F.; Roth, T.; Fichiner, I.; Schumacher, P.; Fiebig, H.; Unger, C. In Vitro and In Vivo Efficacy of Acid-Sensitive Transferrin and Albumin Doxorubicin Conjugates in a Human Xenograft Panel and in the MDA-MB-435 Mamma Carcinoma Model. J. Drug Target. 2000, 8, 305–318. DOI: 10.3109/10611860008997908.
  • Beyer, U.; Roth, T.; Schumacher, P.; Maier, G.; Unold, A.; Frahm, A. W.; Fiebig, H. H.; Unger, C.; Kratz, F. Synthesis and In Vitro Efficacy of Transferrin Conjugates of the Anticancer Drug Chlorambucil. J. Med. Chem. 1998, 41, 2701–2708. DOI: 10.1021/jm9704661.
  • Geethakrishnan, T.; Sakthivel, P.; Palanisamy, P. K. Triphenylmethane Dye-Doped Gelatin Films for Low-Power Optical Phase-Conjugation. Opt. Commun. 2015, 335, 218–223. DOI: 10.1016/j.optcom.2014.09.033.
  • Fisher, R. A.; Kosasih, A.; Bowman, B. J.; Wigent, R. J.; Ofner, C. M. III. Characterization and In Vitro Release of Methotrexate from Gelatin/Methotrexate Conjugates Formed Using Different Preparation Variables. Int. J. Pharm. 2000, 204, 81–89. DOI: 10.1016/S0378-5173(00)00476-2.
  • Cirillo, G.; Kraemer, K.; Fuessel, S.; Puoci, F.; Curcio, M.; Spizzirri, U. G.; Altimari, I.; Iemma, F. Biological Activity of a Gallic Acid − Gelatin Conjugate. Biomacromolecules 2010, 11, 3309–3315. DOI: 10.1021/bm100760x.
  • Zhang, N.; Palmer, A. F. Development of a Dichloroacetic Acid‐Hemoglobin Conjugate as a Potential Targeted anti‐Cancer Therapeutic. Biotechnol. Bioeng. 2011, 108, 1413–1420. DOI: 10.1002/bit.23071.
  • Pelegri-O'Day, E. M.; Lin, E.-W.; Maynard, H. D. Therapeutic Protein–Polymer Conjugates: Advancing beyond PEGylation. J. Am. Chem. Soc. 2014, 136, 14323–14332. DOI: 10.1021/ja504390x.
  • Matsuda, Y.; Yamada, K.; Okuzumi, T.; Mendelsohn, B. A. Gram-Scale Antibody–Drug Conjugate Synthesis by Site-Specific Chemical Conjugation: AJICAP First Generation. Org. Process Res. Dev. 2019, 23, 2647–2654. DOI: 10.1021/acs.oprd.9b00316.
  • Singh, S. K.; Luisi, D. L.; Pak, R. H. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm. Res. 2015, 32, 3541–3571. DOI: 10.1007/s11095-015-1704-4.
  • Janthur, W. D.; Cantoni, N.; Mamot, C. Drug Conjugates Such as Antibody Drug Conjugates [ADCs], Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice. Int. J. Mol. Sci. 2012, 13, 16020–16045. DOI: 10.3390/ijms131216020.
  • Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J. R. Site-Specific Antibody Drug Conjugates for Cancer Therapy. MAbs 2014, 6, 34–45. DOI: 10.4161/mabs.27022.
  • Goldmacher, V. S.; Kovtun, Y. V. Antibody–Drug Conjugates: Using Monoclonal Antibodies for Delivery of Cytotoxic Payloads to Cancer Cells. Ther. Deliv. 2011, 2, 397–416. DOI: 10.4155/tde.10.98.
  • Lu, D.; Sahasranaman, S.; Zhang, Y.; Girish, S. Strategies to Address Drug Interaction Potential for Antibody–Drug Conjugates in Clinical Development. Bioanalysis 2013, 5, 1115–1130. DOI: 10.4155/bio.13.76.
  • Adair, J. R.; Howard, P. W.; Hartley, J. A.; Williams, D. G.; Chester, K. A. Antibody–Drug Conjugates–A Perfect Synergy. Expert Opin. Biol. Ther. 2012, 12, 1191–1206. DOI: 10.1517/14712598.2012.693473.
  • Kozlov, I. A.; Melnyk, P. C.; Hachmann, J. P.; Barker, D. L.; Lebl, M.; Zhao, C. Evaluation of Different Chemical Strategies for Conjugation of Oligonucleotides to Peptides. Nucleosides Nucleotides Nucleic Acids. 2007, 26, 1353–1357. DOI: 10.1080/15257770701533909.
  • Cao, Q.; Li, Z. B.; Chen, K.; Wu, Z.; He, L.; Neamati, N.; Chen, X. Evaluation of Biodistribution and Anti-Tumor Effect of a Dimeric RGD Peptide–Paclitaxel Conjugate in Mice with Breast Cancer. Eur. J. Nucl. Med. Mol. Imaging. 2008, 35, 1489–1498. DOI: 10.1007/s00259-008-0744-y.
  • Pettit, R. K.; Pettit, G. R.; Hazen, K. C. Specific Activities of Dolastatin 10 and Peptide Derivatives against Cryptococcus neoformans. Antimicrob. Agents Chemother. 1998, 42, 2961–2965. DOI: 10.1128/aac.42.11.2961.
  • Sutherland, M. S. K.; Sanderson, R. J.; Gordon, K. A.; Andreyka, J.; Cerveny, C. G.; Yu, C.; Lewis, T. S.; Meyer, D. L.; Zabinski, R. F.; Doronina, S. O.; et al. Lysosomal Trafficking and Cysteine Protease Metabolism Confer Target-Specific Cytotoxicity by Peptide-Linked Anti-CD30-Auristatin Conjugates. J. Biol. Chem. 2006, 281, 10540–10547. DOI: 10.1074/jbc.M510026200.
  • King, H. D.; Dubowchik, G. M.; Mastalerz, H.; Willner, D.; Hofstead, S. J.; Firestone, R. A.; Lasch, S. J.; Trail, P. A. Monoclonal Antibody Conjugates of Doxorubicin Prepared with Branched Peptide Linkers: inhibition of Aggregation by Methoxytriethyleneglycol Chains. J. Med. Chem. 2002, 45, 4336–4343. DOI: 10.1021/jm020149g.
  • Fennell, B. J.; Carolan, S.; Pettit, G. R.; Bell, A. Effects of the Antimitotic Natural Product Dolastatin 10, and Related Peptides, on the Human Malarial Parasite Plasmodium falciparum. J. Antimicrob. Chemother. 2003, 51, 833–841. DOI; DOI: 10.1093/jac/dkg151.
  • Alas, M.; Saghaeidehkordi, A.; Kaur, K. Peptide–Drug Conjugates with Different Linkers for Cancer Therapy. J. Med. Chem. 2021, 64, 216–232. DOI: 10.1021/acs.jmedchem.0c01530.
  • Accardo, A.; Mannucci, S.; Nicolato, E.; Vurro, F.; Diaferia, C.; Bontempi, P.; Marzola, P.; Morelli, G. Easy Formulation of Liposomal Doxorubicin Modified with a Bombesin Peptide Analogue for Selective Targeting of GRP Receptors Overexpressed by Cancer Cells. Drug Deliv. Transl. Res. 2019, 9, 215–226. DOI: 10.1007/s13346-018-00606-x.
  • Lelle, M.; Frick, S. U.; Steinbrink, K.; Peneva, K. Novel Cleavable Cell‐Penetrating Peptide–Drug Conjugates: synthesis and Characterization. J. Pept. Sci. 2014, 20, 323–333. DOI: 10.1002/psc.2617.
  • Farkhani, S. M.; Valizadeh, A.; Karami, H.; Mohammadi, S.; Sohrabi, N.; Badrzadeh, F. Cell Penetrating Peptides: Efficient Vectors for Delivery of Nanoparticles, Nanocarriers, Therapeutic and Diagnostic Molecules. Peptides 2014, 57, 78–94. DOI: 10.1016/j.peptides.2014.04.015.
  • Fonseca, S. B.; Pereira, M. P.; Kelley, S. O. Recent Advances in the Use of Cell-Penetrating Peptides for Medical and Biological Applications. Adv. Drug Deliv. Rev. 2009, 61, 953–964. DOI: 10.1016/j.addr.2009.06.001.
  • Gu, G.; Hu, Q.; Feng, X.; Gao, X.; Menglin, J.; Kang, T.; Jiang, D.; Song, Q.; Chen, H.; Chen, J. PEG-PLA Nanoparticles Modified with APTEDB Peptide for Enhanced Anti-Angiogenic and anti-Glioma Therapy. Biomaterials 2014, 35, 8215–8226. DOI: 10.1016/j.biomaterials.2014.06.022.
  • Kawamoto, S.; Takasu, M.; Miyakawa, T.; Morikawa, R.; Oda, T.; Futaki, S.; Nagao, H. Inverted Micelle Formation of Cell-Penetrating Peptide Studied by Coarse-Grained Simulation: Importance of Attractive Force between Cell-Penetrating Peptides and Lipid Head Group. J. Chem. Phys. 2011, 134, 095103. DOI: 10.1063/1.3555531.
  • Ahrens, V. M.; Bellmann-Sickert, K.; Beck-Sickinger, A. G. Peptides and Peptide Conjugates: Therapeutics on the Upward Path. Future Med. Chem. 2012, 4, 1567–1586. DOI: 10.4155/fmc.12.76.
  • Hoppenz, P.; Els‐Heindl, S.; Beck‐Sickinger, A. G. Identification and Stabilization of a Highly Selective Gastrin‐Releasing Peptide Receptor Agonist. J. Pep. Sci. 2019, 25, e3224. DOI: 10.1002/psc.3224.
  • Bai, F.; Diao, J.; Wang, Y.; Sun, S.; Zhang, H.; Liu, Y.; Wang, Y.; Cao, J. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin–Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation. J. Agric. Food Chem. 2017, 65, 6840–6847. DOI: 10.1021/acs.jafc.7b02250.
  • Bruno, J. G. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches. Pharmaceuticals 2013, 6, 340–357. DOI: 10.3390/ph6030340.
  • Powell Gray, B.; Kelly, L.; Ahrens, D. P.; Barry, A. P.; Kratschmer, C.; Levy, M.; Sullenger, B. A. Tunable Cytotoxic Aptamer–Drug Conjugates for the Treatment of Prostate Cancer. Proc. Natl. Acad. Sci. U S A 2018, 115, 4761–4766. DOI: 10.1073/pnas.1717705115.
  • Sarker, D. K. Synthesis and In Vitro Modeling and Characterization of Self-Assembling Drug Conjugates for Targeted Medicinal Application. Mini Rev. Med. Chem. 2006, 6, 793–803. DOI: 10.2174/138955706777698679.
  • Cerchia, L.; Hamm, J.; Libri, D.; Tavitian, B.; De Franciscis, V. Nucleic Acid Aptamers in Cancer Medicine. FEBS Lett. 2002, 528, 12–16. DOI: 10.1016/S0014-5793(02)03275-1.
  • Farokhzad, O. C.; Cheng, J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R. Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy In Vivo. Proc. Natl. Acad. Sci. U S A 2006, 103, 6315–6320. DOI: 10.1073/pnas.0601755103.
  • Chang, Y. C.; Yang, C. Y.; Sun, R. L.; Cheng, Y. F.; Kao, W. C.; Yang, P. C. Rapid Single Cell Detection of Staphylococcus aureus by Aptamer-Conjugated Gold Nanoparticles. Sci. Rep. 2013, 3, 1863. DOI: 10.1038/srep01863.
  • Sefah, K.; Shangguan, D.; Xiong, X.; O'donoghue, M. B.; Tan, W. Development of DNA Aptamers Using Cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185. DOI: 10.1038/nprot.2010.66.
  • Wang, R.; Zhu, G.; Mei, L.; Xie, Y.; Ma, H.; Ye, M.; Qing, F. L.; Tan, W. Automated Modular Synthesis of Aptamer–Drug Conjugates for Targeted Drug Delivery. J. Am. Chem. Soc. 2014, 136, 2731–2734. DOI: 10.1021/ja4117395.
  • Chen, K.; Liu, B.; Yu, B.; Zhong, W.; Lu, Y.; Zhang, J.; Liao, J.; Liu, J.; Pu, Y.; Qiu, L.; Zhang, L. Advances in the Development of Aptamer Drug Conjugates for Targeted Drug Delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1438. DOI: 10.1002/wnan.1438.
  • Tong, J. T.; Harris, P. W.; Brimble, M. A.; Kavianinia, I. An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules 2021, 26, 5847. DOI: 10.3390/molecules26195847.
  • Fu, C.; Yu, L.; Miao, Y.; Liu, X.; Yu, Z.; Wei, M. Peptide–Drug Conjugates (PDCs): A Novel Trend of Research and Development on Targeted Therapy, Hype or Hope? Acta Pharm. Sin. B 2023, 13, 498–516. DOI: 10.1016/j.apsb.2022.07.020.
  • Hennrich, U.; Kopka, K. Lutathera®: The First FDA-and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. DOI: 10.3390/ph12030114.
  • Dhillon, S. Melphalan Flufenamide (Melflufen): First Approval. Drugs 2021, 81, 963–969. DOI: 10.1007/s40265-021-01522-0.
  • Salunke, D. B.; Hazra, B. G.; Pore, V. S. Steroidal Conjugates and Their Pharmacological Applications. Curr. Med. Chem. 2006, 13, 813–847. DOI: 10.2174/092986706776055562.
  • van Dongen, M. A.; Dougherty, C. A.; Banaszak Holl, M. M. Multivalent Polymers for Drug Delivery and Imaging: The Challenges of Conjugation. Biomacromolecules 2014, 15, 3215–3234. DOI: 10.1021/bm500921q.
  • Schoemaker, N. E.; van Kesteren, C.; Rosing, H.; Jansen, S.; Swart, M.; Lieverst, J.; Fraier, D.; Breda, M.; Pellizzoni, C.; Spinelli, R.; et al. A Phase I and Pharmacokinetic Study of MAG-CPT, a Water-Soluble Polymer Conjugate of Camptothecin. Br. J. Cancer. 2002, 87, 608–614. DOI: 10.1038/sj.bjc.6600516.
  • Amin, K.; Ashraf, N.; Mao, L.; Faul, C. F.; Wei, Z. Conjugated Microporous Polymers for Energy Storage: Recent Progress and Challenges. Nano Energy 2021, 85, 105958. DOI: 10.1016/j.nanoen.2021.105958.
  • Ma, H.; Chen, Y.; Li, X.; Li, B. Advanced Applications and Challenges of Electropolymerized Conjugated Microporous Polymer Films. Adv. Funct. Mater. 2021, 31, 2101861. DOI: 10.1002/adfm.202101861.
  • Lee, Y.; Gomez, E. D. Challenges and Opportunities in the Development of Conjugated Block Copolymers for Photovoltaics. Macromolecules 2015, 48, 7385–7395. DOI: 10.1021/acs.macromol.5b00112.
  • Cahuzac, H.; Sallustrau, A.; Malgorn, C.; Beau, F.; Barbe, P.; Babin, V.; Dubois, S.; Palazzolo, A.; Thai, R.; Correia, I.; et al. Monitoring In Vivo Performances of Protein–Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging. J. Med. Chem. 2022, 65, 6953–6968. DOI: 10.1021/acs.jmedchem.2c00401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.