124
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Design, optimization & characterization of niosomal & polymeric nanoparticles

, , , &
Received 21 Jul 2023, Accepted 26 Oct 2023, Published online: 03 Nov 2023

References

  • Munir, M.; Zaman, M.; Waqar, M. A.; Hameed, H.; Riaz, T. A Comprehensive Review on Transethosomes as a Novel Vesicular Approach for Drug Delivery through Transdermal Route. J. Liposome Res. 2023, 30, 1–16. DOI: 10.1080/08982104.2023.2221354.
  • Masjedi, M.; Montahaei, T. An Illustrated Review on Nonionic Surfactant Vesicles (Niosomes) as an Approach in Modern Drug Delivery: Fabrication, Characterization, Pharmaceutical, and Cosmetic Applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102234. DOI: 10.1016/j.jddst.2020.102234.
  • Yasamineh, S.; Yasamineh, P.; Ghafouri Kalajahi, H.; Gholizadeh, O.; Yekanipour, Z.; Afkhami, H.; Eslami, M.; Hossein Kheirkhah, A.; Taghizadeh, M.; Yazdani, Y.; et al. A State-of-the-Art Review on the Recent Advances of Niosomes as a Targeted Drug Delivery System. Int. J. Pharm. 2022, 624, 121878. DOI: 10.1016/j.ijpharm.2022.121878.
  • Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent Advances in Non-Ionic Surfactant Vesicles (Niosomes): Fabrication, Characterization, Pharmaceutical and Cosmetic Applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. DOI: 10.1016/j.ejpb.2019.08.015.
  • Kauslya, A.; Borawake, P. D.; Shinde, J. V.; Chavan, R. S. Niosomes: A Novel Carrier Drug Delivery System. J. Drug Deliv. Ther. 2021, 11, 162–170. DOI: 10.22270/jddt.v11i1.4479.
  • De Jong, W. H.; Borm, P. J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomedicine. 2008, 3, 133–149. DOI: 10.2147/ijn.s596.
  • Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A.; et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. DOI: 10.3389/fmolb.2020.00193.
  • Wilczewska, A. Z.; Niemirowicz, K.; Markiewicz, K. H.; Car, H. Nanoparticles as Drug Delivery Systems. Pharmacol. Rep. 2012, 64, 1020–1037. DOI: 10.1016/s1734-1140(12)70901-5.
  • Liu, R.; Luo, C.; Pang, Z.; Zhang, J.; Ruan, S.; Wu, M.; Wang, L.; Sun, T.; Li, N.; Han, L.; et al. Advances of Nanoparticles as Drug Delivery Systems for Disease Diagnosis and Treatment. Chin. Chem. Lett. 2023, 34, 107518. DOI: 10.1016/j.cclet.2022.05.032.
  • Swetledge, S.; Jung, J. P.; Carter, R.; Sabliov, C. Distribution of Polymeric Nanoparticles in the Eye: Implications in Ocular Disease Therapy. J. Nanobiotechnology. 2021, 19, 10. DOI: 10.1186/s12951-020-00745-9.
  • Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnology. 2018, 16, 71. DOI: 10.1186/s12951-018-0392-8.
  • Harish, V.; Tewari, D.; Gaur, M.; Yadav, A. B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials (Basel) 2022, 12, 457. DOI: 10.3390/nano12030457.
  • Nagarwal, R. C.; Kant, S.; Singh, P. N.; Maiti, P.; Pandit, J. K. Polymeric Nanoparticulate System: A Potential Approach for Ocular Drug Delivery. J. Control. Release. 2009, 136, 2–13. DOI: 10.1016/j.jconrel.2008.12.018.
  • Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021, 26, 5905. DOI: 10.3390/molecules26195905.
  • Waqar, M. A.; Zaman, M.; Hameed, H.; Jamshaid, M.; Irfan, A.; Shazly, G. A.; Paiva-Santos, A. C.; Bin Jardan, Y. A. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS Omega. 2023, 8, 38191–38203. DOI: 10.1021/acsomega.3c04444.
  • Manosroi, A.; Wongtrakul, P.; Manosroi, J.; Sakai, H.; Sugawara, F.; Yuasa, M.; Abe, M. Characterization of Vesicles Prepared with Various Non-Ionic Surfactants Mixed with Cholesterol. Colloids Surf, B. 2003, 30, 129–138. DOI: 10.1016/S0927-7765(03)00080-8.
  • Holmes, L.; LaHurd, A.; Wasson, E.; McClarin, L.; Dabney, K. Racial and Ethnic Heterogeneity in the Association between Total Cholesterol and Pediatric Obesity. Int. J. Environ. Res. Public Health. 2015, 13, ijerph13010019. DOI: 10.3390/ijerph13010019.
  • Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; et al. Recent Progress in Drug Delivery. Acta Pharm. Sin. B. 2019, 9, 1145–1162. DOI: 10.1016/j.apsb.2019.08.003.
  • Gessner, I. Optimizing Nanoparticle Design and Surface Modification Toward Clinical Translation. MRS Bull. 2021, 46, 643–649. DOI: 10.1557/s43577-021-00132-1.
  • Mazayen, Z. M.; Ghoneim, A. M.; Elbatanony, R. S.; Basalious, E. B.; Bendas, E. R. Pharmaceutical Nanotechnology: From the Bench to the Market. Futur. J. Pharm. Sci. 2022, 8, 12. DOI: 10.1186/s43094-022-00400-0.
  • Singh, A. P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted Therapy in Chronic Diseases Using Nanomaterial-Based Drug Delivery Vehicles. Signal Transduct. Target. Ther. 2019, 4, 33. DOI: 10.1038/s41392-019-0068-3.
  • Biswal, S.; Murthy, P. N.; Sahu, J.; Sahoo, P.; F, A. Vesicles of Non-Ionic Surfactants (Niosomes) and Drug Delivery Potential. PCI Approved-IJPSN. 2008, 1, 1–8. DOI: 10.37285/ijpsn.2008.1.1.1.
  • Prabhakar, C.; Krishna, K. A Review on Polymeric Nanoparticles. Res. J. Pharm. Technol. 2011, 4, 496–498.
  • Ag Seleci, D.; Seleci, M.; Walter, J.-G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 1–13. DOI: 10.1155/2016/7372306.
  • García-Manrique, P.; Matos, M.; Gutiérrez, G.; Pazos, C.; Blanco-López, M. C. Therapeutic Biomaterials Based on Extracellular Vesicles: classification of Bio-Engineering and Mimetic Preparation Routes. J. Extracell. Vesicles. 2018, 7, 1422676. DOI: 10.1080/20013078.2017.1422676.
  • Aparajay, P.; Dev, A. Functionalized Niosomes as a Smart Delivery Device in Cancer and Fungal Infection. Eur. J. Pharm. Sci. 2022, 168, 106052. DOI: 10.1016/j.ejps.2021.106052.
  • Madkour, L. H. Chapter 13 – Nanoparticle and Polymeric Nanoparticle-Based Targeted Drug Delivery Systems. In Nucleic Acids as Gene Anticancer Drug Delivery Therapy; Madkour, L. H., Ed.; Academic Press, 2019; pp 191–240. DOI: 10.1016/j.addr.2015.09.012
  • Khalil, I. R.; Burns, A. T. H.; Radecka, I.; Kowalczuk, M.; Khalaf, T.; Adamus, G.; Johnston, B.; Khechara, M. P. Bacterial-Derived Polymer Poly-γ-Glutamic Acid (γ-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications. Int. J. Mol. Sci. 2017, 18, 313. DOI: 10.3390/ijms18020313.
  • Thakur, M.; et al. Chapter 9 – Modern Applications and Current Status of Green Nanotechnology in Environmental Industry. In Green Functionalized Nanomaterials for Environmental Applications; Shanker, U., Hussain, C. M., Rani, M. Eds.; Elsevier, 2022; pp 259–281. DOI: 10.2147/IJN.S200254.
  • Li, X.; Sun, Q.; Li, Q.; Kawazoe, N.; Chen, G. Functional Hydrogels with Tunable Structures and Properties for Tissue Engineering Applications. Front. Chem. 2018, 6, 499. DOI: 10.3389/fchem.2018.00499.
  • Singh, N.; Qutub, S.; Khashab, N. M. Biocompatibility and Biodegradability of Metal Organic Frameworks for Biomedical Applications. J. Mater. Chem. B. 2021, 9, 5925–5934. DOI: 10.1039/d1tb01044a.
  • Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell. 2020, 181, 151–167. DOI: 10.1016/j.cell.2020.02.001.
  • Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials. 2020, 10, 1403. DOI: 10.3390/nano10071403.
  • Pulingam, T.; Foroozandeh, P.; Chuah, J.-A.; Sudesh, K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. Nanomaterials. 2022, 12, 576. DOI: 10.3390/nano12030576.
  • Abdellatif, A. A. H.; Alsowinea, A. F. Approved and Marketed Nanoparticles for Disease Targeting and Applications in COVID-19. Nanotechnology Reviews. 2021, 10, 1941–1977. DOI: 10.1515/ntrev-2021-0115.
  • Trucillo, P. Drug Carriers: Classification, Administration, Release Profiles, and Industrial Approach. Processes. 2021, 9, 470. DOI: 10.3390/pr9030470.
  • Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S. G.; Krishnaswamy, S.; Essa, M. M.; Lin, F.-H.; Qoronfleh, M. W. Therapeutic Efficacy of Nanoparticles and Routes of Administration. Biomater. Res. 2019, 23, 20. DOI: 10.1186/s40824-019-0166-x.
  • Hawthorne, D.; Pannala, A.; Sandeman, S.; Lloyd, A. Sustained and Targeted Delivery of Hydrophilic Drug Compounds: A Review of Existing and Novel Technologies from Bench to Bedside. J. Drug Delivery Sci. Technol. 2022, 78, 103936. DOI: 10.1016/j.jddst.2022.103936.
  • Chis, A. A.; Dobrea, C.; Morgovan, C.; Arseniu, A. M.; Rus, L. L.; Butuca, A.; Juncan, A. M.; Totan, M.; Vonica-Tincu, A. L.; Cormos, G.; et al. Applications and Limitations of Dendrimers in Biomedicine. Molecules. 2020, 25, 3982. DOI: 10.3390/molecules25173982.
  • Salimi, A.; Sharif Makhmal Zadeh, B.; Kazemi, M. Preparation and Optimization of Polymeric Micelles as an Oral Drug Delivery System for Deferoxamine Mesylate: In Vitro: And: ex Vivo: studies. Res. Pharm. Sci. 2019, 14, 293–307. DOI: 10.4103/1735-5362.263554.
  • Su, S.; M.k, P. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics. 2020, 12, 837. DOI: 10.3390/pharmaceutics12090837.
  • Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics. 2019, 11, 55. DOI: 10.3390/pharmaceutics11020055.
  • Poellmann, M. J.; Gajbhiye, V.; Gajbhiye, K. R.; Hong, S. Chapter 5 – Dendrimers and Dendritic Nanoparticles for Stimuli-Responsive Nanomedicine. In Stimuli-Responsive Nanocarriers; Academic Press, 2022; pp 119–131. DOI: 10.1039/c1cs15242d
  • Guzmán, C.; et al. Nanoparticles as Drug Delivery Systems. In 21st Century Nanostructured Materials; Phuong, V. P., Ed.; IntechOpen: Rijeka, 2021; pp Ch. 11.
  • Weng, J.; Tong, H. H. Y.; Chow, S. F. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. Pharmaceutics. 2020, 12, 732. DOI: 10.3390/pharmaceutics12080732.
  • de Barros, C.; Portugal, I.; Batain, F.; Portella, D.; Severino, P.; Cardoso, J.; Arcuri, P.; Chaud, M.; Alves, T. Formulation, Design and Strategies for Efficient Nanotechnology-Based Nasal Delivery Systems. RPS Pharm. Pharmacol. Rep. 2022, 1, rqac003. DOI: 10.1093/rpsppr/rqac003.
  • Singh, R.; Lillard, J. W. Jr., Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Choi, S. W.; Kim, W. S.; Kim, J. H. Surface Modification of Functional Nanoparticles for Controlled Drug Delivery. J. Dispersion Sci. Technol. 2003, 24, 475–487. DOI: 10.1081/DIS-120021803.
  • G, D.B. and V.L. P. Recent Advances of Non-Ionic Surfactant-Based Nano-Vesicles (Niosomes and Proniosomes): a Brief Review of These in Enhancing Transdermal Delivery of Drug. Future J. Pharmaceut. Sci. 2020, 6, 100. DOI: 10.1186/s43094-020-00117-y.
  • Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Adv. Pharmacol. Sci. 2018, 2018, 6847971–6847915. DOI: 10.1155/2018/6847971.
  • Vigneshwari, R.; Dash, S. Comparative Interaction of Flavonoid Quercetin with Different Tween Surfactants. ACS Food Sci. Technol. 2023, 3, 969–980. DOI: 10.1021/acsfoodscitech.3c00105.
  • Sahoo, R. K.; Biswas, N.; Guha, A.; Sahoo, N.; Kuotsu, K. Nonionic Surfactant Vesicles in Ocular Delivery: innovative Approaches and Perspectives. Biomed Res. Int. 2014, 2014, 263604–263612. DOI: 10.1155/2014/263604.
  • Kamali, H.; Nosrati, R.; Malaekeh-Nikouei, B. Chapter 1 – Nanostructures and Their Associated Challenges for Drug Delivery. In Hybrid Nanomaterials for Drug Delivery; Kesharwani, P., Jain, N. K., Eds.; Woodhead Publishing, 2022; pp 1–26. DOI: 10.3390/molecules26195905.
  • Daramola, O. O.; Adara, P.; Adewuyi, B. O.; Sadiku, E. R.; Kupolati, W. K. 3 - Polymer Nanoparticles (Nanomedicine) for Therapeutic Applications. In Polymeric Biomaterials for Healthcare Applications. Woodhead Publishing, 202; pp 71–123. DOI: 10.1002/jcp.29126.
  • Makadia, H. K.; Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011, 3, 1377–1397. DOI: 10.3390/polym3031377.
  • Grossen, P.; Witzigmann, D.; Sieber, S.; Huwyler, J. PEG-PCL-Based Nanomedicines: A Biodegradable Drug Delivery System and Its Application. J. Controlled Release 2017, 260, 46–60. DOI: 10.1016/j.jconrel.2017.05.028.
  • Sodagar Taleghani, A.; Ebrahimnejad, P.; Heidarinasab, A.; Akbarzadeh, A. Sugar-Conjugated Dendritic Mesoporous Silica Nanoparticles as pH-Responsive Nanocarriers for Tumor Targeting and Controlled Release of Deferasirox. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 358–368. DOI: 10.1016/j.msec.2018.12.138.
  • Nitta, S. K.; Numata, K. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. Int. J. Mol. Sci. 2013, 14, 1629–1654. DOI: 10.3390/ijms14011629.
  • Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers. 2020, 12, 1114. DOI: 10.3390/polym12051114.
  • Munir, M.; Zaman, M.; Waqar, M. A.; Khan, M. A.; Alvi, M. N. Solid Lipid Nanoparticles: A Versatile Approach for Controlled Release and Targeted Drug Delivery. J. Liposome Res. 2023, 15, 1–14. DOI: 10.1080/08982104.2023.2268711.
  • Bruschi, M. L. Drug delivery systems. Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing, 2015; pp 87–194. DOI: 10.1080/10717544.2022.2048130
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arabian J. Chem. 2019, 12, 908–931. DOI: 10.1016/j.arabjc.2017.05.011.
  • Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. DOI: 10.1186/s12929-019-0592-z.
  • Nagati, V.; Tenugu, S.; Pasupulati, A. K. Chapter 4 - Stability of Therapeutic Nano-Drugs during Storage and Transportation as Well as after Ingestion in the Human Body. In Advances in Nanotechnology-Based Drug Delivery Systems; Das Talukdar, A., Dey Sarker, S., Patra, J. K., Eds.; Elsevier, 2022; pp 83–102. DOI: 10.1016/j.jconrel.2017.02.015
  • Kammari, R.; Das, N. G.; Das, S. K. Chapter 6 – Nanoparticulate Systems for Therapeutic and Diagnostic Applications. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Mitra, A. K., Cholkar, K., Mandal, A., Eds.; Elsevier: Boston, 2017; pp 105–144.
  • Essa, D.; Choonara, Y. E.; Kondiah, P. P. D.; Pillay, V. Comparative Nanofabrication of PLGA-Chitosan-PEG Systems Employing Microfluidics and Emulsification Solvent Evaporation Techniques. Polymers 2020, 12, 1882. DOI: 10.3390/polym12091882.
  • Martínez-Muñoz, O.; Ospina-Giraldo, L.; Mora-Huertas, C.-E. Nanoprecipitation: Applications for Entrapping Active Molecules of Interest in Pharmaceutics. Nano-and Microencapsulation-Techniques and Applications. 2020; pp 101-117. DOI: 10.1039/c7tb02233f
  • Kaur, G.; et al. Chapter 4 - Herbal Bioactives in Transdermal Drug Delivery System. In Herbal Bioactive-Based Drug Delivery Systems; Bakshi, I. S., et al., Eds.; Academic Press, 2022; pp 93–110. DOI: 10.1080/10717544.2018.1431980
  • Gökçe, E. H.; et al. Chapter 14 - Nanocarriers in Cosmetology. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A. M., Ed.; William Andrew Publishing, 2016; pp 363–393. DOI: 10.3390/ijms232415980.
  • Witika, B. A.; Bassey, K. E.; Demana, P. H.; Siwe-Noundou, X.; Poka, M. S. Current Advances in Specialised Niosomal Drug Delivery: Manufacture, Characterization and Drug Delivery Applications. Int. J. Mol. Sci. 2022, 23, 9668. DOI: 10.3390/ijms23179668.
  • Pandey, R.; Bhairam, M.; Shukla, S. S.; Gidwani, B. Colloidal and Vesicular Delivery System for Herbal Bioactive Constituents. Daru. 2021, 29, 415–438. DOI: 10.1007/s40199-021-00403-x.
  • Tenchov, R.; Bird, R.; Curtze, A. E.; Zhou, Q. Lipid Nanoparticles─from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano. 2021, 15, 16982–17015. DOI: 10.1021/acsnano.1c04996.
  • Owodeha-Ashaka, K.; Ilomuanya, M. O.; Iyire, A. Evaluation of Sonication on Stability-Indicating Properties of Optimized Pilocarpine Hydrochloride-Loaded Niosomes in Ocular Drug Delivery. Prog. Biomater. 2021, 10, 207–220. DOI: 10.1007/s40204-021-00164-5.
  • Guo, P.; Huang, J.; Zhao, Y.; Martin, C. R.; Zare, R. N.; Moses, M. A. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. Small. 2018, 14, e1703493. DOI: 10.1002/smll.201703493.
  • Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. DOI: 10.1038/s41573-020-0090-8.
  • Gurav, M. V.; Bhise, S. B. Chapter 10 - Targeting Drugs to Cell and Organ Using Nanoparticles. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A. M., Ed. William Andrew Publishing, 2018; pp 383–409. DOI: 10.1073/pnas.2207841119
  • Sun, H.; Zu, Y. Aptamers and Their Applications in Nanomedicine. Small. 2015, 11, 2352–2364. DOI: 10.1002/smll.201403073.
  • Kumar, Y.; Sinha, A. S. K.; Nigam, K. D. P.; Dwivedi, D.; Sangwai, J. S. Functionalized Nanoparticles: Tailoring Properties through Surface Energetics and Coordination Chemistry for Advanced Biomedical Applications. Nanoscale. 2023, 15, 6075–6104. DOI: 10.1039/d2nr07163k.
  • Yi, W.; Xiao, P.; Liu, X.; Zhao, Z.; Sun, X.; Wang, J.; Zhou, L.; Wang, G.; Cao, H.; Wang, D.; et al. Recent Advances in Developing Active Targeting and Multi-Functional Drug Delivery Systems via Bioorthogonal Chemistry. Signal Transduct. Target. Ther. 2022, 7, 386. DOI: 10.1038/s41392-022-01250-1.
  • Osman, N.; Devnarain, N.; Omolo, C. A.; Fasiku, V.; Jaglal, Y.; Govender, T. Surface Modification of Nano-Drug Delivery Systems for Enhancing Antibiotic Delivery and Activity. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1758. DOI: 10.1002/wnan.1758.
  • Luks, V. L.; Mandl, H.; DiRito, J.; Barone, C.; Freedman-Weiss, M. R.; Ricciardi, A. S.; Tietjen, G. G.; Egan, M. E.; Saltzman, W. M.; Stitelman, D. H.; et al. Surface Conjugation of Antibodies Improves Nanoparticle Uptake in Bronchial Epithelial Cells. PLOS One. 2022, 17, e0266218. DOI: 10.1371/journal.pone.0266218.
  • Bao, G.; Mitragotri, S.; Tong, S. Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annu. Rev. Biomed. Eng. 2013, 15, 253–282. DOI: 10.1146/annurev-bioeng-071812-152409.
  • Refaat, A.; Yap, M. L.; Pietersz, G.; Walsh, A. P. G.; Zeller, J.; del Rosal, B.; Wang, X.; Peter, K. In Vivo Fluorescence Imaging: success in Preclinical Imaging Paves the Way for Clinical Applications. J. Nanobiotechnol. 2022, 20, 450. DOI: 10.1186/s12951-022-01648-7.
  • Wegner, K. D.; Hildebrandt, N. Quantum Dots: bright and Versatile in Vitro and in Vivo Fluorescence Imaging Biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834. DOI: 10.1039/c4cs00532e.
  • Gulati, S.; Vijayan, S.; Kumar, S.; Agarwal, V.; Harikumar, B.; Varma, R. S.; Mansi. Magnetic Nanocarriers Adorned on Graphene: promising Contrast-Enhancing Agents with State-of-the-Art Performance in Magnetic Resonance Imaging (MRI) and Theranostics. Mater. Adv. 2022, 3(7): 2971–2989. DOI: 10.1039/D1MA01071A.
  • Lee, S. H.; Soh, H.; Chung, J. H.; Cho, E. H.; Lee, S. J.; Ju, J.-M.; Sheen, J. H.; Kim, H.; Oh, S. J.; Lee, S.-J.; et al. Feasibility of Real-Time in Vivo 89Zr-DFO-Labeled CAR T-Cell Trafficking Using PET Imaging. PLoS One. 2020, 15, e0223814. DOI: 10.1371/journal.pone.0223814.
  • Lucero-Acuña, A.; Gutiérrez-Valenzuela, C. A.; Esquivel, R.; Guzmán-Zamudio, R. Mathematical Modeling and Parametrical Analysis of the Temperature Dependency of Control Drug Release from Biodegradable Nanoparticles. RSC Adv. 2019, 9, 8728–8739. DOI: 10.1039/c9ra00821g.
  • Xu, Y.; Kim, C.-S.; Saylor, D. M.; Koo, D. Polymer Degradation and Drug Delivery in PLGA-Based Drug-Polymer Applications: A Review of Experiments and Theories. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1692–1716. DOI: 10.1002/jbm.b.33648.
  • Ridolfo, R.; Tavakoli, S.; Junnuthula, V.; Williams, D. S.; Urtti, A.; van Hest, J. C. M. Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium. Biomacromolecules. 2021, 22, 126–133. DOI: 10.1021/acs.biomac.0c00726.
  • Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug Release Study of the Chitosan-Based Nanoparticles. Heliyon. 2022, 8, e08674. DOI: 10.1016/j.heliyon.2021.e08674.
  • AlSawaftah, N. M.; Awad, N. S.; Pitt, W. G.; Husseini, G. A. pH-Responsive Nanocarriers in Cancer Therapy. Polymers. 2022, 14, 14–25. DOI: 10.3390/polym14050936.
  • Hu, Q.; Katti, P. S.; Gu, Z. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery. Nanoscale. 2014, 6, 12273–12286. DOI: 10.1039/c4nr04249b.
  • Ray, P.; Haideri, N.; Haque, I.; Mohammed, O.; Chakraborty, S.; Banerjee, S.; Quadir, M.; Brinker, A.; Banerjee, S. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J. Immunol. Sci. 2021, 5, 19–33. DOI: 10.29245/2578-3009/2021/1.1206.
  • Tao, X.; Jin, S.; Wu, D.; Ling, K.; Yuan, L.; Lin, P.; Xie, Y.; Yang, X. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles. Nanomaterials. 2015, 6, 15–31. DOI: 10.3390/nano6010002.
  • Priya, S.; Desai, V. M.; Singhvi, G. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery. ACS Omega. 2023, 8, 74–86. DOI: 10.1021/acsomega.2c05976.
  • Gupta, S.; Kesarla, R.; Omri, A. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed Drugs with Special Emphasis on Self-Emulsifying Systems. ISRN Pharm. 2013, 2013, 848043–848016. DOI: 10.1155/2013/848043.
  • Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R. J.; Zhao, C.-X. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed. Res. 2022, 2, 2100109. DOI: 10.1002/anbr.202100109.
  • Rust, T.; Jung, D.; Langer, K.; Kuckling, D. Stimuli Accelerated Polymeric Drug Delivery Systems. Polym. Int. 2023, 72, 5–19. DOI: 10.1002/pi.6474.
  • Sajja, H. K.; East, M. P.; Mao, H.; Wang, Y. A.; Nie, S.; Yang, L. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Noninvasive Imaging of Therapeutic Effect. Curr. Drug Discov. Technol. 2009, 6, 43–51. DOI: 10.2174/157016309787581066.
  • Cerqueira-Coutinho, C.; Dos Santos, E. P.; Mansur, C. R. Niosomes as Nano-Delivery Systems in the Pharmaceutical Field. Crit. Rev. Ther. Drug Carrier Syst. 2016, 33, 195–212. DOI: 10.1615/CritRevTherDrugCarrierSyst.2016016167.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Okoro, U.; John, D. N. O.; Anthony, A. A. Nanoparticles for Dermal and Transdermal Drug Delivery. In Application of Nanotechnology in Drug Delivery; Ali Demir, S., Ed. IntechOpen: Rijeka, 2014. pp Ch. 6.
  • Natassa, P.; Costas, D. The Release Kinetics of Melatonin from Innovative Dosage Forms: The Role of the Fractal Geometry of the “Vehicle”. In Melatonin; Marilena, V., Ed.; IntechOpen: Rijeka, 2020; pp Ch. 6.
  • Date, A. A.; Hanes, J.; Ensign, L. M. Nanoparticles for Oral Delivery: Design, Evaluation and State-of-the-Art. J. Control. Release. 2016, 240, 504–526. DOI: 10.1016/j.jconrel.2016.06.016.
  • Hong, S.; Choi, D. W.; Kim, H. N.; Park, C. G.; Lee, W.; Park, H. H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics. 2020, 12, 604. DOI: 10.3390/pharmaceutics12070604.
  • Yusuf, A.; Almotairy, A. R. Z.; Henidi, H.; Alshehri, O. Y.; Aldughaim, M. S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers. 2023, 15, 1596. DOI: 10.3390/polym15071596.
  • Manaia, E. B.; et al. Physicochemical Characterization of Drug Nanocarriers. Int. J. Nanomed. 2017, 12, 4991–5011. DOI: 10.2147/IJN.S133832.
  • Takahashi, K.; Kato, H.; Saito, T.; Matsuyama, S.; Kinugasa, S. Precise Measurement of the Size of Nanoparticles by Dynamic Light Scattering with Uncertainty Analysis. Part. Part. Syst. Charact. 2008, 25, 31–38. DOI: 10.1002/ppsc.200700015.
  • Lin, P.-C.; Lin, S.; Wang, P. C.; Sridhar, R. Techniques for Physicochemical Characterization of Nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. DOI: 10.1016/j.biotechadv.2013.11.006.
  • Di, J.; Gao, X.; Du, Y.; Zhang, H.; Gao, J.; Zheng, A. Size, Shape, Charge and “Stealthy” Surface: Carrier Properties Affect the Drug Circulation Time in Vivo. Asian J. Pharm. Sci. 2021, 16, 444–458. DOI: 10.1016/j.ajps.2020.07.005.
  • Shilakari Asthana, G.; Sharma, P. K.; Asthana, A. In Vitro and in Vivo Evaluation of Niosomal Formulation for Controlled Delivery of Clarithromycin. Scientifica. 2016, 2016, 6492953. DOI: 10.1155/2016/6492953.
  • Han, H. S.; Koo, S. Y.; Choi, K. Y. Emerging Nanoformulation Strategies for Phytocompounds and Applications from Drug Delivery to Phototherapy to Imaging. Bioact. Mater. 2022, 14, 182–205. DOI: 10.1016/j.bioactmat.2021.11.027.
  • Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the Folate Receptor for Active Targeting of Cancer Nanotherapeutics. Nano Rev. 2012, 3, 45–56.
  • Jakubek, Z. J.; Chen, S.; Zaifman, J.; Tam, Y. Y. C.; Zou, S. Lipid Nanoparticle and Liposome Reference Materials: Assessment of Size Homogeneity and Long-Term −70 °C and 4 °C Storage Stability. Langmuir. 2023, 39, 2509–2519. DOI: 10.1021/acs.langmuir.2c02657.
  • Zarepour, A.; Egil, A. C.; Cokol Cakmak, M.; Esmaeili Rad, M.; Cetin, Y.; Aydinlik, S.; Ozaydin Ince, G.; Zarrabi, A. Fabrication of a Dual-Drug-Loaded Smart Niosome-g-Chitosan Polymeric Platform for Lung Cancer Treatment. Polymers. 2023, 15, 298. DOI: 10.3390/polym15020298.
  • Chen, G.; Wang, W. Role of Freeze Drying in Nanotechnology. Dry. Technol. 2007, 25, 29–35. DOI: 10.1080/07373930601161179.
  • Souto, E. B.; Silva, G. F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics. 2020, 12, 146. DOI: 10.3390/pharmaceutics12020146.
  • Chandrakala, V.; Aruna, V.; Angajala, G. Review on Metal Nanoparticles as Nanocarriers: current Challenges and Perspectives in Drug Delivery Systems. Emergent Mater. 2022, 5, 1593–1615. DOI: 10.1007/s42247-021-00335-x.
  • Alghamdi, M. A.; et al. The Promise of Nanotechnology in Personalized Medicine. J. Pers. Med. 2022, 12, 9–18.
  • Shrestha, B.; Wang, L.; Brey, E. M.; Uribe, G. R.; Tang, L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics. 2021, 13, 853. DOI: 10.3390/pharmaceutics13060853.
  • Benko, A.; Medina-Cruz, D.; Vernet-Crua, A.; O'Connell, C. P.; Świętek, M.; Barabadi, H.; Saravanan, M.; Webster, T. J. Nanocarrier Drug Resistant Tumor Interactions: novel Approaches to Fight Drug Resistance in Cancer. Cancer Drug Resist. 2021, 4, 264–297. DOI: 10.20517/cdr.2020.81.
  • Colson, Y.; Grinstaff, M. Biologically Responsive Polymeric Nanoparticles for Drug Delivery. Adv. Mater. 2012, 24, 3878–3886. DOI: 10.1002/adma.201200420.
  • Xiao, Y.; Shi, K.; Qu, Y.; Chu, B.; Qian, Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol. Ther. Methods Clin. Dev. 2019, 12, 1–18. DOI: 10.1016/j.omtm.2018.09.002.
  • Rizvi, S. A. A.; Saleh, A. M. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm. J. 2018, 26, 64–70. DOI: 10.1016/j.jsps.2017.10.012.
  • Rhaman, M. M.; Islam, M. R.; Akash, S.; Mim, M.; Noor Alam, M.; Nepovimova, E.; Valis, M.; Kuca, K.; Sharma, R. Exploring the Role of Nanomedicines for the Therapeutic Approach of Central Nervous System Dysfunction: At a Glance. Front. Cell Dev. Biol. 2022, 10, 989471. DOI: 10.3389/fcell.2022.989471.
  • Zhao, M.; Lei, C.; Yang, Y.; Bu, X.; Ma, H.; Gong, H.; Liu, J.; Fang, X.; Hu, Z.; Fang, Q.; et al. Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by up-Regulation of P-gp. PLoS One. 2015, 10, e0131429. DOI: 10.1371/journal.pone.0131429.
  • Tchang, B. G.; Shukla, A. P. Metreleptin (Myalept): A Leptin Analog for Generalized Lipodystrophy. Med. Lett. Drugs Ther. 2015, 57, 13–14.
  • Chandu, V. P., Arunachalam, A., Jeganath, S., Yamini, K., Tharangini, K., & Chaitanya, G. Niosomes: A Novel Drug Delivery System. Int. J. Novel Trends Pharmaceut. Sci. 2012, 2, 25–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.