109
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering

, , , &
Received 12 Jul 2023, Accepted 26 Oct 2023, Published online: 07 Nov 2023

References

  • Sharma, P.; Kumar, P.; Sharma, R.; Dhar Bhatt, V.; Dhot, P. Tissue Engineering; Current Status & Futuristic Scope. J. Med. Life 2019, 12, 225–229. https://medandlife.org/wp-content/uploads/JMedLife-12-225.pdf. DOI: 10.25122/jml-2019-0032.
  • Atala, R.; Lanza, R.; Langer, J.; Vacanti, A. Principles of Tissue Engineering; Elsevier: Amsterdam, Netherlands, 2020. https://linkinghub.elsevier.com/retrieve/pii/C20180038189. DOI: 10.1016/C2018-0-03818-9.
  • Kanczler, J. M.; Wells, J. A.; Gibbs, D.; Marshall, K.; Tang, D. K. O.; Oreffo, R. O. C. Bone Tissue Engineering and Bone Regeneration. 2020. https://linkinghub.elsevier.com/retrieve/pii/C20180038189. (accessed Dec 18, 2022). DOI: 10.1016/C2018-0-03818-9.
  • de Mori, A.; Fernández, M. P.; Blunn, G.; Tozzi, G.; Roldo, M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers (Basel) 2018, 10, 285. DOI: 10.3390/polym10030285.
  • Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S. W.; Chatterji, S.; Vos, T. Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet 2021, 396, 2006–2017. DOI: 10.1016/S0140-6736(20)32340-0.
  • Rodriguez, G.; Dias, J.; D’Ávila, M. A.; Bártolo, P. Influence of Hydroxyapatite on Extruded 3D Scaffolds. In Procedia Engineering, Vol. 59; Elsevier Ltd: Amsterdam, Netherlands, 2013. pp. 263–269. DOI: 10.1016/j.proeng.2013.05.120.
  • Liu, Q. Tissue Engineering. In: Biomaterials and Tissue Engineering. Biological and Medical Physics; Shi, D. (ed); Springer: Berlin. 2004, pp 195–243. DOI: 10.1007/978-3-662-06104-6-5.
  • Chuenjitkuntaworn, B.; Inrung, W.; Damrongsri, D.; Mekaapiruk, K.; Supaphol, P.; Pavasant, P. Polycaprolactone/Hydroxyapatite Composite Scaffolds: Preparation, Characterization, and in Vitro and in Vivo Biological Responses of Human Primary Bone Cells. J. Biomed. Mater. Res. A 2010, 94, 241–251. DOI: 10.1002/jbm.a.32657.
  • Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic Acid (PLA) Controlled Delivery Carriers for Biomedical Applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. https://linkinghub.elsevier.com/retrieve/pii/S0169409X16302113. DOI: 10.1016/j.addr.2016.06.018.
  • Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L'heureux, N.; Fricain, J.-C.; Catros, S.; Le Nihouannen, D. Characterization of Printed PLA Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2018, 106, 887–894. DOI: 10.1002/jbm.a.36289.
  • Singhvi, M. S.; Zinjarde, S. S.; Gokhale, D. V. Polylactic Acid: synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. DOI: 10.1111/jam.14290.
  • Donate, R.; Monzón, M.; Alemán-Domínguez, M. E.; Ortega, Z. Enzymatic Degradation Study of PLA-Based Composite Scaffolds. Rev. Adv. Mater. Sci. 2020, 59, 170–175. DOI: 10.1515/RAMS-2020-0005/MACHINEREADABLECITATION/RIS.
  • Senatov, F. S.; Niaza, K. v.; Zadorozhnyy, M. Y.; Maksimkin, A. v.; Kaloshkin, S. D.; Estrin, Y. Z. Mechanical Properties and Shape Memory Effect of 3D-Printed PLA-Based Porous Scaffolds. J. Mech. Behav. Biomed. Mater. 2016, 57, 139–148. DOI: 10.1016/j.jmbbm.2015.11.036.
  • Kumar, A.; Mir, S. M.; Aldulijan, I.; Mahajan, A.; Anwar, A.; Leon, C. H.; Terracciano, A.; Zhao, X.; Su, T.-L.; Kalyon, D. M.; et al. Load-Bearing Biodegradable PCL-PGA-Beta TCP Scaffolds for Bone Tissue Regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 193–200. DOI: 10.1002/jbm.b.34691.
  • Ghosal, K.; Manakhov, A.; Zajíčková, L.; Thomas, S. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-Caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech 2017, 18, 72–81. DOI: 10.1208/s12249-016-0500-8.
  • Tajbakhsh, S.; Hajiali, F. A Comprehensive Study on the Fabrication and Properties of Biocomposites of Poly(Lactic Acid)/Ceramics for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 897–912. DOI: 10.1016/j.msec.2016.09.008.
  • Hanas, T.; Sampath Kumar, T. S.; Perumal, G.; Doble, M.; Ramakrishna, S. Electrospun PCL/HA Coated Friction Stir Processed AZ31/HA Composites for Degradable Implant Applications​. J. Mater. Process. Technol. 2018, 252, 398–406. DOI: 10.1016/j.jmatprotec.2017.10.009.
  • Ghosal, K.; Kováčová, M.; Humpolíček, P.; Vajďák, J.; Bodík, M.; Špitalský, Z. Antibacterial Photodynamic Activity of Hydrophobic Carbon Quantum Dots and Polycaprolactone Based Nanocomposite Processed via Both Electrospinning and Solvent Casting Method. Photodiagn. Photodyn. Ther. 2021, 35, 102455. DOI: 10.1016/J.PDPDT.2021.102455.
  • Siddiqui, N.; Asawa, S.; Birru, B.; Baadhe, R.; Rao, S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol. Biotechnol. 2018, 60, 506–532. DOI: 10.1007/s12033-018-0084-5.
  • Siddiqui, N.; Kishori, B.; Rao, S.; Anjum, M.; Hemanth, V.; Das, S.; Jabbari, E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol. Biotechnol. 2021, 63, 363–388. DOI: 10.1007/s12033-021-00311-0.
  • Ortega, Z.; Alemán, M. E.; Donate, R. Nanofibers and Microfibers for Osteochondral Tissue Engineering. Adv. Exp. Med. Biol. 2018, 1058, 97–123. DOI: 10.1007/978-3-319-76711-6_5.
  • Smith, J. A.; Mele, E. Electrospinning and Additive Manufacturing: Adding Three-Dimensionality to Electrospun Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 674738. DOI: 10.3389/fbioe.2021.674738.
  • He, H.; Molnár, K. Fabrication of 3D Printed Nanocomposites with Electrospun Nanofiber Interleaves. Addit. Manuf. 2021, 46, 102030. DOI: 10.1016/j.addma.2021.102030.
  • Yang, D. L.; Faraz, F.; Wang, J. X.; Radacsi, N. Combination of 3D Printing and Electrospinning Techniques for Biofabrication. Adv. Material. Technol. 2022, 7, 2101309. DOI: 10.1002/admt.202101309.
  • Zhang, Y. S.; Yue, K.; Aleman, J.; Moghaddam, K. M.; Bakht, S. M.; Yang, J.; Jia, W.; Dell’Erba, V.; Assawes, P.; Shin, S. R.; et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed. Eng. 2017, 45, 148–163. DOI: 10.1007/S10439-016-1612-8.
  • Bian, T.; Xing, H. A Collagen(Col)/Nano-Hydroxyapatite (nHA) Biological Composite Bone Scaffold with Double Multi-Level Interface Reinforcement. Arabian J. Chem. 2022, 15, 103733. DOI: 10.1016/j.arabjc.2022.103733.
  • Pepla, E.; Besharat, L. K.; Palaia, G.; Tenore, G.; Migliau, G. Nano-hydroxyapatite and its Applications in Preventive, Restorative and Regenerative Dentistry: A Review of Literature. Annali di stomatologia, 2014, 5(3): 108–114.
  • Mohd Pu’ad, N. A. S.; Koshy, P.; Abdullah, H. Z.; Idris, M. I.; Lee, T. C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon 2019, 5, e01588. https://linkinghub.elsevier.com/retrieve/pii/S2405844018368944. DOI: 10.1016/j.heliyon.2019.e01588.
  • Kim, M. H.; Yun, C.; Chalisserry, E. P.; Lee, Y. W.; Kang, H. W.; Park, S. H.; Jung, W. K.; Oh, J.; Nam, S. Y. Quantitative Analysis of the Role of Nanohydroxyapatite (nHA) on 3D-Printed PCL/nHA Composite Scaffolds. Mater. Lett. 2018, 220, 112–115. DOI: 10.1016/j.matlet.2018.03.025.
  • Valencia, C.; Valencia, C.; Zuluaga, F.; Valencia, M.; Mina, J.; Grande-Tovar, C. Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules 2018, 23, 2651. http://www.mdpi.com/1420-3049/23/10/2651. DOI: 10.3390/molecules23102651.
  • Enrione, J.; Díaz-Calderón, P.; Weinstein-Oppenheimer, C. R.; Sánchez, E.; Fuentes, M. A.; Brown, D. I.; Herrera, H.; Acevedo, C. A. Designing a Gelatin/Chitosan/Hyaluronic Acid Biopolymer Using a Thermophysical Approach for Use in Tissue Engineering. Bioprocess Biosyst. Eng. 2013, 36, 1947–1956. DOI: 10.1007/s00449-013-0971-x.
  • Yan, Y.; Chen, H.; Zhang, H.; Guo, C.; Yang, K.; Chen, K.; Cheng, R.; Qian, N.; Sandler, N.; Zhang, Y. S.; et al. Vascularized 3D Printed Scaffolds for Promoting Bone Regeneration. Biomaterials 2019, 190–191, 97–110. DOI: 10.1016/j.biomaterials.2018.10.033.
  • Baptista, R.; Guedes, M. Fatigue Behavior of Different Geometry Scaffolds for Bone Replacement. Procedia Struct. Integrity 2019, 17, 539–546. DOI: 10.1016/j.prostr.2019.08.072.
  • Liu, J.; Zou, Q.; Wang, C.; Lin, M.; Li, Y.; Zhang, R.; Li, Y. Electrospinning and 3D Printed Hybrid bi-Layer Scaffold for Guided Bone Regeneration. Mater. Des. 2021, 210, 110047. DOI: 10.1016/j.matdes.2021.110047.
  • Wu, J.; Hong, Y. Enhancing Cell Infiltration of Electrospun Fibrous Scaffolds in Tissue Regeneration. Bioact. Mater. 2016, 1, 56–64. DOI: 10.1016/j.bioactmat.2016.07.001.
  • Vyas, C.; Ates, G.; Aslan, E.; Hart, J.; Huang, B.; Bartolo, P. Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment. 3D Print Addit. Manuf. 2020, 7, 105–113. DOI: 10.1089/3dp.2019.0091.
  • Ramesh, S.; Tan, C. Y.; Hamdi, M.; Sopyan, I.; Teng, W. D. 2007 The Influence of Ca/P Ratio on the Properties of Hydroxyapatite Bioceramics. Presented at the International Conference on Smart Materials and Nanotechnology in Engineering. Vol. 6423. p. 64233A. http://proceedings.spiedigitallibrary.org/proceeding.aspx? DOI: 10.1117/12.779890.
  • Ansari, M.; Naghib, S.; Moztarzadeh, F.; Salati, A. Synthesis and Characterization of Hydroxyapatitecalcium Hydroxide for Dental Composites. Ceram. Silik. 2011, 55, 123–126.
  • Augustine, R.; Malik, H. N.; Singhal, D. K.; Mukherjee, A.; Malakar, D.; Kalarikkal, N.; Thomas, S. Electrospun Polycaprolactone/ZnO Nanocomposite Membranes as Biomaterials with Antibacterial and Cell Adhesion Properties. J. Polym. Res. 2014, 21, 347. DOI: 10.1007/s10965-013-0347-6.
  • Mofokeng, J. P.; Luyt, A. S.; Tábi, T.; Kovács, J. Comparison of Injection Moulded, Natural Fibre-Reinforced Composites with PP and PLA as Matrices. J. Thermoplast. Compos. Mater. 2012, 25, 927–948. DOI: 10.1177/0892705711423291.
  • Espinoza, S. M.; Patil, H. I.; San MartinMartinez, E.; Casañas Pimentel, R.; Ige, P. P. Poly-ε-Caprolactone (PCL), a Promising Polymer for Pharmaceutical and Biomedical Applications: Focus on Nanomedicine in Cancer. Int. J. Polymer. Mater. Polymer. Biomater. 2020, 69, 85–126. DOI: 10.1080/00914037.2018.1539990.
  • Jaiswal, A. K.; Chhabra, H.; Soni, V. P.; Bellare, J. R. Enhanced Mechanical Strength and Biocompatibility of Electrospun Polycaprolactone-Gelatin Scaffold with Surface Deposited Nano-Hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2376–2385. DOI: 10.1016/j.msec.2013.02.003.
  • Shitole, A. A.; Raut, P. W.; Sharma, N.; Giram, P.; Khandwekar, A. P.; Garnaik, B. Electrospun Polycaprolactone/Hydroxyapatite/ZnO Nanofibers as Potential Biomaterials for Bone Tissue Regeneration. J. Mater. Sci. Mater. Med. 2019, 30, 51. DOI: 10.1007/s10856-019-6255-5.
  • Borghesi, D. C.; Molina, M. F.; Guerra, M. A.; Campos, M. G. N. Biodegradation Study of a Novel Poly-Caprolactone-Coffee Husk Composite Film. Mat. Res. 2016, 19, 752–758. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400752&lng=en&tlng=en. DOI: 10.1590/1980-5373-MR-2015-0586.
  • Carmona, V. B.; Corrêa, A. C.; Marconcini, J. M.; Mattoso, L. H. C. Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). J. Polym. Environ. 2015, 23, 83–89. DOI: 10.1007/s10924-014-0666-7.
  • Kauschke, E.; Rumpel, E.; Fanghänel, J.; Bayerlein, T.; Gedrange, T.; Proff, P. The in Vitro Viability and Growth of Fibroblasts Cultured in the Presence of Different Bone Grafting Materials (NanoBone and Straumann Bone Ceramic). Folia Morphol (Warsz) 2006, 65, 37–42. http://www.ncbi.nlm.nih.gov/pubmed/16783734.
  • Saniei, H.; Mousavi, S. Surface Modification of PLA 3D-Printed Implants by Electrospinning with Enhanced Bioactivity and Cell Affinity. Polymer 2020, 196, 122467. https://linkinghub.elsevier.com/retrieve/pii/S0032386120303025. DOI: 10.1016/j.polymer.2020.122467.
  • Zizzari, V.; Borelli, B.; de Colli, M.; Tumedei, M.; di Iorio, D.; Zara, S.; Sorrentino, R.; Cataldi, A.; Gherlone, E. F.; Zarone, F.; et al. SEM Evaluation of Human Gingival Fibroblasts Growth Onto CAD/CAM Zirconia and Veneering Ceramic for Zirconia. Ann Stomatol (Roma). 2014, 4(3-4), 244–9.
  • Baldwin, M. J.; Mimpen, J. Y.; Cribbs, A. P.; Stace, E.; Philpott, M.; Dakin, S. G.; Carr, A. J.; Snelling, S. J. B. Electrospun Scaffold Micro-Architecture Induces an Activated Transcriptional Phenotype within Tendon Fibroblasts. Front. Bioeng. Biotechnol. 2021, 9, 795748. DOI: 10.3389/fbioe.2021.795748.
  • Sell, S. A.; Francis, M. P.; Garg, K.; McClure, M. J.; Simpson, D. G.; Bowlin, G. L. Cross-Linking Methods of Electrospun Fibrinogen Scaffolds for Tissue Engineering Applications. In Biomedical Materials. Vol. 3.; Institute of Physics Publishing: Bristol, 2008. DOI: 10.1088/1748-6041/3/4/045001.
  • Aarvold, A.; Smith, J. O.; Tayton, E. R.; Lanham, S. A.; Chaudhuri, J. B.; Turner, I. G.; Oreffo, R. O. C. The Effect of Porosity of a Biphasic Ceramic Scaffold on Human Skeletal Stem Cell Growth and Differentiation in Vivo. J Biomed. Mater. Res. A 2013, 101, 3431–3437. DOI: 10.1002/jbm.a.34646.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.