52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of the glycodendrimer macromolecule based on porphyrin as a targeted drug delivery system

, , , , &
Pages 1337-1352 | Received 13 Aug 2023, Accepted 27 Nov 2023, Published online: 11 Dec 2023

References

  • Fard, N. T.; Panahi, H. A.; Banadaki, M. D.; Moniri, E.; Soltani, E. R. Surface Modification of Graphene Oxide by Functionalized Dendritic Polyesters Based on Phthalic Acid and Pentaerythritol as a Novel Nanoplatform for Sustained Drug Delivery: Statistical Optimization Using Response Surface Methodology and Release Kinetics Modelling. Mater. Today Commun. 2023, 36, 106476. DOI: 10.1016/j.mtcomm.2023.106476.
  • Medina, S. H.; El-Sayed, M. E. Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chem. Rev. 2009, 109, 3141–3157. DOI: 10.1021/cr900174j.
  • Klajnert, B.; Bryszewska, M. Dendrimers: Properties and Applications. Acta Biochim. Pol. 2001, 48, 199–208. DOI: 10.18388/abp.2001_5127.
  • Nanjwade, B. K.; Bechra, H. M.; Derkar, G. K.; Manvi, F. V.; Nanjwade, V. K. Dendrimers: Emerging Polymers for Drug-Delivery Systems. Eur. J. Pharm. Sci. 2009, 38, 185–196. DOI: 10.1016/j.ejps.2009.07.008.
  • Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012, 2, 2–11. DOI: 10.4103/2230-973X.96920.
  • Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. J. Control. Release 2001, 70, 1–20. DOI: 10.1016/S0168-3659(00)00339-4.
  • Kumar, A. S. P.; Latha, S.; Selvamani, P. Dendrimers: Multifunctional Drug Delivery Carriers. Int. J. Technol. Res. Engine 2015, 2, 1569–1575.
  • Mathiowitz, E. Drug Delivery: Engineering Principles for Drug Therapy. 2002. DOI: 10.1086/374532.
  • Liu, H.; Su, Y. Y.; Jiang, X. C.; Gao, J. Q. Cell Membrane-Coated Nanoparticles: A Novel Multifunctional Biomimetic Drug Delivery System. Drug Deliv. Transl. Res. 2023, 13, 716–737. DOI: 10.1007/s13346-022-01252-0.
  • Zhan, C.; Li, C.; Wei, X.; Lu, W.; Lu, W. Toxins and Derivatives in Molecular Pharmaceutics: Drug Delivery and Targeted Therapy. Adv. Drug Deliv. Rev. 2015, 90, 101–118. DOI: 10.1016/j.addr.2015.04.025.
  • Song, C. X.; Labhasetwar, V.; Murphy, H.; Qu, X.; Humphrey, W. R.; Shebuski, R. J.; Levy, R. J. Formulation and Characterization of Biodegradable Nanoparticles for Intravascular Local Drug Delivery. J. Control. Release 1997, 43, 197–212. DOI: 10.1016/S0168-3659(96)01484-8.
  • Feng, S. S.; Huang, G. Effects of Emulsifiers on the Controlled Release of Paclitaxel (Taxol®) from Nanospheres of Biodegradable Polymers. J. Control. Release 2001, 71, 53–69. DOI: 10.1016/S0168-3659(00)00364-3.
  • Yang, H.; Lopina, S. T. Penicillin V-Conjugated PEG-PAMAM Star Polymers. J. Biomater. Sci. Polym. Ed. 2003, 14, 1043–1056. DOI: 10.1163/156856203769231556.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001.
  • Căta, A.; Ienașcu, I. M. C.; Ştefănuț, M. N.; Roșu, D.; Pop, O. R. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics 2023, 15, 589. DOI: 10.3390/pharmaceutics15020589.
  • Tomalia, D. A. Birth of a New Macromolecular Architecture: Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Polymer Chemistry. Prog. Polym. Sci. 2005, 30, 294–324. DOI: 10.1016/0142-9612(96)85754-1.
  • Lee, C. C.; MacKay, J. A.; Fréchet, J. M.; Szoka, F. C. Designing Dendrimers for Biological Applications. Nat. Biotechnol. 2005, 23, 1517–1526. DOI: 10.1038/nbt1171.
  • Hsu, H. J.; Bugno, J.; Lee, S. R.; Hong, S. Dendrimer‐Based Nanocarriers: A Versatile Platform for Drug Delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1409. DOI: 10.1002/wnan.1409.
  • Jiang, H. L.; Fu, Q. B.; Wang, M. L.; Lin, J. M.; Zhao, R. S. Determination of Trace Bisphenols in Functional Beverages through the Magnetic Solid-Phase Extraction with MOF-COF Composite. Food Chem. 2021, 345, 128841–128841. DOI: 10.1016/j.foodchem.2020.128841.
  • Wan, B.; Zheng, M.; Yang, X.; Dong, X.; Li, Y.; Mai, Y.; Chen, G.; Zha, J. Recyclability and Self‐Healing of Dynamic Cross‐Linked Polyimide with Mechanical/Electrical Damage. Energy Environ. Mater. 2023, 6, e12427. DOI: 10.1002/eem2.12427.
  • Yeganeh-Salman, E.; Alinezhad, H.; Amiri, A.; Maleki, B. Poly Schiff-Base Based on Polyimides Functionalized with Magnetic Nanoparticles as Novel Sorbent for Magnetic Solid-Phase Extraction of Non-steroidal Anti-Inflammatory Drugs in Environmental Water Samples. Microchem. J. 2022, 183, 108000. DOI: 10.1016/j.microc.2022.108000.
  • Okuda, T.; Kawakami, S.; Maeie, T.; Niidome, T.; Yamashita, F.; Hashida, M. Biodistribution Characteristics of Amino Acid Dendrimers and Their PEGylated Derivatives after Intravenous Administration. J. Control. Release 2006, 114, 69–77. DOI: 10.1016/j.jconrel.2006.05.009.
  • Alinezhad, H.; Amiri, A.; Tarahomi, M.; Maleki, B. Magnetic Solid-Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs from Environmental Water Samples Using Polyamidoamine Dendrimer Functionalized with Magnetite Nanoparticles as a Sorbent. Talanta 2018, 183, 149–157. DOI: 10.1016/j.talanta.2018.02.069.
  • Beezer, A. E.; King, A. S. H.; Martin, I. K.; Mitchel, J. C.; Twyman, L. J.; Wain, C. F. Dendrimers as Potential Drug Carriers; Encapsulation of Acidic Hydrophobes within Water Soluble PAMAM Derivatives. Tetrahedron 2003, 59, 3873–3880. DOI: 10.1016/S0040-4020(03)00437-X.
  • Zinselmeyer, B. H.; Mackay, S. P.; Schatzlein, A. G.; Uchegbu, I. F. The Lower-Generation Polypropylenimine Dendrimers Are Effective Gene-Transfer Agents. Pharm. Res. 2002, 19, 960–967. DOI: 10.1023/a:1016458104359.
  • Vandamme, T. F.; Brobeck, L. Poly (Amidoamine) Dendrimers as Ophthalmic Vehicles for Ocular Delivery of Pilocarpine Nitrate and Tropicamide. J. Control. Release 2005, 102, 23–38. DOI: 10.1016/j.jconrel.2004.09.015.
  • Soltani, E. R.; Panahi, H. A.; Moniri, E.; Fard, N. T.; Raeisi, I.; Beik, J.; Siavoshani, A. Y. Construction of a pH/Temperature Dual-Responsive Drug Delivery Platform Based on Exfoliated MoS2 Nanosheets for Effective Delivery of Doxorubicin: Parametric Optimization via Central Composite Design. Mater. Chem. Phys. 2023, 295, 127159. DOI: 10.1016/j.matchemphys.2022.127159.
  • Benita, S. (Ed.). Microencapsulation: methods and industrial applications. CRC Press. 2005.
  • Suri, S. S.; Fenniri, H.; Singh, B. Nanotechnology-Based Drug Delivery Systems. J. Occup. Med. Toxicol. 2007, 2, 16. DOI: 10.1186/1745-6673-2-16.
  • Yang, X.; Xie, Y.; Liao, X.; Zheng, T. Virus‐Bionic Mesoporous Silica Nanoplatform for Malignant Tumor Inhibition via Effective Cellular Uptake and Precise Drug Delivery. ChemMedChem 2023, 18, e202300439. DOI: 10.1002/cmdc.202300439.
  • Mishra, A. K. (Ed.). Nanomedicine for drug delivery and therapeutics. John Wiley & Sons. 2013.
  • Turnbull, W. B.; Stoddart, J. F. Design and Synthesis of Glycodendrimers. J. Biotechnol. 2002, 90, 231–255. DOI: 10.1016/S1389-0352(01)00062-9.
  • Lundquist, J. J.; Toone, E. J. The Cluster Glycoside Effect. Chem. Rev. 2002, 102, 555–578. DOI: 10.1021/cr000418f.
  • Röckendorf, N.; Lindhorst, T. K. Glycodendrimers. Dendrimers IV: Metal Coordination, Self Assembly, Catalysis; Springer, 2001. pp 201–238.
  • Sani, A.; Pourmadadi, M.; Shaghaghi, M.; Mahdi Eshaghi, M.; Shahmollaghamsary, S.; Arshad, R.; Fathi-Karkan, S.; Rahdar, A.; Medina, D. I.; Pandey, S. Revolutionizing Anticancer Drug Delivery: Exploring the Potential of Tamoxifen-Loaded Nanoformulations. J. Drug Deliv. Sci. Technol. 2023, 86, 104642. DOI: 10.1016/j.jddst.2023.104642.
  • Yanar, F.; Carugo, D.; Zhang, X. Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications. Molecules 2023, 28, 5694. DOI: 10.3390/molecules28155694.
  • Rathee, S.; Ojha, A.; Upadhyay, A.; Xiao, J.; Bajpai, V. K.; Ali, S.; Shukla, S. Biogenic Engineered Nanomaterials for Enhancing Bioavailability via Developing Nano-Iron-Fortified Smart Foods: Advances, Insight, and Prospects of Nanobionics in Fortification of Food. Food Funct. 2023, 14, 9083–9099. DOI: 10.1039/D3FO02473C.
  • Wolski, P.; Panczyk, T.; Brzyska, A. Molecular Dynamics Simulations of Carbon Quantum Dots/Polyamidoamine Dendrimer Nanocomposites. J. Phys. Chem. C 2023, 127, 16740–16750. DOI: 10.1021/acs.jpcc.3c04661.
  • Percec, V.; Sahoo, D.; Adamson, J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers 2023, 15, 1832. DOI: 10.3390/polym15081832.
  • Müllerová, M.; Hovorková, M.; Závodná, T.; Červenková Št Astná, L.; Krupková, A.; Hamala, V.; Nováková, K.; Topinka, J.; Bojarová, P.; Strašák, T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023, 24, 4705–4717. DOI: 10.1021/acs.biomac.3c00426.
  • Cerney, J. P.; Raskovalov, A.; Nasseri, M.; Silva, M. D.; McReynolds, K. D. Synthesis and Nuclear Magnetic Resonance Structural Evaluation of Oxime-Linked Oligosialic Acid-Based Glycodendrimers. Biomacromolecules, 2023, 24(4), 1901–1911. DOI: 10.1021/acs.biomac.3c00105.
  • de la Mata, F. J.; Gómez, R.; Cano, J.; Sánchez‐Nieves, J.; Ortega, P.; Gallego, S. G. Carbosilane Dendritic Nanostructures, Highly Versatile Platforms for Pharmaceutical Applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1871. DOI: 10.1002/wnan.1871.
  • Feizi, T.; Fazio, F.; Chai, W.; Wong, C. H. Carbohydrate Microarrays – A New Set of Technologies at the Frontiers of Glycomics. Curr. Opin. Struct. Biol. 2003, 13, 637–645. DOI: 10.1016/j.sbi.2003.09.002.
  • Quintana, J. I.; Atxabal, U.; Unione, L.; Ardá, A.; Jiménez-Barbero, J. Exploring Multivalent Carbohydrate–Protein Interactions by NMR. Chem. Soc. Rev. 2023, 52, 1591–1613. DOI: 10.1039/D2CS00983H.
  • Mała, P.; Siebs, E.; Meiers, J.; Rox, K.; Varrot, A.; Imberty, A.; Titz, A. Discovery of N-β-l-Fucosyl Amides as High-Affinity Ligands for the Pseudomonas aeruginosa Lectin LecB. J.Med. Chem. 2022, 65(20), 14180–14200. https://doi.org/10.1021/acs.jmedchem.2c01373
  • Woller, E. K.; Cloninger, M. J. The Lectin-Binding Properties of Six Generations of Mannose-Functionalized Dendrimers. Org. Lett. 2002, 4, 7–10. DOI: 10.1021/ol016568.
  • Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J. K.; Palese, P.; Paulson, J. C.; Wilson, I. A. Glycan Microarray Analysis of the Hemagglutinins from Modern and Pandemic Influenza Viruses Reveals Different Receptor Specificities. J. Mol. Biol. 2006, 355, 1143–1155. DOI: 10.1016/j.jmb.2005.11.002.
  • Woller, E. K.; Cloninger, M. J. Mannose Functionalization of a Sixth Generation Dendrimer. Biomacromolecules 2001, 2, 1052–1054. DOI: 10.1021/bm015560k.
  • Bzainia, A.; Gomes, C. P.; Dias, R. C.; Costa, M. R. P. Molecular imprinting and surface grafting of glycoprotein fragments in polymeric nanosystems: from cancer diagnosis to virus targeting. In Polymeric Nanosystems. Academic Press, 2023; pp 787–841. https://doi.org/10.1016/B978-0-323-85656-0.00012-7
  • Dhanalakshmi, M.; Sruthi, D.; Jinuraj, K. R.; Das, K.; Dave, S.; Andal, N. M.; Das, J. Mannose: A Potential Saccharide Candidate in Disease Management. Med. Chem. Res. 2023, 32, 391–408. DOI: 10.1007/s00044-023-03015-z.
  • Roy, R.; Mousavifar, L. Carrier Diversity and Chemical Ligations in the Toolbox for Designing Tumor-Associated Carbohydrate Antigens (TACAs) as Synthetic Vaccine Candidates. Chem. Soc. Rev. 2023, 52, 3353–3396. https://doi.org/10.1039/D2CS01032A.
  • Freitas, R.; Peixoto, A.; Ferreira, E.; Miranda, A.; Santos, L. L.; Ferreira, J. A. Immunomodulatory Glycomedicine: Introducing Next Generation Cancer Glycovaccines. Biotechnol. Adv. 2023, 65, 108144. DOI: 10.1016/j.biotechadv.2023.108144.
  • Gugulothu, D.; Dhawan, D.; Sachdeva, A.; Deepali.; Chauhan, M. K. Biomaterial-Based Delivery Systems for Chemotherapeutics. In Targeted Cancer Therapy in Biomedical Engineering; Singapore: Springer Nature Singapore, 2023; pp 105–178. https://doi.org/10.1007/978-981-19-9786-0_4.
  • Li, S.; Han, X.; Lu, Z.; Qiu, W.; Yu, M.; Li, H.; He, Z.; Zhuo, R. MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. Int. J. Mol. Sci. 2022, 23, 4463. https://doi.org/10.3390/ijms23084463.
  • He, H.; He, J.; Zheng, K.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. Fantastic Supramolecular Chiral Self-Assembly of POSS Based Dendrimers: From Helical Nano-Fibers to Nano-Toroids and Loofah-like Superstructures. Eur. Polym. J. 2023, 184, 111768. DOI: 10.1016/j.eurpolymj.2022.111768.
  • Baek, N. W.; Fan, X. R.; Yuan, J. G.; Xu, J.; Wang, Q. Polymerization and Dyeing Properties of Gallic Acid on Silk Fabric Catalyzed by Horseradish Peroxidase. Fibers Polym. 2021, 22, 2145–2155. https://doi.org/10.1007/s12221-021-0673-y.
  • Tenório, C. J. L.; Ferreira, M. R. A.; Soares, L. A. L. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends Food Sci Technol. 2022. https://doi.org/10.1016/j.tifs.2022.08.004
  • Karimi, S.; Namazi, H. Targeted co-Delivery of Doxorubicin and Methotrexate to Breast Cancer Cells by a pH-Sensitive Biocompatible Polymeric System Based on β-Cyclodextrin Crosslinked Glycodendrimer with Magnetic ZnO Core. Eur. Polym. J. 2022, 176, 111435. DOI: 10.1016/j.eurpolymj.2022.111435.
  • Kaasalainen, M.; Aseyev, V.; von Haartman, E.; Karaman, D. Ş.; Mäkilä, E.; Tenhu, H.; Rosenholm, J.; Salonen, J. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Res. Lett. 2017, 12, 74. DOI: 10.1186/s11671-017-1853-y.
  • Huang, A. Y. T.; Kao, C. L.; Selvaraj, A.; Peng, L. Solid-Phase Dendrimer Synthesis: A Promising Approach to Transform Dendrimer Construction. Mater. Today Chem. 2023, 27, 101285. DOI: 10.1016/j.mtchem.2022.101285.
  • Chowdhury, S.; Toth, I.; Stephenson, R. J. Dendrimers in Vaccine Delivery: Recent Progress and Advances. Biomaterials 2022, 280, 121303. DOI: 10.1016/j.biomaterials.2021.121303.
  • Swain, B. R.; Jena, S. R.; Beriha, S. K.; Mahanta, C. S.; Jena, B. B.; Prasanth, T.; Samanta, L.; Satapathy, R.; Dash, B. P. Synthesis and Anticancer Properties of Dendritic Glycoconjugates Containing Multiple O-Carborane Clusters. New J. Chem. 2023, 47, 10296–10308. DOI: 10.1039/D3NJ00182B.
  • Gonnot, C.; Scalabrini, M.; Roubinet, B.; Ziane, C.; Boeda, F.; Deniaud, D.; Landemarre, L.; Gouin, S. G.; Fontaine, L.; Montembault, V. ROMP-Based Glycopolymers with High Affinity for Mannose-Binding Lectins. Biomacromolecules 2023, 24, 3689–3699. DOI: 10.1021/acs.biomac.3c00406.
  • Patil, M. P.; Nemade, L. S. Nanoarchitectured Materials: Their Applications and Present Scenarios in Drug Delivery. Advances in Novel Formulations for Drug Delivery, 2023, 1–27. https://doi.org/10.1002/9781394167708.ch1.
  • Vögtle, F.; Gestermann, S.; Hesse, R.; Schwierz, H.; Windisch, B. Functional Dendrimers. Prog. Polym. Sci. 2000, 25, 987–1041. DOI: 10.1016/S0079-6700(00)00017-4.
  • Pokharana, M.; Vaishnav, R.; Goyal, A.; Shrivastava, A. Stability Testing Guidelines of Pharmaceutical Products. J. Drug Deliv. Ther. 2018, 8, 169–175. DOI: 10.22270/jddt.v8i2.1564.
  • Kanniyappan, H.; Jose, J.; Chakraborty, S.; Ramasamy, M.; Muthuvijayan, V. pH-Responsive Drug Release from Positively Charged Mesoporous Silica Nanoparticles and Their Potential for Anticancer Drug Delivery. J. Aust. Ceram. Soc. 2023, 59, 207–220. DOI: 10.1007/s41779-022-00827-x.
  • Matyjaszczyk, K.; Kolonko, M.; Gonciarz-Dytman, A.; Oszczapowicz, I.; Łukawska, M.; Jawień, W.; Chlopicki, S.; Walczak, M. Effects of Structural Modification of the Daunosamine Moiety of Anthracycline Antibiotics on pKa Values Determined by Capillary Zone Electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1060, 44–52. DOI: 10.1016/j.jchromb.2017.04.038.
  • Chu, X.; Zhang, L.; Li, Y.; He, Y.; Zhang, Y.; Du, C. NIR Responsive Doxorubicin‐Loaded Hollow Copper Ferrite@ Polydopamine for Synergistic Chemodynamic/Photothermal/Chemo‐Therapy. Small 2023, 19, e2205414. DOI: 10.1002/smll.202205414.
  • Alarcon, L. P.; Andrada, H. E.; Olivera, M. E.; Silva, O. F.; Falcone, R. D. Carrier in Carrier: Catanionic Vesicles Based on Amphiphilic Cyclodextrins Complexed with DNA as Nanocarriers of Doxorubicin. J. Mol. Liq. 2022, 360, 119488. DOI: 10.1016/j.molliq.2022.119488.
  • ICH Guideline Q1A(R). Stability Testing of New Drug Substances and Products; ICH: Geneva, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.