153
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Recent advancements and various potential applications of transdermal patches

, , ORCID Icon, ORCID Icon &
Received 22 Jul 2023, Accepted 22 Dec 2023, Published online: 08 Jan 2024

References

  • Prausnitz, M. R.; Langer, R. Transdermal Drug Delivery. Nat. Biotechnol. 2008, 26, 1261–1268. DOI: 10.1038/nbt.1504.
  • Lasagna, L.; Greenblatt, D. J. More than Skin Deep: Transdermal Drug-Delivery Systems. N Engl. J. Med. 1986, 314, 1638–1639. DOI: 10.1056/NEJM198606193142509.
  • Berner, B.; John, V. A. Pharmacokinetic Characterisation of Transdermal Delivery Systems. Clin. Pharmacokinet. 1994, 26, 121–134. DOI: 10.2165/00003088-199426020-00005.
  • Kopper, N. W.; Gudeman, J.; Thompson, D. J. Transdermal Hormone Therapy in Postmenopausal Women: A Review of Metabolic Effects and Drug Delivery Technologies. Drug Des. Devel. Ther. 2009, 2, 193–202. DOI: 10.2147/dddt.s4146.
  • Kumar, L.; Verma, S.; Singh, M.; Chalotra, T.; Utreja, P. Advanced Drug Delivery Systems for Transdermal Delivery of Non-Steroidal Anti-Inflammatory Drugs: A Review. Curr. Drug Deliv. 2018, 15, 1087–1099. DOI: 10.2174/1567201815666180605114131.
  • Ananda, P. W. R.; Elim, D.; Zaman, H. S.; Muslimin, W.; Tunggeng, M. G. R.; Permana, A. D. Combination of Transdermal Patches and Solid Microneedles for Improved Transdermal Delivery of Primaquine. Int. J. Pharm. 2021, 609, 121204. DOI: 10.1016/j.ijpharm.2021.121204.
  • László, S.; Bátai, I. Z.; Berkó, S.; Csányi, E.; Dombi, Á.; Pozsgai, G.; Bölcskei, K.; Botz, L.; Wagner, Ö.; Pintér, E.; et al. Development of Capsaicin-Containing Analgesic Silicone-Based Transdermal Patches. Pharmaceuticals 2022, 15, 1279. DOI: 10.3390/ph15101279.
  • Gannu, R.; Vishnu, Y. V.; Kishan, V.; Rao, Y. M. Development of Nitrendipine Transdermal Patches: In Vitro and Ex Vivo Characterization. Curr. Drug Deliv. 2007, 4, 69–76. DOI: 10.2174/156720107779314767.
  • Pastore, M. N.; Kalia, Y. N.; Horstmann, M.; Roberts, M. S. Transdermal Patches: History, Development and Pharmacology. Br. J. Pharmacol. 2015, 172, 2179–2209. DOI: 10.1111/bph.13059.
  • Brown, M. B.; Martin, G. P.; Jones, S. A.; Akomeah, F. K. Dermal and Transdermal Drug Delivery Systems: Current and Future Prospects. Drug Deliv. 2006, 13, 175–187. DOI: 10.1080/10717540500455975.
  • Zaid Alkilani, A.; McCrudden, M. T.; Donnelly, R. F. Transdermal Drug Delivery: innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics. 2015, 7, 438–470. DOI: 10.3390/pharmaceutics7040438.
  • Al Hanbali, O. A.; Khan, H. M. S.; Sarfraz, M.; Arafat, M.; Ijaz, S.; Hameed, A. Transdermal Patches: Design and Current Approaches to Painless Drug Delivery. Acta Pharm. 2019, 69, 197–215. DOI: 10.2478/acph-2019-0016.
  • Munir, M.; Zaman, M.; Waqar, M. A.; Hameed, H.; Riaz, T. A Comprehensive Review on Transethosomes as a Novel Vesicular Approach for Drug Delivery Through Transdermal Route. J. Liposome Res. 2023, 3, 1–16. DOI: 10.1080/08982104.2023.2221354.
  • Iqbal, S.; Zaman, M.; Waqar, M. A.; Sarwar, H. S.; Jamshaid, M. Vesicular Approach of Cubosomes, Its Components, Preparation Techniques, Evaluation and Their Appraisal for Targeting Cancer Cells. J. Liposome Res. 2023, 2, 1–17. DOI: 10.1080/08982104.2023.2272643.
  • Invernale, M. A.; Tang, B. C.; York, R. L.; Le, L.; Hou, D. Y.; Anderson, D. G. Microneedle Electrodes toward an Amperometric Glucose‐Sensing Smart Patch. Adv. Healthc. Mater. 2014, 3, 338–342. DOI: 10.1002/adhm.201300142.
  • Veiseh, O.; Langer, R. A Smart Insulin Patch. Nature. 2015, 524, 39–40. DOI: 10.1038/524039a.
  • Iversen, M.; Monisha, M.; Agarwala, S. Flexible, Wearable and Fully-Printed Smart Patch for pH and Hydration Sensing in Wounds. Int. J. Bioprint. 2022, 8, 447. DOI: 10.18063/ijb.v8i1.447.
  • Waqar, M. A.; Zaman, M.; Hameed, H.; Jamshaid, M.; Irfan, A.; Shazly, G. A.; Paiva-Santos, A. C.; Bin Jardan, Y. A. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS Omega. 2023, 8, 38191–38203. DOI: 10.1021/acsomega.3c04444.
  • Liu, H.; Li, Z.; Che, S.; Feng, Y.; Guan, L.; Yang, X.; Zhao, Y.; Wang, J.; Zvyagin, A. V.; Yang, B.; et al. A Smart Hydrogel Patch with High Transparency, Adhesiveness and Hemostasis for All-Round Treatment and Glucose Monitoring of Diabetic Foot Ulcers. J. Mater. Chem. B. 2022, 10, 5804–5817. DOI: 10.1039/d2tb01048h.
  • Gilpin, V.; Surandhiran, D.; Scott, C.; Devine, A.; Cundell, J.; Gill, C.; Pourshahidi, L.; Davis, J. Lasered Graphene Microheaters Modified with Phase-Change Composites: New Approach to Smart Patch Drug Delivery. Micromachines. 2022, 13, 1132. DOI: 10.3390/mi13071132.
  • Rodgers, A. M.; McCrudden, M. T.; Courtenay, A. J.; Kearney, M. C.; Edwards, K. L.; Ingram, R. J.; Bengoechea, J.; Donnelly, R. F. Control of Klebsiella pneumoniae Infection in Mice by Using Dissolving Microarray Patches Containing Gentamicin. Antimicrob. Agents Chemother. 2019, 63, e02612–18.
  • Lee, I.-C.; Lin, W.-M.; Shu, J.-C.; Tsai, S.-W.; Chen, C.-H.; Tsai, M.-T. Formulation of Two‐Layer Dissolving Polymeric Microneedle Patches for Insulin Transdermal Delivery in Diabetic Mice. J. Biomed. Mater. Res. A. 2017, 105, 84–93. DOI: 10.1002/jbm.a.35869.
  • Kim, H.; Seong, K.-Y.; Lee, J. H.; Park, W.; Yang, S. Y.; Hahn, S. K. Biodegradable Microneedle Patch Delivering Antigenic Peptide–Hyaluronate Conjugate for Cancer Immunotherapy. ACS Biomater. Sci. Eng. 2019, 5, 5150–5158. DOI: 10.1021/acsbiomaterials.9b00961.
  • Li, Y.; Liu, F.; Su, C.; Yu, B.; Liu, D.; Chen, H.-J.; Lin, D.-A.; Yang, C.; Zhou, L.; Wu, Q.; et al. Biodegradable Therapeutic Microneedle Patch for Rapid Antihypertensive Treatment. ACS Appl. Mater. Interfaces. 2019, 11, 30575–30584. DOI: 10.1021/acsami.9b09697.
  • Adli, S. A.; Ali, F.; Azmi, A. S.; Anuar, H.; Nasir, N. A. M.; Hasham, R.; Idris, M. K. H. Development of Biodegradable Cosmetic Patch Using a Polylactic Acid/Phycocyanin–Alginate Composite. Polymers. 2020, 12, 1669. DOI: 10.3390/polym12081669.
  • Economidou, S.; Pissinato Pere, C.; Okereke, M.; Douroumis, D. Optimisation of Design and Manufacturing Parameters of 3D Printed Solid Microneedles for Improved Strength, Sharpness, and Drug Delivery. Micromachines. 2021, 12, 117. DOI: 10.3390/mi12020117.
  • Jang, M. J.; Bae, S. K.; Jung, Y. S.; Kim, J. C.; Kim, J. S.; Park, S. K.; Suh, J. S.; Yi, S. J.; Ahn, S. H.; Lim, J. O.; et al. Enhanced Wound Healing Using a 3D Printed VEGF-Mimicking Peptide Incorporated Hydrogel Patch in a Pig Model. Biomed. Mater. 2021, 16, 045013. DOI: 10.1088/1748-605X/abf1a8.
  • Caudill, C.; Perry, J. L.; Iliadis, K.; Tessema, A. T.; Lee, B. J.; Mecham, B. S.; Tian, S.; DeSimone, J. M. Transdermal Vaccination via 3D-Printed Microneedles Induces Potent Humoral and Cellular Immunity. Proceedings of the National Academy of Sciences 2021, 118, e2102595118.
  • Yadav, V.; Sharma, P. K.; Murty, U. S.; Mohan, N. H.; Thomas, R.; Dwivedy, S. K.; Banerjee, S. 3D Printed Hollow Microneedles Array Using Stereolithography for Efficient Transdermal Delivery of Rifampicin. Int. J. Pharm. 2021, 605, 120815. DOI: 10.1016/j.ijpharm.2021.120815.
  • Maurizii, G.; Moroni, S.; Khorshid, S.; Aluigi, A.; Tiboni, M.; Casettari, L. 3D-Printed EVA-Based Patches Manufactured by Direct Powder Extrusion for Personalized Transdermal Therapies. Int. J. Pharm. 2023, 635, 122720. DOI: 10.1016/j.ijpharm.2023.122720.
  • Lim, S. H.; Kathuria, H.; Amir, M. H. B.; Zhang, X.; Duong, H. T. T.; Ho, P. C.-L.; Kang, L. High Resolution Photopolymer for 3D Printing of Personalised Microneedle for Transdermal Delivery of Anti-Wrinkle Small Peptide. J. Control. Release. 2021, 329, 907–918. DOI: 10.1016/j.jconrel.2020.10.021.
  • Zhang, S.; Liu, C.; Song, Y.; Ruan, J.; Quan, P.; Fang, L. High Drug-Loading and Controlled-Release Hydroxyphenyl-Polyacrylate Adhesive for Transdermal Patch. J. Control. Release. 2023, 353, 475–489. DOI: 10.1016/j.jconrel.2022.11.058.
  • Yang, D.; Liu, C.; Piao, H.; Quan, P.; Fang, L. Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug–Ionic Liquid Strategy: insight into the Role of Ionic Hydrogen Bonding. Mol. Pharm. 2021, 18, 1157–1166. DOI: 10.1021/acs.molpharmaceut.0c01054.
  • Yang, D.; Liu, C.; Quan, P.; Fang, L. Molecular Mechanism of High Capacity-High Release Transdermal Drug Delivery Patch with Carboxyl Acrylate Polymer: Roles of Ion-Ion Repulsion and Hydrogen Bond. Int. J. Pharm. 2020, 585, 119376. DOI: 10.1016/j.ijpharm.2020.119376.
  • Abd, E.; Yousef, S. A.; Pastore, M. N.; Telaprolu, K.; Mohammed, Y. H.; Namjoshi, S.; Grice, J. E.; Roberts, M. S. Skin Models for the Testing of Transdermal Drugs. Clin. Pharmacol. 2016, 8, 163–176. DOI: 10.2147/CPAA.S64788.
  • Raeder, V.; Boura, I.; Leta, V.; Jenner, P.; Reichmann, H.; Trenkwalder, C.; Klingelhoefer, L.; Chaudhuri, K. R. Rotigotine Transdermal Patch for Motor and Non-Motor Parkinson’s Disease: A Review of 12 Years’ Clinical Experience. CNS Drugs. 2021, 35, 215–231. DOI: 10.1007/s40263-020-00788-4.
  • Trommer, H.; Neubert, R. H. Overcoming the Stratum Corneum: The Modulation of Skin Penetration. Skin Pharmacol. Physiol. 2006, 19, 106–121. DOI: 10.1159/000091978.
  • Dhiman, S.; Singh, T. G.; Rehni, A. K. Transdermal Patches: A Recent Approach to New Drug Delivery System. Int. J. Pharm. Pharm. Sci. 2011, 3, 26–34.
  • Davis, S. S.; Illum, L. Drug Delivery Systems for Challenging Molecules. Int. J. Pharm. 1998, 176, 1–8.
  • Rastogi, V.; Yadav, P. Transdermal Drug Delivery System: An Overview. Asian J. Pharm. 2012, 6, 161. DOI: 10.4103/0973-8398.104828.
  • Baker, R. Material Selection for Transdermal Delivery System. Transdermal Drug Delivery 1989, 15, 293–311.
  • Guyot, M.; Fawaz, F. Design and in Vitro Evaluation of Adhesive Matrix for Transdermal Delivery of Propranolol. Int. J. Pharm. 2000, 204, 171–182. DOI: 10.1016/s0378-5173(00)00494-4.
  • Choi, I.-J.; Cha, H.-R.; Hwang, S. J.; Baek, S.-K.; Lee, J. M.; Choi, S.-O. Live Vaccinia Virus-Coated Microneedle Array Patches for Smallpox Vaccination and Stockpiling. Pharmaceutics. 2021, 13, 209. DOI: 10.3390/pharmaceutics13020209.
  • Sullivan, S. P.; Koutsonanos, D. G.; Del Pilar Martin, M.; Lee, J. W.; Zarnitsyn, V.; Choi, S.-O.; Murthy, N.; Compans, R. W.; Skountzou, I.; Prausnitz, M. R.; et al. Dissolving Polymer Microneedle Patches for Influenza Vaccination. Nat. Med. 2010, 16, 915–920. DOI: 10.1038/nm.2182.
  • Gehl, J. Electroporation: theory and Methods, Perspectives for Drug Delivery, Gene Therapy and Research. Acta Physiol. Scand. 2003, 177, 437–447. DOI: 10.1046/j.1365-201X.2003.01093.x.
  • Qu, M.; Kim, H.-J.; Zhou, X.; Wang, C.; Jiang, X.; Zhu, J.; Xue, Y.; Tebon, P.; Sarabi, S. A.; Ahadian, S.; et al. Biodegradable Microneedle Patch for Transdermal Gene Delivery. Nanoscale 2020, 12, 16724–16729. DOI: 10.1039/d0nr02759f.
  • Xu, Q.; Li, X.; Zhang, P.; Wang, Y. Rapidly Dissolving Microneedle Patch for Synergistic Gene and Photothermal Therapy of Subcutaneous Tumor. J. Mater. Chem. B. 2020, 8, 4331–4339. DOI: 10.1039/d0tb00105h.
  • Zhang, Y.; Yu, J.; Kahkoska, A. R.; Wang, J.; Buse, J. B.; Gu, Z. Advances in Transdermal Insulin Delivery. Adv. Drug Deliv. Rev. 2019, 139, 51–70. DOI: 10.1016/j.addr.2018.12.006.
  • Islam, M. R.; Uddin, S.; Chowdhury, M. R.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Appl. Mater. Interfaces. 2021, 13, 42461–42472. DOI: 10.1021/acsami.1c11533.
  • Maciel, V.; Yoshida, C.; Pereira, S.; Goycoolea, F.; Franco, T. Electrostatic Self-Assembled Chitosan-Pectin Nano-and Microparticles for Insulin Delivery. Molecules. 2017, 22, 1707. DOI: 10.3390/molecules22101707.
  • Ahad, A.; Raish, M.; Bin Jardan, Y. A.; Al-Mohizea, A. M.; Al-Jenoobi, F. I. Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics. 2021, 13, 100. DOI: 10.3390/pharmaceutics13010100.
  • Seong, K.-Y.; Seo, M.-S.; Hwang, D. Y.; O’Cearbhaill, E. D.; Sreenan, S.; Karp, J. M.; Yang, S. Y. A Self-Adherent, Bullet-Shaped Microneedle Patch for Controlled Transdermal Delivery of Insulin. J. Control. Release. 2017, 265, 48–56. DOI: 10.1016/j.jconrel.2017.03.041.
  • Ogawa, R.; Stachnik, J. M.; Echizen, H. Clinical Pharmacokinetics of Drugs in Patients with Heart Failure: An Update (Part 2, Drugs Administered Orally). Clin. Pharmacokinet. 2014, 53, 1083–1114. DOI: 10.1007/s40262-014-0189-3.
  • Lainscak, M.; Vitale, C.; Seferovic, P.; Spoletini, I.; Cvan Trobec, K.; Rosano, G. M. C. Pharmacokinetics and Pharmacodynamics of Cardiovascular Drugs in Chronic Heart Failure. Int. J. Cardiol. 2016, 224, 191–198. DOI: 10.1016/j.ijcard.2016.09.015.
  • Mangoni, A. A.; Jarmuzewska, E. A. The Influence of Heart Failure on the Pharmacokinetics of Cardiovascular and Non‐Cardiovascular Drugs: A Critical Appraisal of the Evidence. Br. J. Clin. Pharmacol. 2019, 85, 20–36. DOI: 10.1111/bcp.13760.
  • Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Interactions Between Novel Terpenes and Main Components of Rat and Human Skin: Mechanistic View for Transdermal Delivery of Propranolol Hydrochloride. Curr. Drug Deliv. 2011, 8, 213–224. DOI: 10.2174/156720111794479907.
  • Corbo, M.; Liu, J.-C.; Chien, Y. W. Bioavailability of Propranolol following Oral and Transdermal Administration in Rabbits. J. Pharm. Sci. 1990, 79, 584–587. DOI: 10.1002/jps.2600790707.
  • Matsuoka, H.; Kuwajima, I.; Shimada, K.; Mitamura, H.; Saruta, T. Comparison of Efficacy and Safety between Bisoprolol Transdermal Patch (TY‐0201) and Bisoprolol Fumarate Oral Formulation in Japanese Patients with Grade I or II Essential Hypertension: Randomized, Double‐Blind, Placebo‐Controlled Study. J. Clin. Hypertens. 2013, 15, 806–814. DOI: 10.1111/jch.12208.
  • Hara, T.; Yagi, S.; Akaike, M.; Sata, M. Transdermal Patch of Bisoprolol for the Treatment of Hypertension Complicated with Aortic Dissection. Int. J. Cardiol. 2015, 198, 220–221. DOI: 10.1016/j.ijcard.2015.06.112.
  • Kiuchi, S.; Hisatake, S.; Kabuki, T.; Oka, T.; Dobashi, S.; Fujii, T.; Sano, T.; Ikeda, T. Bisoprolol Transdermal Patch Improves Orthostatic Hypotension in Patients with Chronic Heart Failure and Hypertension. Clin. Exp. Hypertens. 2020, 42, 539–544. DOI: 10.1080/10641963.2020.1723616.
  • Shinohara, M.; Fujino, T.; Koike, H.; Kitahara, K.; Kinoshita, T.; Yuzawa, H.; Suzuki, T.; Fukunaga, S.; Kobayashi, K.; Aoki, J.; et al. Assessment of a Novel Transdermal Selective β1-Blocker, the Bisoprolol Patch, for Treating Frequent Premature Ventricular Contractions in Patients without Structural Heart Disease. J. Cardiol. 2017, 70, 212–219. DOI: 10.1016/j.jjcc.2017.01.008.
  • Yasui, T.; Oka, T.; Shioyama, W.; Oboshi, M.; Fujita, M. Bisoprolol Transdermal Patch Treatment for Patients with Atrial Fibrillation after Noncardiac Surgery: A Single-Center Retrospective Study of 61 Patients. SAGE Open Med. 2020, 8, 2050312120907817. DOI: 10.1177/2050312120907817.
  • Takahashi, Y.; Sonoo, T.; Nakano, H.; Naraba, H.; Hashimoto, H.; Nakamura, K. et al. The Influence of Edema on the Bisoprolol Blood Concentration after Bisoprolol Dermal Patch Application: A Case-Control Study. Medicine, 2021, 100, 31–62.
  • Grimm, R. H., Jr. Antihypertensive Therapy: Taking Lipids into Consideration. Am. Heart J. 1991, 122, 910–918. DOI: 10.1016/0002-8703(91)90811-u.
  • Groom, M. J.; Cortese, S. Current Pharmacological Treatments for ADHD. Curr. Topics Behav. Neurosci. 2022, 5, 19–50. DOI: 10.1007/978-3-031-11802-9.
  • Gossop, M. Clonidine and the Treatment of the Opiate Withdrawal Syndrome. Drug Alcohol Depend. 1988, 21, 253–259. DOI: 10.1016/0376-8716(88)90078-6.
  • Popli, S.; Stroka, G.; Daugirdas, J.T.; Norusis, M.J.; Hano, J.E.; Gandhi, V.C. Transdermal Clonidine for Hypertensive Patients. Clinical Therapeutics 1983, 5, 624–628.
  • Fujimura, A.; Ebihara, A.; Ohashi, K.; Shiga, T.; Kumagai, Y.; Nakashima, H.; Kotegawa, T. Comparison of the Pharmacokinetics, Pharmacodynamics, and Safety of Oral (Catapres) and Transdermal (M‐5041T) Clonidine in Healthy Subjects. J. Clin. Pharmacol. 1994, 34, 260–265. DOI: 10.1002/j.1552-4604.1994.tb03996.x.
  • Thakur, R.; Anwer, M. K.; Shams, M. S.; Ali, A.; Khar, R. K.; Shakeel, F.; Taha, E. I. Proniosomal Transdermal Therapeutic System of Losartan Potassium: Development and Pharmacokinetic Evaluation. J. Drug Target. 2009, 17, 442–449. DOI: 10.1080/10611860902963039.
  • Marsh, N.; Marsh, A. A Short History of Nitroglycerine and Nitric Oxide in Pharmacology and Physiology. Clin. Exp. Pharmacol. Physiol. 2000, 27, 313–319. DOI: 10.1046/j.1440-1681.2000.03240.x.
  • Nicholls, M. Nitric Oxide Discovery Nobel Prize Winners: Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad Shared the Noble Prize in 1998 for Their Discoveries concerning Nitric Oxide as a Signalling Molecule in the Cardiovascular System. Eur. Heart J. 2019, 40, 1747–1749. DOI: 10.1093/eurheartj/ehz361.
  • Noonan, P. K.; Gonzalez, M. A.; Ruggirello, D.; Tomlinson, J.; Babcock-Atkinson, E.; Ray, M.; Golub, A.; Cohen, A. Relative Bioavailability of a New Transdermal Nitroglycerin Delivery System. J. Pharm. Sci. 1986, 75, 688–691. DOI: 10.1002/jps.2600750715.
  • Balfour, J. A.; Heel, R. C. Transdermal Estradiol: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy in the Treatment of Menopausal Complaints. Drugs. 1990, 40, 561–582. DOI: 10.2165/00003495-199040040-00006.
  • Müller, P.; Botta, L.; Ezzet, F. Bioavailability of Estradiol from a New Matrix and a Conventional Reservoir-Type Transdermal Therapeutic System. Eur. J. Clin. Pharmacol. 1996, 51, 327–330. DOI: 10.1007/s002280050206.
  • Reginster, J. Y.; Albert, A.; Deroisy, R.; Colette, J.; Vrijens, B.; Blacker, C.; Brion, N.; Caulin, F.; Mayolle, C.; Regnard, A.; et al. Plasma Estradiol Concentrations and Pharmacokinetics following Transdermal Application of Menorest® 50 or Systen®(Evorel®) 50. Maturitas. 1997, 27, 179–186. DOI: 10.1016/s0378-5122(97)00027-3.
  • Andersson, T. L.; Stehle, B.; Davidsson, B.; Höglund, P. Bioavailability of Estradiol from Two Matrix Transdermal Delivery Systems: Menorest® and Climara®. Maturitas. 2000, 34, 57–64. DOI: 10.1016/s0378-5122(99)00088-2.
  • Zhang, H.; Cui, D.; Wang, B.; Han, Y.-H.; Balimane, P.; Yang, Z.; Sinz, M.; Rodrigues, A. D. Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol: A New Look at an Old Drug. Clin. Pharmacokinet. 2007, 46, 133–157. DOI: 10.2165/00003088-200746020-00003.
  • Abrams, L. S.; Skee, D. M.; Natarajan, J.; Wong, F. A.; Anderson, G. D. Pharmacokinetics of a Contraceptive Patch (Evra™/Ortho Evra™) Containing Norelgestromin and Ethinyloestradiol at Four Application Sites. Br. J. Clin. Pharmacol. 2002, 53, 141–146. DOI: 10.1046/j.0306-5251.2001.01532.x.
  • Dittrich, R.; Parker, L.; Rosen, J. B.; Shangold, G.; Creasy, G. W.; Fisher, A. C, Ortho Evra/Evra 001 Study Group. Transdermal Contraception: evaluation of Three Transdermal Norelgestromin/Ethinyl Estradiol Doses in a Randomized, Multicenter, Dose-Response Study. Am. J. Obstet. Gynecol. 2002, 186, 15–20. DOI: 10.1067/mob.2002.118844.
  • Bhasin, S.; Brito, J. P.; Cunningham, G. R.; Hayes, F. J.; Hodis, H. N.; Matsumoto, A. M.; Snyder, P. J.; Swerdloff, R. S.; Wu, F. C.; Yialamas, M. A.; et al. Testosterone Therapy in Men with Hypogonadism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. DOI: 10.1210/jc.2018-00229.
  • Dobs, A. S.; Meikle, A. W.; Arver, S.; Sanders, S. W.; Caramelli, K. E.; Mazer, N. A. Pharmacokinetics, Efficacy, and Safety of a Permeation-Enhanced Testosterone Transdermal System in Comparison with bi-Weekly Injections of Testosterone Enanthate for the Treatment of Hypogonadal Men. J. Clin. Endocrinol. Metab. 1999, 84, 3469–3478. DOI: 10.1210/jc.84.10.3469.
  • Raynaud, J.-P.; Aumonier, C.; Gualano, V.; Betea, D.; Beckers, A. Pharmacokinetic Study of a New Testosterone-in-Adhesive Matrix Patch Applied Every 2 Days to Hypogonadal Men. J. Steroid Biochem. Mol. Biol. 2008, 109, 177–184. DOI: 10.1016/j.jsbmb.2008.02.004.
  • Priano, L.; Gasco, M. R.; Mauro, A. Transdermal Treatment Options for Neurological Disorders: impact on the Elderly. Drugs Aging. 2006, 23, 357–375. DOI: 10.2165/00002512-200623050-00001.
  • Santos, D. MDMA e a Neurotoxicidade: uma Revisão Sistemática [Doctoral Dissertation]. 2023.
  • Kimko, H. C.; Cross, J. T.; Abernethy, D. R. Pharmacokinetics and Clinical Effectiveness of Methylphenidate. Clin. Pharmacokinet. 1999, 37, 457–470. DOI: 10.2165/00003088-199937060-00002.
  • Frampton, J. E. Rotigotine Transdermal Patch: A Review in Parkinson’s Disease. CNS Drugs. 2019, 33, 707–718. DOI: 10.1007/s40263-019-00646-y.
  • Elshoff, J.-P.; Braun, M.; Andreas, J.-O.; Middle, M.; Cawello, W. Steady-State Plasma Concentration Profile of Transdermal Rotigotine: An Integrated Analysis of Three, Open-Label, Randomized, Phase I Multiple Dose Studies. Clin. Ther. 2012, 34, 966–978. DOI: 10.1016/j.clinthera.2012.02.008.
  • Elshoff, J.-P.; Cawello, W.; Andreas, J.-O.; Mathy, F.-X.; Braun, M. An Update on Pharmacological, Pharmacokinetic Properties and Drug–Drug Interactions of Rotigotine Transdermal System in Parkinson’s Disease and Restless Legs Syndrome. Drugs. 2015, 75, 487–501. DOI: 10.1007/s40265-015-0377-y.
  • Chrisp, P.; Mammen, G. J.; Sorkin, E. M. Selegiline: A Review of Its Pharmacology, Symptomatic Benefits and Protective Potential in Parkinson’s Disease. Drugs Aging. 1991, 1, 228–248. DOI: 10.2165/00002512-199101030-00006.
  • Barrett, J. S.; Hochadel, T. J.; Morales, R. J.; Rohatagi, S.; DeWitt, K. E.; Watson, S. K.; DiSanto, A. R. Pharmacokinetics and Safety of a Selegiline Transdermal System Relative to Single-Dose Oral Administration in the Elderly. Am. J. Ther. 1996, 3, 688–698. DOI: 10.1097/00045391-199610000-00004.
  • Frampton, J. E.; Plosker, G. L. Selegiline Transdermal System in the Treatment of Major Depressive Disorder. Drugs 2007, 67, 257–265. DOI: 10.2165/00003495-200767020-00006.
  • Suzuki, K.; Castelli, M.; Komaroff, M.; Starling, B.; Terahara, T.; Citrome, L. Pharmacokinetic Profile of the Asenapine Transdermal System (HP-3070). J. Clin. Psychopharmacol. 2021, 41, 286–294. DOI: 10.1097/JCP.0000000000001383.
  • Tiseo, P. J.; Rogers, S. L.; Friedhoff, L. T. Pharmacokinetic and Pharmacodynamic Profile of Donepezil HCl following Single Oral Doses. Br. J. Clin. Pharmacol. 1998, 46, 13–18. DOI: 10.1046/j.1365-2125.1998.0460s1001.x.
  • Kurz, A.; Farlow, M.; Lefèvre, G. Pharmacokinetics of a Novel Transdermal Rivastigmine Patch for the Treatment of Alzheimer’s Disease: A Review. Int. J. Clin. Pract. 2009, 63, 799–805. DOI: 10.1111/j.1742-1241.2009.02052.x.
  • Bickel, U.; Thomsen, T.; Weber, W.; Fischer, J. P.; Bachus, R.; Nitz, M.; Kewitz, H. Pharmacokinetics of Galanthamine in Humans and Corresponding Cholinesterase Inhibition. Clin. Pharmacol. Ther. 1991, 50, 420–428. DOI: 10.1038/clpt.1991.159.
  • Ameen, D.; Michniak-Kohn, B. Development and in Vitro Evaluation of Pressure Sensitive Adhesive Patch for the Transdermal Delivery of Galantamine: Effect of Penetration Enhancers and Crystallization Inhibition. Eur. J. Pharm. Biopharm. 2019, 139, 262–271. DOI: 10.1016/j.ejpb.2019.04.008.
  • Munir, M.; Zaman, M.; Waqar, M. A.; Khan, M. A.; Alvi, M. N. Solid Lipid Nanoparticles: A Versatile Approach for Controlled Release and Targeted Drug Delivery. J. Liposome Res. 2023, 5, 1–14. DOI: 10.1080/08982104.2023.2268711.
  • Nasrollahzadeh, M.; Ganji, F.; Taghizadeh, S. M.; Vasheghani-Farahani, E.; Mohiti-Asli, M. Drug in Adhesive Transdermal Patch Containing Antibiotic-Loaded Solid Lipid Nanoparticles. J. Biosci. Bioeng. 2022, 134, 471–476. DOI: 10.1016/j.jbiosc.2022.08.003.
  • Altun, E.; Yuca, E.; Ekren, N.; Kalaskar, D. M.; Ficai, D.; Dolete, G.; Ficai, A.; Gunduz, O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics. 2021, 13, 613. DOI: 10.3390/pharmaceutics13050613.
  • Zhao, L.; Vora, L. K.; Kelly, S. A.; Li, L.; Larrañeta, E.; McCarthy, H. O.; Donnelly, R. F. Hydrogel-Forming Microarray Patch Mediated Transdermal Delivery of Tetracycline Hydrochloride. J. Control. Release. 2023, 356, 196–204. DOI: 10.1016/j.jconrel.2023.02.031.
  • Ramadon, D.; Permana, A. D.; Courtenay, A. J.; McCrudden, M. T. C.; Tekko, I. A.; McAlister, E.; Anjani, Q. K.; Utomo, E.; McCarthy, H. O.; Donnelly, R. F. Development, Evaluation, and Pharmacokinetic Assessment of Polymeric Microarray Patches for Transdermal Delivery of Vancomycin Hydrochloride. Mol. Pharm. 2020, 17, 3353–3368. DOI: 10.1021/acs.molpharmaceut.0c00431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.