106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kartogenin-loaded silk fibroin–chondroitin sulfate hybrid hydrogel with tailored β-sheet content: control release studies and biological activity

, , , &
Received 26 Jun 2023, Accepted 23 Aug 2023, Published online: 22 Sep 2023

References

  • Lammel, A. S.; Hu, X.; Park, S. H.; Kaplan, D. L.; Scheibel, T. R. Controlling Silk Fibroin Particle Features for Drug Delivery. Biomaterials. 2010, 31, 4583–4591. DOI: 10.1016/j.biomaterials.2010.02.024.
  • Pritchard, E. M.; Kaplan, D. L. Silk Fibroin Biomaterials for Controlled Release Drug Delivery. Expert Opin. Drug Deliv. 2011, 8, 797–811. DOI: 10.1517/17425247.2011.568936.
  • Hofmann, S.; Foo, C. T. W. P.; Rossetti, F.; Textor, M.; Vunjak-Novakovic, G.; Kaplan, D. L.; Merkle, H. P.; Meinel, L. Silk Fibroin as an Organic Polymer for Controlled Drug Delivery. J. Control. Release 2006, 111, 219–227. DOI: 10.1016/j.jconrel.2005.12.009.
  • De Moraes, M. A.; Mahl, C. R. A.; Silva, M. F.; Beppu, M. M. Formation of Silk Fibroin Hydrogel and Evaluation of Its Drug Release Profile. J. Appl. Polym. Sci. 2015, 132, 41802. DOI: 10.1002/app.41802.
  • Tomeh, M. A.; Hadianamrei, R.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics. 2019, 11, 494. DOI: 10.3390/pharmaceutics11100494.
  • Farokhi, M.; Solouk, A.; Mirzadeh, H.; Teuschl, A. H.; Redl, H. An Injectable Enzymatically Crosslinked and Mechanically Tunable Silk Fibroin/Chondroitin Sulfate Chondro‐Inductive Hydrogel. Macromol. Mater. Eng. 2022, 308, 2200503.
  • Aleemardani, M.; Solouk, A.; Akbari, S.; Moeini, M. A Hydrogel–Fiber–Hydrogel Composite Scaffold Based on Silk Fibroin with the Dual‐Delivery of Oxygen and Quercetin. Biotechnol. Bioeng. 2023, 120, 297–311. DOI: 10.1002/bit.28259.
  • Massaro, M.; Buscemi, G.; Arista, L.; Biddeci, G.; Cavallaro, G.; D'Anna, F.; Di Blasi, F.; Ferrante, A.; Lazzara, G.; Rizzo, C.; et al. Multifunctional Carrier Based on Halloysite/Laponite Hybrid Hydrogel for Kartogenin Delivery. ACS Med. Chem. Lett. 2019, 10, 419–424. DOI: 10.1021/acsmedchemlett.8b00465.
  • Yuan, F.-Z.; Wang, H.-F.; Guan, J.; Fu, J.-N.; Yang, M.; Zhang, J.-Y.; Chen, Y.-R.; Wang, X.; Yu, J.-K. Fabrication of Injectable Chitosan-Chondroitin Sulfate Hydrogel Embedding Kartogenin-Loaded Microspheres as an Ultrasound-Triggered Drug Delivery System for Cartilage Tissue Engineering. Pharmaceutics. 2021, 13, 1487. DOI: 10.3390/pharmaceutics13091487.
  • Fan, W.; Li, J.; Yuan, L.; Chen, J.; Wang, Z.; Wang, Y.; Guo, C.; Mo, X.; Yan, Z. Intra-Articular Injection of Kartogenin-Conjugated Polyurethane Nanoparticles Attenuates the Progression of Osteoarthritis. Drug Deliv. 2018, 25, 1004–1012. DOI: 10.1080/10717544.2018.1461279.
  • Dehghan-Baniani, D.; Chen, Y.; Wang, D.; Bagheri, R.; Solouk, A.; Wu, H. Injectable In Situ Forming Kartogenin-Loaded Chitosan Hydrogel with Tunable Rheological Properties for Cartilage Tissue Engineering. Colloids Surf. B Biointerfaces. 2020, 192, 111059. DOI: 10.1016/j.colsurfb.2020.111059.
  • He, T.; Shaw, I.; Vedadghavami, A.; Bajpayee, A. G. Single-Dose Intra-Cartilage Delivery of Kartogenin Using a Cationic Multi-Arm Avidin Nanocarrier Suppresses Cytokine-Induced Osteoarthritis-Related Catabolism. Cartilage. 2022, 13, 19476035221093072. DOI: 10.1177/19476035221093072.
  • Hou, M.; Zhang, Y.; Zhou, X.; Liu, T.; Yang, H.; Chen, X.; He, F.; Zhu, X. Kartogenin Prevents Cartilage Degradation and Alleviates Osteoarthritis Progression in Mice via the miR-146a/NRF2 Axis. Cell Death Dis. 2021, 12, 483. DOI: 10.1038/s41419-021-03765-x.
  • Shi, D.; Xu, X.; Ye, Y.; Song, K.; Cheng, Y.; Di, J.; Hu, Q.; Li, J.; Ju, H.; Jiang, Q.; et al. Photo-Cross-Linked Scaffold with Kartogenin-Encapsulated Nanoparticles for Cartilage Regeneration. ACS Nano. 2016, 10, 1292–1299. DOI: 10.1021/acsnano.5b06663.
  • Li, X.; Ding, J.; Zhang, Z.; Yang, M.; Yu, J.; Wang, J.; Chang, F.; Chen, X. Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration. ACS Appl. Mater. Interfaces. 2016, 8, 5148–5159. DOI: 10.1021/acsami.5b12212.
  • Ping, Y.; Ding, D.; Ramos, R. A. N. S.; Mohanram, H.; Deepankumar, K.; Gao, J.; Tang, G.; Miserez, A. Supramolecular β-Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection. ACS Nano. 2017, 11, 4528–4541. DOI: 10.1021/acsnano.6b08393.
  • Wani, S. U. D.; Zargar, M. I.; Masoodi, M. H.; Alshehri, S.; Alam, P.; Ghoneim, M. M.; Alshlowi, A.; Shivakumar, H. G.; Ali, M.; Shakeel, F.; et al. Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing. Int. J. Mol. Sci. 2022, 23, 14421. DOI: 10.3390/ijms232214421.
  • Puerta, M.; Arango, M. C.; Jaramillo-Quiceno, N.; Álvarez-López, C.; Restrepo-Osorio, A. Influence of Ethanol Post-Treatments on the Properties of Silk Protein Materials. SN Appl. Sci. 2019, 1, 1443. DOI: 10.1007/s42452-019-1486-0.
  • Farokhi, M.; Aleemardani, M.; Solouk, A.; Mirzadeh, H.; Teuschl, A. H.; Redl, H. Crosslinking Strategies for Silk Fibroin Hydrogels: promising Biomedical Materials. Biomed. Mater. 2021, 16, 022004. DOI: 10.1088/1748-605X/abb615.
  • Hasturk, O.; Jordan, K. E.; Choi, J.; Kaplan, D. L. Enzymatically Crosslinked Silk and Silk-Gelatin Hydrogels with Tunable Gelation Kinetics, Mechanical Properties and Bioactivity for Cell Culture and Encapsulation. Biomaterials. 2020, 232, 119720. DOI: 10.1016/j.biomaterials.2019.119720.
  • Meinel, L.; Kaplan, D. L. Silk Constructs for Delivery of Musculoskeletal Therapeutics. Adv. Drug Deliv. Rev. 2012, 64, 1111–1122. DOI: 10.1016/j.addr.2012.03.016.
  • Pham, D. T.; Saelim, N.; Tiyaboonchai, W. Crosslinked Fibroin Nanoparticles Using EDC or PEI for Drug Delivery: physicochemical Properties, Crystallinity and Structure. J. Mater. Sci. 2018, 53, 14087–14103. DOI: 10.1007/s10853-018-2635-3.
  • Whittaker, J. L.; Dutta, N. K.; Elvin, C. M.; Choudhury, N. R. Fabrication of Highly Elastic Resilin/Silk Fibroin Based Hydrogel by Rapid Photo-Crosslinking Reaction. J. Mater. Chem. B. 2015, 3, 6576–6579. DOI: 10.1039/c5tb00970g.
  • Taddei, P.; Chiono, V.; Anghileri, A.; Vozzi, G.; Freddi, G.; Ciardelli, G. Silk Fibroin/Gelatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromol. Biosci. 2013, 13, 1492–1510. DOI: 10.1002/mabi.201300156.
  • Samal, S. K.; Kaplan, D. L.; Chiellini, E. Ultrasound Sonication Effects on Silk Fibroin Protein. Macromol. Mater. Eng. 2013, 298, 1201–1208. DOI: 10.1002/mame.201200377.
  • Bin Bae, S.; Jeong, J. E.; Park, S. A.; Park, W. H. Dual-Crosslinked Silk Fibroin Hydrogels with Elasticity and Cytocompatibility for the Regeneration of Articular Cartilage. Polymer (Guildf). 2021, 224, 123739. DOI: 10.1016/j.polymer.2021.123739.
  • Chu, W.; Nie, M.; Ke, X.; Luo, J.; Li, J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol. Biosci. 2021, 21, e2100109. DOI: 10.1002/mabi.202100109.
  • Luo, K.; Yang, Y.; Shao, Z. Physically Crosslinked Biocompatible Silk-Fibroin-Based Hydrogels with High Mechanical Performance. Adv. Funct. Mater. 2016, 26, 872–880. DOI: 10.1002/adfm.201503450.
  • Lin, Y.; Xia, X.; Shang, K.; Elia, R.; Huang, W.; Cebe, P.; Leisk, G.; Omenetto, F.; Kaplan, D. L. Tuning Chemical and Physical Cross-Links in Silk Electrogels for Morphological Analysis and Mechanical Reinforcement. Biomacromolecules. 2013, 14, 2629–2635. DOI: 10.1021/bm4004892.
  • Onder, O. C.; Batool, S. R.; Nazeer, M. A. Self-Assembled Silk Fibroin Hydrogels: From Preparation to Biomedical Applications. Mater. Adv. 2022, 3, 6920–6949. DOI: 10.1039/D2MA00568A.
  • Guan, Y.; You, H.; Cai, J.; Zhang, Q.; Yan, S.; You, R. Physically Crosslinked Silk Fibroin/Hyaluronic Acid Scaffolds. Carbohydr. Polym. 2020, 239, 116232. DOI: 10.1016/j.carbpol.2020.116232.
  • Zhao, Y.; Guan, J.; Wu, S. J. Highly Stretchable and Tough Physical Silk Fibroin-Based Double Network Hydrogels. Macromol. Rapid Commun. 2019, 40, 1–5. DOI: 10.1002/marc.201900389.
  • Yu, Z.; Cai, Z.; Chen, Q.; Liu, M.; Ye, L.; Ren, J.; Liao, W.; Liu, S. Engineering β-Sheet Peptide Assemblies for Biomedical Applications. Biomater. Sci. 2016, 4, 365–374. DOI: 10.1039/c5bm00472a.
  • Karve, K. A.; Gil, E. S.; McCarthy, S. P.; Kaplan, D. L. Effect of β-Sheet Crystalline Content on Mass Transfer in Silk Films. J. Membr. Sci. 2011, 383, 44–49. DOI: 10.1016/j.memsci.2011.08.032.
  • Cheng, Y.; Koh, L. D.; Li, D.; Ji, B.; Han, M. Y.; Zhang, Y. W. On the Strength of β-Sheet Crystallites of Bombyx mori Silk Fibroin. J. R. Soc. Interface. 2014, 11, 20140305. DOI: 10.1098/rsif.2014.0305.
  • Drnovšek, N.; Kocen, R.; Gantar, A.; Drobnič-Košorok, M.; Leonardi, A.; Križaj, I.; Rečnik, A.; Novak, S. Size of Silk Fibroin β-Sheet Domains Affected by Ca2+. J. Mater. Chem. B. 2016, 4, 6597–6608. DOI: 10.1039/c6tb01101b.
  • Nam, J.; Park, Y. H. Morphology of Regenerated Silk Fibroin: Effects of Freezing Temperature; Alcohol Addition, and Molecular Weight. J. Appl. Polym. Sci. 2001, 81, 3008–3021. DOI: 10.1002/app.1751.
  • Kaewprasit, K.; Kobayashi, T.; Damrongsakkul, S. Alcohol-Triggered Silk Fibroin Hydrogels Having Random Coil and β-Turn Structures Enhanced for Cytocompatible Cell Response. J. Appl. Polym. Sci. 2020, 137, 48731. DOI: 10.1002/app.48731.
  • Yazawa, K.; Ishida, K.; Masunaga, H.; Hikima, T.; Numata, K. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials. Biomacromolecules. 2016, 17, 1057–1066. DOI: 10.1021/acs.biomac.5b01685.
  • Zuo, B.; Dai, L.; Wu, Z. Analysis of Structure and Properties of Biodegradable Regenerated Silk Fibroin Fibers. J. Mater. Sci. 2006, 41, 3357–3361. DOI: 10.1007/s10853-005-5384-z.
  • Lawrence, B. D.; Omenetto, F.; Chui, K.; Kaplan, D. L. Processing Methods to Control Silk Fibroin Film Biomaterial Features. J. Mater. Sci. 2008, 43, 6967–6985. DOI: 10.1007/s10853-008-2961-y.
  • Wang, F.; Li, Y.; Gough, C. R.; Liu, Q.; Hu, X. Dual-Crystallizable Silk Fibroin/Poly(l-Lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein–Polymer Blends. Int. J. Mol. Sci. 2021, 22, 1–16. DOI: 10.3390/ijms22041871.
  • Su, D.; Yao, M.; Liu, J.; Zhong, Y.; Chen, X.; Shao, Z. Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of β-Sheet Domains. ACS Appl. Mater. Interfaces 2017, 9, 17489–17498. DOI: 10.1021/acsami.7b04623.
  • Qu, X.; Yan, L.; Liu, S.; Tan, Y.; Xiao, J.; Cao, Y.; Chen, K.; Xiao, W.; Li, B.; Liao, X.; et al. Preparation of Silk Fibroin/Hyaluronic Acid Hydrogels with Enhanced Mechanical Performance by a Combination of Physical and Enzymatic Crosslinking. J. Biomater. Sci. Polym. Ed. 2021, 32, 1635–1653. DOI: 10.1080/09205063.2021.1932070.
  • Bayer, I. S. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics. 2023, 15, 1364. DOI: 10.3390/pharmaceutics15051364.
  • Qi, R.; Luo, Y.; Ma, B.; Nussinov, R.; Wei, G. Conformational Distribution and α-Helix to β-Sheet Transition of Human Amylin Fragment Dimer. Biomacromolecules. 2014, 15, 122–131. DOI: 10.1021/bm401406e.
  • Ryoo, J.; Choi, J.; Ki, C. S. Effect of Ethanol Treatment on Physical Property of Photopolymerized Hyaluronic Acid/Silk Fibroin Hybrid Hydrogel. Polymer (Guildf). 2020, 202, 122733. DOI: 10.1016/j.polymer.2020.122733.
  • Yadav, R.; Purwar, R. Effect of Post-Treatment Methods and Nanoparticles on the Conformation of Silk Fibroin and Their Impact on Electrical Properties. Polym. Technol. Mater. 2022, 61, 2016–2031. DOI: 10.1080/25740881.2022.2089576.
  • Liu, X.; Zhang KQ. Silk Fiber—Molecular Formation Mechanism, Structure- Property Relationship and Advanced Applications [Internet]. Oligomerization of Chemical and Biological Compounds. InTech; 2014. Available from: DOI: 10.5772/57611
  • Fan, T.; Yu, X.; Shen, B.; Sun, L. Peptide Self-Assembled Nanostructures for Drug Delivery Applications. J. Nanomater. 2017, 2017, 1–16. DOI: 10.1155/2017/4562474.
  • Miller, C. C. The Stokes–Einstein Law for Diffusion in Solution. Proc. R. Soc. Lond. A. 1924, 106, 724–749. DOI: 10.1098/rspa.1924.0100.
  • Atala, A.; Lanza, R. P. Processing of Polymer Scaffolds: Freeze-Drying, Chapter 60. In Methods of Tissue Engineering; Academic Press, 2002; p 700.
  • Carissimi, G.; Baronio, C. M.; Montalbán, M. G.; Víllora, G.; Barth, A. On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers (Basel). 2020, 12, 1294. DOI: 10.3390/polym12061294.
  • Wang, L.; Fang, M.; Xia, Y.; Hou, J.; Nan, X.; Zhao, B.; Wang, X. Preparation and Biological Properties of Silk Fibroin/Nano-Hydroxyapatite/Graphene Oxide Scaffolds with an Oriented Channel-like Structure. RSC Adv. 2020, 10, 10118–10128. DOI: 10.1039/c9ra09710d.
  • Farokhi, M.; Jonidi Shariatzadeh, F.; Solouk, A.; Mirzadeh, H. Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 230–247. DOI: 10.1080/00914037.2018.1562924.
  • Wei, W.; Ma, Y.; Yao, X.; Zhou, W.; Wang, X.; Li, C.; Lin, J.; He, Q.; Leptihn, S.; Ouyang, H.; et al. Advanced Hydrogels for the Repair of Cartilage Defects and Regeneration. Bioact. Mater. 2021, 6, 998–1011. DOI: 10.1016/j.bioactmat.2020.09.030.
  • Gil, E. S.; Spontak, R. J.; Hudson, S. M. Effect of β-Sheet Crystals on the Thermal and Rheological Behavior of Protein-Based Hydrogels Derived from Gelatin and Silk Fibroin. Macromol. Biosci. 2005, 5, 702–709. DOI: 10.1002/mabi.200500076.
  • Yao, D.; Liu, H.; Fan, Y. Fabrication of Water-Stable Silk Fibroin Scaffolds through Self-Assembly of Proteins. RSC Adv. 2016, 6, 61402–61409. DOI: 10.1039/C6RA10670F.
  • Lu, Q.; Zhang, B.; Li, M.; Zuo, B.; Kaplan, D. L.; Huang, Y.; Zhu, H. Degradation Mechanism and Control of Silk Fibroin. Biomacromolecules. 2011, 12, 1080–1086. DOI: 10.1021/bm101422j.
  • Kambe, Y.; Mizoguchi, Y.; Kuwahara, K.; Nakaoki, T.; Hirano, Y.; Yamaoka, T. Beta-Sheet Content Significantly Correlates with the Biodegradation Time of Silk Fibroin Hydrogels Showing a Wide Range of Compressive Modulus. Polym. Degrad. Stab. 2020, 179, 109240. DOI: 10.1016/j.polymdegradstab.2020.109240.
  • Xu, Z.; Tang, E.; Zhao, H. An Environmentally Sensitive Silk Fibroin/Chitosan Hydrogel and Its Drug Release Behaviors. Polymers (Basel). 2019, 11, 1980. DOI: 10.3390/polym11121980.
  • Zhong, T.; Jiang, Z.; Wang, P.; Bie, S.; Zhang, F.; Zuo, B. Silk Fibroin/Copolymer Composite Hydrogels for the Controlled and Sustained Release of Hydrophobic/Hydrophilic Drugs. Int. J. Pharm. 2015, 494, 264–270. DOI: 10.1016/j.ijpharm.2015.08.035.
  • Lin, C.; Anseth, K. S. The Biodegradation of Biodegradable Polymeric Biomaterials. In Biomaterials Science, 3rd ed., 2013; pp 716–728. DOI: 10.1016/B978-0-08-087780-8.00061-9.
  • Wang, Y.; Rudym, D. D.; Walsh, A.; Abrahamsen, L.; Kim, H.; Kim, H. S.; Kirker-Head, C.; Kaplan, D. L. In Vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds. Biomaterials. 2008, 29, 3415–3428. DOI: 10.1016/j.biomaterials.2008.05.002.
  • Takata, T.; Wang, H. L.; Miyauchi, M. Attachment, Proliferation and Differentiation of Periodontal Ligament Cells on Various Guided Tissue Regeneration Membranes. J. Periodontal. Res. 2001, 36, 322–327. DOI: 10.1034/j.1600-0765.2001.360508.x.
  • Amirikia, M.; Shariatzadeh, S. M. A.; Jorsaraei, S. G. A.; Soleimani Mehranjani, M. Impact of Pre-Incubation Time of Silk Fibroin Scaffolds in Culture Medium on Cell Proliferation and Attachment. Tissue Cell. 2017, 49, 657–663. DOI: 10.1016/j.tice.2017.09.002.
  • Bai, S.; Han, H.; Huang, X.; Xu, W.; Kaplan, D. L.; Zhu, H.; Lu, Q. Silk Scaffolds with Tunable Mechanical Capability for Cell Differentiation. Acta Biomater. 2015, 20, 22–31. DOI: 10.1016/j.actbio.2015.04.004.
  • Yi, B.; Xu, Q.; Liu, W. An Overview of Substrate Stiffness Guided Cellular Response and Its Applications in Tissue Regeneration. Bioact. Mater. 2022, 15, 82–102. DOI: 10.1016/j.bioactmat.2021.12.005.
  • Lee, S.; Choi, J.; Youn, J.; Lee, Y.; Kim, W.; Choe, S.; Song, J.; Reis, R. L.; Khang, G. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Biomolecules. 2021, 11, 1184. DOI: 10.3390/biom11081184.
  • Pantazaka, E.; Papadimitriou, E. Chondroitin Sulfate-Cell Membrane Effectors as Regulators of Growth Factor-Mediated Vascular and Cancer Cell Migration. Biochim. Biophys. Acta. 2014, 1840, 2643–2650. DOI: 10.1016/j.bbagen.2014.01.009.
  • Nultsch, K.; Germershaus, O. Silk Fibroin Degumming Affects Scaffold Structure and Release of Macromolecular Drugs. Eur. J. Pharm. Sci. 2017, 106, 254–261. DOI: 10.1016/j.ejps.2017.06.012.
  • Zou, H.; Banerjee, P.; Leung, S. S. Y.; Yan, X. Application of Pharmacokinetic–Pharmacodynamic Modeling in Drug Delivery: Development and Challenges. Front. Pharmacol. 2020, 11, 997. DOI: 10.3389/fphar.2020.00997.
  • Lisik, A.; Musiał, W. Conductomeric Evaluation of the Release Kinetics of Active Substances from Pharmaceutical Preparations Containing Iron Ions. Materials (Basel). 2019, 12, 730. DOI: 10.3390/ma12050730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.