123
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improving pore size of electrospun gelatin scaffolds containing graphene oxide using PEG as a sacrificial agent for bone tissue engineering

, &
Pages 1068-1077 | Received 06 Feb 2023, Accepted 28 Jul 2023, Published online: 10 Aug 2023

References

  • Bou Assaf, R.; Zibara, K.; Fayyad-Kazan, M.; Al-Nemer, F.; Cordahi, M.; Khairallah, S.; Badran, B.; Berbéri, A. Healing of Bone Defects in Pig’s Femur Using Mesenchymal Cells Originated from the Sinus Membrane with Different Scaffolds. Stem Cells Int. 2019, 2019, 4185942. DOI: 10.1155/2019/4185942.
  • Jiao Li, J.; Dunstan, C. R.; Entezari, A.; Li, Q.; Steck, R.; Saifzadeh, S.; Sadeghpour, A.; Field, J. R.; Akey, A.; Vielreicher, M.; et al. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Adv. Healthc. Mater. 2019, 8, e1801298. DOI: 10.1002/adhm.201801298.
  • Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A. M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management. J. Tissue Eng. 2018, 9, 2041731418776819. DOI: 10.1177/2041731418776819.
  • Lu, H.; Liu, Y.; Guo, J.; Wu, H.; Wang, J.; Wu, G. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects. Int. J. Mol. Sci. 2016, 17, 334. DOI: 10.3390/ijms17030334.
  • Lim, Z. X. H.; Rai, B.; Tan, T. C.; Ramruttun, A. K.; Hui, J. H.; Nurcombe, V.; Teoh, S. H.; Cool, S. M. Autologous Bone Marrow Clot as an Alternative to Autograft for Bone Defect Healing. Bone Joint Res. 2019, 8, 107–117. DOI: 10.1302/2046-3758.83.BJR-2018-0096.R1.
  • Fernandez-Yague, M. A.; Abbah, S. A.; McNamara, L.; Zeugolis, D. I.; Pandit, A.; Biggs, M. J. Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies. Adv. Drug Deliv. Rev. 2015, 84, 1–29. DOI: 10.1016/j.addr.2014.09.005.
  • Black, C. R. M.; Goriainov, V.; Gibbs, D.; Kanczler, J.; Tare, R. S.; Oreffo, R. O. C. Bone Tissue Engineering. Curr. Mol. Biol. Rep. 2015, 1, 132–140. DOI: 10.1007/s40610-015-0022-2.
  • Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J. M.; Sharifi, S.; Ramakrishna, S. A Review of Key Challenges of Electrospun Scaffolds for Tissue-Engineering Applications. J. Tissue Eng. Regen. Med. 2016, 10, 715–738. DOI: 10.1002/term.1978.
  • Bhattarai, D. P.; Aguilar, L. E.; Park, C. H.; Kim, C. S. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. Membranes. 2018, 8, 62. DOI: 10.3390/membranes8030062.
  • Koyyada, A.; Orsu, P. Recent Advancements and Associated Challenges of Scaffold Fabrication Techniques in Tissue Engineering Applications. Regen. Eng. Transl. Med. 2021, 7, 147–159. DOI: 10.1007/s40883-020-00166-y.
  • Moradi, S. L.; Golchin, A.; Hajishafieeha, Z.; Khani, M. M.; Ardeshirylajimi, A. Bone Tissue Engineering: Adult Stem Cells in Combination with Electrospun Nanofibrous Scaffolds. J. Cell Physiol. 2018, 233, 6509–6522. DOI: 10.1002/jcp.26606.
  • Ranganathan, S.; Balagangadharan, K.; Selvamurugan, N. Chitosan and Gelatin-Based Electrospun Fibers for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 133, 354–364. DOI: 10.1016/j.ijbiomac.2019.04.115.
  • Lin, W.; Chen, M.; Qu, T.; Li, J.; Man, Y. Three-Dimensional Electrospun Nanofibrous Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 1311–1321. DOI: 10.1002/jbm.b.34479.
  • Maji, K.; Pramanik, K. Electrospun Scaffold for Bone Regeneration. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 842–857. DOI: 10.1080/00914037.2021.1915784.
  • Pooshidani, Y.; Zoghi, N.; Rajabi, M.; Haghbin Nazarpak, M.; Hassannejad, Z. Fabrication and Evaluation of Porous and Conductive Nanofibrous Scaffolds for Nerve Tissue Engineering. J. Mater. Sci. Mater. Med. 2021, 32, 1–12.
  • Pázmány, R.; Nagy, K. S.; Zsembery, Á.; Jedlovszky–Hajdu, A. Ultrasound Induced, Easy-to-Store Porous Poly(Amino Acid) Based Electrospun Scaffolds. J. Mol. Liq. 2022, 359, 119243. DOI: 10.1016/j.molliq.2022.119243.
  • Chen, Y.; Jia, Z.; Shafiq, M.; Xie, X.; Xiao, X.; Castro, R.; Rodrigues, J.; Wu, J.; Zhou, G.; Mo, X. Gas Foaming of Electrospun Poly(L-Lactide-co-Caprolactone)/Silk Fibroin Nanofiber Scaffolds to Promote Cellular Infiltration and Tissue Regeneration. Colloids Surf. B Biointerfaces 2021, 201, 111637. DOI: 10.1016/j.colsurfb.2021.111637.
  • Ameer, J. M.; Anil Kumar, P. R.; Kasoju, N. Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. J. Funct. Biomater. 2019, 10, 30. DOI: 10.3390/jfb10030030.
  • Aghajanpoor, M.; Hashemi-Najafabadi, S.; Baghaban- Eslaminejad, M.; Bagheri, F.; Mohammad Mousavi, S.; Azam Sayyahpour, F. The Effect of Increasing the Pore Size of Nanofibrous Scaffolds on the Osteogenic Cell Culture Using a Combination of Sacrificial Agent Electrospinning and Ultrasonication. J. Biomed. Mater. Res. A. 2017, 105, 1887–1899. DOI: 10.1002/jbm.a.36052.
  • He, X.; Wang, L.; Lv, K.; Li, W.; Qin, S.; Tang, Z. Polyethylene Oxide Assisted Fish Collagen-Poly-Epsilon;-Caprolactone Nanofiber Membranes by Electrospinning. Nanomaterials. 2022, 12, 900. DOI: 10.3390/nano12060900.
  • Wang, X.; Zhou, S.; Kong, L.; Skotak, M.; Ragusa, J.; Gonzalez, D.; Subramanian, A. Improved Cellular Infiltration into Nanofibrous Electrospun Cross-Linked Gelatin Scaffolds Templated with Micrometer-Sized Polyethylene Glycol Fibers. Biomed. Mater. 2011, 6, 055012. DOI: 10.1088/1748-6041/6/5/055012.
  • Sofi, H. S.; Ashraf, R.; Beigh, M. A.; Sheikh, F. A. Advances in Experimental Medicine and Biology; Springer: New York LLC, 2018; Vol. 1078; pp. 49–78.
  • Sharifi, F.; Irani, S.; Azadegan, G.; Pezeshki-Modaress, M.; Zandi, M.; Saeed, M. Co-Electrospun Gelatin-Chondroitin Sulfate/Polycaprolactone Nanofibrous Scaffolds for Cartilage Tissue Engineering. Bioact. Carbohydrates Diet. Fibre. 2020, 22, 100215. DOI: 10.1016/j.bcdf.2020.100215.
  • Aldana, A. A.; Abraham, G. A. Current Advances in Electrospun Gelatin-Based Scaffolds for Tissue Engineering Applications. Int. J. Pharm. 2017, 523, 441–453. DOI: 10.1016/j.ijpharm.2016.09.044.
  • Gautam, S.; Sharma, C.; Purohit, S. D.; Singh, H.; Dinda, A. K.; Potdar, P. D.; Chou, C. F.; Mishra, N. C. Gelatin-Polycaprolactone-Nanohydroxyapatite Electrospun Nanocomposite Scaffold for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111588. DOI: 10.1016/j.msec.2020.111588.
  • Ma, P.; Wu, W.; Wei, Y.; Ren, L.; Lin, S.; Wu, J. Biomimetic Gelatin/Chitosan/Polyvinyl Alcohol/Nano-Hydroxyapatite Scaffolds for Bone Tissue Engineering. Mater. Des. 2021, 207, 109865. DOI: 10.1016/j.matdes.2021.109865.
  • Jaiswal, A. K.; Chhabra, H.; Soni, V. P.; Bellare, J. R. Enhanced Mechanical Strength and Biocompatibility of Electrospun Polycaprolactone-Gelatin Scaffold with Surface Deposited Nano-Hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2376–2385. DOI: 10.1016/j.msec.2013.02.003.
  • Jalaja, K.; Sreehari, V. S.; Kumar, P. R. A.; Nirmala, R. J. Graphene Oxide Decorated Electrospun Gelatin Nanofibers: Fabrication, Properties and Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 64, 11–19. DOI: 10.1016/j.msec.2016.03.036.
  • Xu, D.; Wang, C.; Wu, J.; Fu, Y.; Li, S.; Hou, W.; Lin, L.; Li, P.; Yu, D.; Zhao, W. Effects of Low-Concentration Graphene Oxide Quantum Dots on Improving the Proliferation and Differentiation Ability of Bone Marrow Mesenchymal Stem Cells through the Wnt/β-Catenin Signaling Pathway. ACS Omega. 2022, 7, 13546–13556. DOI: 10.1021/acsomega.1c06892.
  • Zhang, D.; Wu, X.; Chen, J.; Lin, K. The Development of Collagen Based Composite Scaffolds for Bone Regeneration. Bioact. Mater. 2018, 3, 129–138. DOI: 10.1016/j.bioactmat.2017.08.004.
  • Deymeh, S. M.; Hashemi-Najafabadi, S.; Baghaban-Eslaminejad, M.; Bagheri, F. Use of Gelatin as a Sacrificial Agent in Combination with Ultrasonication to Improve Cell Infiltration and Osteogenesis of Nanofibrous PCL-nHA Scaffolds for Bone Tissue Engineering. Iran. J. Biotechnol. 2022, 20, 1–12.
  • Rahmani, A.; Hashemi-Najafabadi, S.; Eslaminejad, M. B.; Bagheri, F.; Sayahpour, F. A. The Effect of Modified Electrospun PCL-nHA-nZnO Scaffolds on Osteogenesis and Angiogenesis. J. Biomed. Mater. Res. A. 2019, 107, 2040–2052. DOI: 10.1002/jbm.a.36717.
  • Ege, D.; Kamali, A. R.; Boccaccini, A. R. Graphene Oxide/Polymer-Based Biomaterials. Adv. Eng. Mater. 2017, 19, 1700627. DOI: 10.1002/adem.201700627.
  • Kolhe, P.; Kannan, R. M. Improvement in Ductility of Chitosan through Blending and Copolymerization with PEG: FTIR Investigation of Molecular Interactions. Biomacromolecules. 2003, 4, 173–180. DOI: 10.1021/bm025689+.
  • Bai, J.; Wang, H.; Gao, W.; Liang, F.; Wang, Z.; Zhou, Y.; Lan, X.; Chen, X.; Cai, N.; Huang, W.; et al. Melt Electrohydrodynamic 3D Printed Poly (ε-Caprolactone)/Polyethylene Glycol/Roxithromycin Scaffold as a Potential Anti-Infective Implant in Bone Repair. Int. J. Pharm. 2020, 576, 118941. DOI: 10.1016/j.ijpharm.2019.118941.
  • Namini, M. S.; Bayat, N.; Tajerian, R.; Ebrahimi-Barough, S.; Azami, M.; Irani, S.; Jangjoo, S.; Shirian, S.; Ai, J. A Comparison Study on the Behavior of Human Endometrial Stem Cell-Derived Osteoblast Cells on PLGA/HA Nanocomposite Scaffolds Fabricated by Electrospinning and Freeze-Drying Methods. J. Orthop. Surg. Res. 2018, 13, 63. DOI: 10.1186/s13018-018-0754-9.
  • Campiglio, C. E.; Ponzini, S.; De Stefano, P.; Ortoleva, G.; Vignati, L.; Draghi, L. Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography. Polymers. 2020, 12, 2472. DOI: 10.3390/polym12112472.
  • Liu, X.; Miller, A. L.; Park, S.; George, M. N.; Waletzki, B. E.; Xu, H.; Terzic, A.; Lu, L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Appl. Mater. Interfaces. 2019, 11, 23558–23572. DOI: 10.1021/acsami.9b04121.
  • Zhang, X.; Wei, C.; Li, Y.; Li, Y.; Chen, G.; He, Y.; Yi, C.; Wang, C.; Yu, D. Dose-Dependent Cytotoxicity Induced by Pristine Graphene Oxide Nanosheets for Potential Bone Tissue Regeneration. J. Biomed. Mater. Res. A. 2020, 108, 614–624. DOI: 10.1002/jbm.a.36841.
  • Wu, J.; Zheng, A.; Liu, Y.; Jiao, D.; Zeng, D.; Wang, X.; Cao, L.; Jiang, X. Enhanced Bone Regeneration of the Silk Fibroin Electrospun Scaffolds through the Modification of the Graphene Oxide Functionalized by BMP-2 Peptide. Int. J. Nanomed. 2019, 14, 733–751. DOI: 10.2147/IJN.S187664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.