89
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Exploring the potential of nanocellulose-based materials in advanced wound dressings: recent developments and prospects

ORCID Icon & ORCID Icon
Received 02 Dec 2023, Accepted 22 Mar 2024, Published online: 07 Apr 2024

References

  • Mir, M.; Ali, M. N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic Polymeric Biomaterials for Wound Healing: A Review. Prog. Biomater. 2018, 7, 1–21. DOI: 10.1007/s40204-018-0083-4.
  • Nguyen, H. M.; Thi, T.; Le, N.; Nguyen, A. T.; Nguyen, H.; Le, T.; Pham, T. T. Biomedical Materials for Wound Dressing : recent Advances and Applications. RSC Adv. 2023, 13, 5509–5528. DOI: 10.1039/d2ra07673j.
  • Homaeigohar, S.; Boccaccini, A. R. Antibacterial Biohybrid Nanofibers for Wound Dressings. Acta Biomater. 2020, 107, 25–49. DOI: 10.1016/j.actbio.2020.02.022.
  • Lindholm, C.; Searle, R. Wound Management for the 21st Century: combining Effectiveness and Efficiency. Int. Wound J. 2016, 13 Suppl 2, 5–15. DOI: 10.1111/iwj.12623.
  • Sen, C. K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound. Care (New Rochelle) 2019, 8, 39–48. DOI: 10.1089/wound.2019.0946.
  • Nussbaum, S. R.; Carter, M. J.; Fife, C. E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health. 2018, 21, 27–32. DOI: 10.1016/j.jval.2017.07.007.
  • Powers, J. G.; Higham, C.; Broussard, K.; Phillips, T. J. Wound Healing and Treating Wounds Chronic Wound Care and Management. J. Am. Acad. Dermatol. 2016, 74, 607–625. DOI: 10.1016/j.jaad.2015.08.070.
  • Insights, F. B. 2023. Wound Care Market Size, Share & Industry Analysis. https://www.fortunebusinessinsights.com/wound-care-market-103268 (accessed 5 September 2023)
  • Mohamadinooripoor, R.; Kashanian, S.; Arkan, E. An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. Biotechnol. Bioproc. E 2023, 28, 17–35. DOI: 10.1007/s12257-021-0364-y.
  • Boateng, J.; Catanzano, O. Advanced Therapeutic Dressings for Effective Wound healing - A Review. J. Pharm. Sci. 2015, 104, 3653–3680. DOI: 10.1002/jps.24610.
  • Zhang, S.; Ge, G.; Qin, Y.; Li, W.; Dong, J.; Mei, J.; Ma, R.; Zhang, X.; Bai, J.; Zhu, C.; et al. Recent Advances in Responsive Hydrogels for Diabetic Wound Healing. Mater. Today. Bio 2023, 18, 100508. DOI: 10.1016/j.mtbio.2022.100508.
  • Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose Nanocrystals and Cellulose Nanofibrils Based Hydrogels for Biomedical Applications. Carbohydr. Polym. 2019, 209, 130–144. DOI: 10.1016/j.carbpol.2019.01.020.
  • Tudoroiu, E. E.; Dinu-Pîrvu, C. E.; Kaya, M. G. A.; Popa, L.; Anuța, V.; Prisada, R. M.; Ghica, M. V. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals 2021, 14, 1215. DOI: 10.3390/ph14121215.
  • Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater.2021, 33, e2005569. DOI: 10.1002/adma.202005569.
  • Subhedar, A.; Bhadauria, S.; Ahankari, S.; Kargarzadeh, H. Nanocellulose in Biomedical and Biosensing Applications: A Review. Int. J. Biol. Macromol. 2021, 166, 587–600. DOI: 10.1016/j.ijbiomac.2020.10.217.
  • Nascimento, D. M.; Nunes, Y. L.; Figueirêdo, M. C. B.; De Azeredo, H. M. C.; Aouada, F. A.; Feitosa, J. P. A.; Rosa, M. F.; Dufresne, A. Nanocellulose Nanocomposite Hydrogels: Technological and Environmental Issues. Green Chem. 2018, 20, 2428–2448. DOI: 10.1039/C8GC00205C.
  • Revin, V. V.; Liyaskina, E. V.; Parchaykina, M. V.; Kuzmenko, T. P.; Kurgaeva, I. V.; Revin, V. D.; Ullah, M. W. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers. (Basel) 2022, 14, 4670. DOI: 10.3390/polym14214670.
  • Biranje, S. S.; Shi, Y.; Sun, J.; Cheng, L.; Jiao, H.; Lu, X.; Sethupathy, S.; Wang, Q.; Adivarekar, R. V.; Liu, J. Cellulose Nanofibril/Polylysine-Based 3D Composite Antibacterial Scaffold for Wound Healing Applications. Cellulose 2023, 30, 5289–5306. DOI: 10.1007/s10570-023-05210-y.
  • Oprică, G. M.; Panaitescu, D. M.; Lixandru, B. E.; Uşurelu, C. D.; Gabor, A. R.; Nicolae, C. A.; Fierascu, R. C.; Frone, A. N. Plant-Derived Nanocellulose with Antibacterial Activity for Wound Healing Dressing. Pharmaceutics2023, 15, 2672. DOI: 10.3390/pharmaceutics15122672.
  • Horue, M.; Silva, J. M.; Berti, I. R.; Brandão, L. R.; Barud, H. d S.; Castro, G. R. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics 2023, 15, 424. DOI: 10.3390/pharmaceutics15020424.
  • Pita-Vilar, M.; Concheiro, A.; Alvarez-Lorenzo, C.; Diaz-Gomez, L. Recent Advances in 3D Printed Cellulose-Based Wound Dressings: A Review on in Vitro and in Vivo Achievements. Carbohydr. Polym. 2023, 321, 121298. DOI: 10.1016/j.carbpol.2023.121298.
  • Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile Application of Nanocellulose : From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 2019, 9, 164. DOI: 10.3390/nano9020164.
  • Lan, X.; Ma, Z.; Szojka, A. R. A.; Kunze, M.; Mulet-Sierra, A.; Vyhlidal, M. J.; Boluk, Y.; Adesida, A. B. TEMPO-Oxidized Cellulose Nanofiber-Alginate Hydrogel as a Bioink for Human Meniscus Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 766399. DOI: 10.3389/fbioe.2021.766399.
  • Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. Engl. 2011, 50, 5438–5466. DOI: 10.1002/anie.201001273.
  • Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites – a Review. Biotechnol. Rep. (Amst) 2019, 21, e00316. DOI: 10.1016/j.btre.2019.e00316.
  • Habibi, Y. Key Advances in the Chemical Modification of Nanocelluloses. Chem. Soc. Rev. 2014, 43, 1519–1542. DOI: 10.1039/c3cs60204d.
  • Pennells, J.; Godwin, I. D.; Amiralian, N.; Martin, D. J. Trends in the Production of Cellulose Nanofibers from Non-Wood Sources. Cellulose 2020, 27, 575–593. DOI: 10.1007/s10570-019-02828-9.
  • Norrrahim, M. N. F.; Nurazzi, N. M.; Jenol, M. A.; Farid, M. A. A.; Janudin, N.; Ujang, F. A.; Yasim-Anuar, T. A. T.; Syed Najmuddin, S. U. F.; Ilyas, R. A. Emerging Development of Nanocellulose as an Antimicrobial Material: An Overview. Mater. Adv. 2021, 2, 3538–3551. DOI: 10.1039/D1MA00116G.
  • Dias, I. K. R.; Lacerda, B. K.; Arantes, V. High-Yield Production of Rod-like and Spherical Nanocellulose by Controlled Enzymatic Hydrolysis of Mechanically Pretreated Cellulose. Int. J. Biol. Macromol. 2023, 242, 125053. DOI: 10.1016/j.ijbiomac.2023.125053.
  • Heise, K., Kontturi, E., Allahverdiyeva, Y., Tammelin, T., Linder, M. B, Ikkala, O., Nonappa. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications, Adv. Mater. 2021, 33, e2004349. DOI: 10.1002/adma.202004349.
  • Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A Review of Nanocellulose as a New Material towards Environmental Sustainability. Sci. Total Environ. 2021, 775, 145871. DOI: 10.1016/j.scitotenv.2021.145871.
  • Ribeiro, R. S. A.; Pohlmann, B. C.; Calado, V.; Bojorge, N.; Pereira, N. Production of Nanocellulose by Enzymatic Hydrolysis: Trends and Challenges. Eng. Life Sci. 2019, 19, 279–291. DOI: 10.1002/elsc.201800158.
  • Chen, W.; Yu, H.; Liu, Y.; Hai, Y.; Zhang, M.; Chen, P. Isolation and Characterization of Cellulose Nanofibers from Four Plant Cellulose Fibers Using a Chemical-Ultrasonic Process. Cellulose 2011, 18, 433–442. DOI: 10.1007/s10570-011-9497-z.
  • Lee, K. Y.; Tammelin, T.; Schulfter, K.; Kiiskinen, H.; Samela, J.; Bismarck, A. High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. ACS Appl. Mater. Interfaces. 2012, 4, 4078–4086. DOI: 10.1021/am300852a.
  • Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3, 71–85. DOI: 10.1039/c0nr00583e.
  • Moon, S. M.; Heo, J. E.; Jeon, J.; Eom, T.; Jang, D.; Her, K.; Cho, W.; Woo, K.; Wie, J. J.; Shim, B. S. High Crystallinity of Tunicate Cellulose Nanofibers for High-Performance Engineering Films. Carbohydr. Polym. 2021, 254, 117470. DOI: 10.1016/j.carbpol.2020.117470.
  • Kafy, A.; Kim, H. C.; Zhai, L.; Kim, J. W.; Van Hai, L.; Kang, T. J.; Kim, J. Cellulose Long Fibers Fabricated from Cellulose Nanofibers and Its Strong and Tough Characteristics. Sci. Rep. 2017, 7, 17683. DOI: 10.1038/s41598-017-17713-3.
  • Eichhorn, S. J.; Dufresne, A.; Aranguren, M.; Marcovich, N. E.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. DOI: 10.1007/s10853-009-3874-0.
  • Courchene, C. E.; Peter, G. F.; Litvay, J. Cellulose Microfibril Angle as a Determinant of Paper Strength and Hygroexpansivity in Pinus Taeda L. Wood Fiber Sci. 2006, 38, 112–120.
  • Gassan, J.; Chate, A.; Bledzki, A. K. Calculation of Elastic Properties of Natural Fibers. J. Mater. Sci 2001, 36, 3715–3720. DOI: 10.1023/A:1017969615925.
  • Krauss, A. Variation in the Microfibril Angle in Tangential Walls of Pine Wood Tracheids (Pinus Sylvestris L.). Wood Res. 2010, 55, 7–12.
  • Madsen, B.; Gamstedt, E. K. Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Adv. Mater. Sci. Eng. 2013, 2013, 1–14. DOI: 10.1155/2013/564346.
  • Sirviö, J. A.; Hyypiö, K.; Asaadi, S.; Junka, K.; Liimatainen, H. High-Strength Cellulose Nanofibres Produced via Swelling Pretreatment Based on a Choline Chloride – Imidazole Deep Eutectic Solvent †. Green Chem. 2020, 22, 1763–1775. DOI: 10.1039/C9GC04119B.
  • Singh, S. S.; Salem, D. R.; Sani, R. K. Spectroscopy, Microscopy, and Other Techniques for Characterization of Bacterial Nanocellulose and Comparison with Plant-Derived Nanocellulose. In Microbial and Natural Macromolecules: Synthesis and Applications; Das, S., Dash, H.R. Eds. Elsevier Inc.: London, UK, 2020.
  • Amara, C.; El Mahdi, A.; Medimagh, R.; Khwaldia, K. Nanocellulose-Based Composites for Packaging Applications. Curr. Opin. Green Sustain. Chem. 2021, 31, 100512. DOI: 10.1016/j.cogsc.2021.100512.
  • Satyamurthy, P.; Jain, P.; Balasubramanya, R. H.; Vigneshwaran, N. Preparation and Characterization of Cellulose Nanowhiskers from Cotton Fibres by Controlled Microbial Hydrolysis. Carbohydr. Polym. 2011, 83, 122–129. DOI: 10.1016/j.carbpol.2010.07.029.
  • Beltramino, F.; Roncero, M. B.; Vidal, T.; Torres, A. L.; Valls, C. Increasing Yield of Nanocrystalline Cellulose Preparation Process by a Cellulase Pretreatment. Bioresour. Technol. 2015, 192, 574–581. DOI: 10.1016/j.biortech.2015.06.007.
  • Battista, O. A.; Coppick, S.; Howsmon, J. A.; Morehead, F. F.; Sisson, W. A. Level-off Degree of Polymerization: Relation to Polyphase Structure of Cellulose Fibres. Ind. Eng. Chem. 1956, 48, 333–335. DOI: 10.1021/ie50554a046.
  • Qi, Y.; Wang, S.; Liza, A. A.; Li, J.; Yang, G.; Zhu, W.; Song, J.; Xiao, H.; Li, H.; Guo, J. Controlling the Nanocellulose Morphology by Preparation Conditions. Carbohydr. Polym. 2023, 319, 121146. DOI: 10.1016/j.carbpol.2023.121146.
  • van der Berg, O.; Capadona, J. R.; Weder, C. Preparation of Homogeneous Dispersions of Tunicate Cellulose Whiskers in Organic Solvents. Biomacromolecules 2007, 8, 1353–1357. DOI: 10.1021/bm061104q.
  • Espinosa, S. C.; Kuhnt, T.; Johan Foster, E.; Weder, C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules 2013, 14, 1223–1230. DOI: 10.1021/bm400219u.
  • Sadeghifar, H.; Filpponen, I.; Clarke, S. P.; Brougham, D. F.; Argyropoulos, D. S. Production of Cellulose Nanocrystals Using Hydrobromic Acid and Click Reactions on Their Surface. J. Mater. Sci. 2011, 46, 7344–7355. DOI: 10.1007/s10853-011-5696-0.
  • Sucaldito, M. R.; Camacho, D. H. Characteristics of Unique HBr-Hydrolyzed Cellulose Nanocrystals from Freshwater Green Algae (Cladophora Rupestris) and Its Reinforcement in Starch-Based Film. Carbohydr. Polym. 2017, 169, 315–323. DOI: 10.1016/j.carbpol.2017.04.031.
  • Petersson, L.; Kvien, I.; Oksman, K. Structure and Thermal Properties of Poly(Lactic Acid)/Cellulose Whiskers Nanocomposite Materials. Compos. Sci. Technol. 2007, 67, 2535–2544. DOI: 10.1016/j.compscitech.2006.12.012.
  • Beuguel, Q.; Tavares, J. R.; Carreau, P. J.; Heuzey, M. C. Ultrasonication of Spray- and Freeze-Dried Cellulose Nanocrystals in Water. J. Colloid Interface Sci. 2018, 516, 23–33. DOI: 10.1016/j.jcis.2018.01.035.
  • Rämänen, P.; Penttilä, P. A.; Svedström, K.; Maunu, S. L.; Serimaa, R. The Effect of Drying Method on the Properties and Nanoscale Structure of Cellulose Whiskers. Cellulose 2012, 19, 901–912. DOI: 10.1007/s10570-012-9695-3.
  • Peng, Y.; Gardner, D. J.; Han, Y.; Kiziltas, A.; Cai, Z.; Tshabalala, M. A. Influence of Drying Method on the Material Properties of Nanocellulose I: Thermostability and Crystallinity. Cellulose 2013, 20, 2379–2392. DOI: 10.1007/s10570-013-0019-z.
  • Bukharina, D.; Xiong, R.; Kim, M.; Zhang, X.; Kang, S.; Tsukruk, V. V. Chiral Nematic Liquid Crystal Organization of Natural Polymer Nanocrystals. Liq. Cryst. 2022, 50, 121–129. DOI: 10.1080/02678292.2023.2168776.
  • Liu, B.; Cheng, L.; Yuan, Y.; Hu, J.; Zhou, L.; Zong, L.; Duan, Y.; Zhang, J. Liquid-Crystalline Assembly of Spherical Cellulose Nanocrystals. Int. J. Biol. Macromol. 2023, 242, 124738. DOI: 10.1016/j.ijbiomac.2023.124738.
  • Thomas, P.; Duolikun, T.; Rumjit, N. P.; Moosavi, S.; Lai, C. W.; Bin Johan, M. R.; Fen, L. B. Comprehensive Review on Nanocellulose: Recent Developments, Challenges and Future Prospects. J. Mech. Behav. Biomed. Mater. 2020, 110, 103884. DOI: 10.1016/j.jmbbm.2020.103884.
  • Klemm, D.; Cranston, E. D.; Fischer, D.; Gama, M.; Kedzior, S. A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a Natural Source for Groundbreaking Applications in Materials Science: Today’s State. Mater. Today 2018, 21, 720–748. DOI: 10.1016/j.mattod.2018.02.001.
  • Charreau, H.; Cavallo, E.; Foresti, M. L. Patents Involving Nanocellulose: Analysis of Their Evolution since. Carbohydr. Polym. 2020, 237, 116039. DOI: 10.1016/j.carbpol.2020.116039.
  • Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. DOI: 10.3389/fbioe.2020.605374.
  • Jozala, A. F.; de Lencastre-Novaes, L. C.; Lopes, A. M.; de Carvalho Santos-Ebinuma, V.; Mazzola, P. G.; Pessoa, A.; Jr, Grotto, D.; Gerenutti, M.; Chaud, M. V. Bacterial Nanocellulose Production and Application: A 10-Year Overview. Appl. Microbiol. Biotechnol. 2016, 100, 2063–2072. DOI: 10.1007/s00253-015-7243-4.
  • Watanabe, K.; Tabuchi, M.; Morinaga, Y.; Yoshinaga, F. Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose 1998, 5, 187–200. DOI: 10.1023/A:1009272904582.
  • Li, C. W.; Wang, Q.; Li, J.; Hu, M.; Shi, S. J.; Li, Z. W.; Wu, G. L.; Cui, H. H.; Li, Y. Y.; Zhang, Q.; et al. Silver Nanoparticles/Chitosan Oligosaccharide/Poly(Vinyl Alcohol) Nanofiber Promotes Wound Healing by Activating TGFβ1/Smad Signaling Pathway. Int. J. Nanomedicine. 2016, 11, 373–386. DOI: 10.2147/IJN.S91975.
  • Zhang, M.; Zhao, X. Alginate Hydrogel Dressings for Advanced Wound Management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. DOI: 10.1016/j.ijbiomac.2020.07.311.
  • Mofazzal Jahromi, M. A.; Sahandi Zangabad, P.; Moosavi Basri, S. M.; Sahandi Zangabad, K.; Ghamarypour, A.; Aref, A. R.; Karimi, M.; Hamblin, M. R. Nanomedicine and Advanced Technologies for Burns: Preventing Infection and Facilitating Wound Healing. Adv. Drug Deliv. Rev. 2018, 123, 33–64. DOI: 10.1016/j.addr.2017.08.001.
  • Liu, T.; Lu, Y.; Zhan, R.; Qian, W.; Luo, G. Nanomaterials and Nanomaterials-Based Drug Delivery to Promote Cutaneous Wound Healing. Adv. Drug Deliv. Rev. 2023, 193, 114670. DOI: 10.1016/j.addr.2022.114670.
  • Ambekar, R. S.; Kandasubramanian, B. Advancements in Nanofibers for Wound Dressing: A Review. Eur. Polym. J. 2019, 117, 304–336. DOI: 10.1016/j.eurpolymj.2019.05.020.
  • Kumar, M.; Hilles, A. R.; Ge, Y.; Bhatia, A.; Mahmood, S. A Review on Polysaccharides Mediated Electrospun Nanofibers for Diabetic Wound Healing: Their Current Status with Regulatory Perspective. Int. J. Biol. Macromol. 2023, 234, 123696. DOI: 10.1016/j.ijbiomac.2023.123696.
  • Kim, H. S.; Sun, X.; Lee, J. H.; Kim, H. W.; Fu, X.; Leong, K. W. Advanced Drug Delivery Systems and Artificial Skin Grafts for Skin Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 209–239. DOI: 10.1016/j.addr.2018.12.014.
  • Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound Dressing Products: A Translational Investigation from the Bench to the Market. Eng. Regen 2022, 3, 182–200. DOI: 10.1016/j.engreg.2022.04.002.
  • Zhang, Y.; Zhu, Y.; Ma, P.; Wu, H.; Xiao, D.; Zhang, Y.; Sui, X.; Zhang, L.; Dong, A. Functional Carbohydrate-Based Hydrogels for Diabetic Wound Therapy. Carbohydr. Polym. 2023, 312, 120823. DOI: 10.1016/j.carbpol.2023.120823.
  • Deng, X.; Gould, M.; Ali, M. A. A Review of Current Advancements for Wound Healing: Biomaterial Applications and Medical Devices. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 2542–2573. DOI: 10.1002/jbm.b.35086.
  • Liu, R.; Dai, L.; Si, C.; Zeng, Z. Antibacterial and Hemostatic Hydrogel via Nanocomposite from Cellulose Nanofibers. Carbohydr. Polym. 2018, 195, 63–70. DOI: 10.1016/j.carbpol.2018.04.085.
  • Mohamed, E.; Coupland, L. A.; Crispin, P. J.; Fitzgerald, A.; Nisbet, D. R.; Tsuzuki, T. Non-Oxidized Cellulose Nanofibers as a Topical Hemostat: In Vitro Thromboelastometry Studies of Structure vs Function. Carbohydr. Polym. 2021, 265, 118043. DOI: 10.1016/j.carbpol.2021.118043.
  • Mohamed, E.; Fitzgerald, A.; Tsuzuki, T. The Role of Nanoscale Structures in the Development of Topical Hemostatic Agents. Mater. Today Nano 2021, 16, 100137. DOI: 10.1016/j.mtnano.2021.100137.
  • Park, S. U.; Lee, B. K.; Kim, M. S.; Park, K. K.; Sung, W. J.; Kim, H. Y.; Han, D. G.; Shim, J. S.; Lee, Y. J.; Kim, S. H.; et al. The Possibility of Microbial Cellulose for Dressing and Scaffold Materials. Int. Wound J. 2014, 11, 35–43. DOI: 10.1111/j.1742-481X.2012.01035.x.
  • Xu, C.; Ma, X.; Chen, S.; Tao, M.; Yuan, L.; Jing, Y. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. Int. J. Mol. Sci. 2014, 15, 10855–10867. DOI: 10.3390/ijms150610855.
  • Kucińska-Lipka, J.; Gubanska, I.; Janik, H. Bacterial Cellulose in the Field of Wound Healing and Regenerative Medicine of Skin: recent Trends and Future Prospectives. Polym. Bull. 2015, 72, 2399–2419. DOI: 10.1007/s00289-015-1407-3.
  • Fu, L.; Zhou, P.; Zhang, S.; Yang, G. Evaluation of Bacterial Nanocellulose-Based Uniform Wound Dressing for Large Area Skin Transplantation. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2995–3000. DOI: 10.1016/j.msec.2013.03.026.
  • Lin, P. H.; Sermersheim, M.; Li, H.; Lee, P. H. U.; Steinberg, S. M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2018, 10, 1–20. DOI: 10.3390/nu10010016.
  • Wang, M.; Huang, X.; Zheng, H.; Tang, Y.; Zeng, K.; Shao, L.; Li, L. Nanomaterials Applied in Wound Healing: Mechanisms, Limitations and Perspectives. J. Control. Release 2021, 337, 236–247. DOI: 10.1016/j.jconrel.2021.07.017.
  • Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R. M. Microbial cellulose - The Natural Power to Heal Wounds. Biomaterials 2006, 27, 145–151. DOI: 10.1016/j.biomaterials.2005.07.035.
  • Lin, W. C.; Lien, C. C.; Yeh, H. J.; Yu, C. M.; Hsu, S. H. Bacterial Cellulose and Bacterial Cellulose-Chitosan Membranes for Wound Dressing Applications. Carbohydr. Polym. 2013, 94, 603–611. DOI: 10.1016/j.carbpol.2013.01.076.
  • Qiu, Y.; Qiu, L.; Cui, J.; Wei, Q. Bacterial Cellulose and Bacterial Cellulose-Vaccarin Membranes for Wound Healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 303–309. DOI: 10.1016/j.msec.2015.10.016.
  • Muangman, P.; Opasanon, S.; Suwanchot, S.; Thangthed, O. Efficiency of Microbial Cellulose Dressing in Partial-Thickness Burn Wounds. J. Am. Col. Certif. Wound Spec. 2011, 3, 16–19. DOI: 10.1016/j.jcws.2011.04.001.
  • Zahel, P.; Beekmann, U.; Eberlein, T.; Schmitz, M.; Werz, O.; Kralisch, D. Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care. Pharmaceuticals 2022, 15, DOI: 10.3390/ph15060683.
  • Mohamed, E.; Wang, Y.; Crispin, P. J.; Fitzgerald, A.; Dahlstrom, J. E.; Fowler, S.; Nisbet, D. R.; Tsuzuki, T.; Coupland, L. A. Superior Hemostatic and Wound-Healing Properties of Gel and Sponge Forms of Nonoxidized Cellulose Nanofibers: In Vitro and in Vivo Studies. Macromol. Biosci. 2022, 22, 1–12.
  • Bakadia, B. M.; Boni, B. O. O.; Ahmed, A. A. Q.; Zheng, R.; Shi, Z.; Ullah, M. W.; Lamboni, L.; Yang, G. In Situ Synthesized Porous Bacterial Cellulose/Poly(Vinyl Alcohol)-Based Silk Sericin and Azithromycin Release System for Treating Chronic Wound Biofilm. Macromol. Biosci. 2022, 22, 1–20.
  • Alizadehgiashi, M.; Nemr, C. R.; Chekini, M.; Pinto Ramos, D.; Mittal, N.; Ahmed, S. U.; Khuu, N.; Kelley, S. O.; Kumacheva, E. Multifunctional 3D-Printed Wound Dressings. ACS Nano. 2021, 15, 12375–12387. DOI: 10.1021/acsnano.1c04499.
  • Jia, B.; Li, G.; Cao, E.; Luo, J.; Zhao, X.; Huang, H. Recent Progress of Antibacterial Hydrogels in Wound Dressings. Mater. Today. Bio 2023, 19, 100582. DOI: 10.1016/j.mtbio.2023.100582.
  • Zhang, Q.; Zhu, J.; Jin, S.; Zheng, Y.; Gao, W.; Wu, D.; Yu, J.; Dai, Z. Cellulose-Nanofibril-Reinforced Hydrogels with pH Sensitivity and Mechanical Stability for Wound Healing. Mater. Lett. 2022, 323, 132596. DOI: 10.1016/j.matlet.2022.132596.
  • Xu, Q.; Chang, M.; Zhang, Y.; Wang, E.; Xing, M.; Gao, L.; Huan, Z.; Guo, F.; Chang, J. PDA/Cu Bioactive Hydrogel with “Hot Ions Effect” for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing. ACS Appl. Mater. Interfaces. 2020, 12, 31255–31269. DOI: 10.1021/acsami.0c08890.
  • Sen, C. K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Christopher Ellison, E.; Hunt, T. K.; Roy, S. Copper-Induced Vascular Endothelial Growth Factor Expression and Wound Healing. Am. J. Physiol. - Hear. Circ. Physiol. 2002, 282, 1821–1827.
  • Gérard, C.; Bordeleau, L. J.; Barralet, J.; Doillon, C. J. The Stimulation of Angiogenesis and Collagen Deposition by Copper. Biomaterials 2010, 31, 824–831. DOI: 10.1016/j.biomaterials.2009.10.009.
  • He, W.; Wang, X.; Hang, T.; Chen, J.; Wang, Z.; Mosselhy, D. A.; Xu, J.; Wang, S.; Zheng, Y. Fabrication of Cu2+-Loaded Phase-Transited Lysozyme Nanofilm on Bacterial Cellulose: Antibacterial, anti-Inflammatory, and Pro-Angiogenesis for Bacteria-Infected Wound Healing. Carbohydr. Polym. 2023, 309, 120681. DOI: 10.1016/j.carbpol.2023.120681.
  • Zhang, M.; Chen, S.; Zhong, L.; Wang, B.; Wang, H.; Hong, F. Zn2+-Loaded TOBC Nanofiber-Reinforced Biomimetic Calcium Alginate Hydrogel for Antibacterial Wound Dressing. Int. J. Biol. Macromol. 2020, 143, 235–242. DOI: 10.1016/j.ijbiomac.2019.12.046.
  • Fonseca, D. F. S.; Carvalho, J. P. F.; Bastos, V.; Oliveira, H.; Moreirinha, C.; Almeida, A.; Silvestre, A. J. D.; Vilela, C.; Freire, C. S. R. Antibacterial Multi-Layered Nanocellulose-Based Patches Loaded with Dexpanthenol for Wound Healing Applications. Nanomaterials 2020, 10, 2469. DOI: 10.3390/nano10122469.
  • Ebner, F.; Heller, A.; Rippke, F.; Tausch, I. Topical Use of Dexpanthenol in Skin Disorders. Am. J. Clin. Dermatol. 2002, 3, 427–433. DOI: 10.2165/00128071-200203060-00005.
  • Loh, E. Y. X.; Mohamad, N.; Fauzi, M. B.; Ng, M. H.; Ng, S. F.; Mohd Amin, M. C. I. Development of a Bacterial Cellulose-Based Hydrogel Cell Carrier Containing Keratinocytes and Fibroblasts for Full-Thickness Wound Healing. Sci. Rep. 2018, 8, 2875. DOI: 10.1038/s41598-018-21174-7.
  • Basu, A.; Strømme, M.; Ferraz, N. Towards Tunable Protein-Carrier Wound Dressings Based on Nanocellulose Hydrogels Crosslinked with Calcium Ions. Nanomaterials 2018, 8, 550. DOI: 10.3390/nano8070550.
  • Shin, J. U.; Gwon, J.; Lee, S. Y.; Yoo, H. S. Silver-Incorporated Nanocellulose Fibers for Antibacterial Hydrogels. ACS Omega. 2018, 3, 16150–16157. DOI: 10.1021/acsomega.8b02180.
  • Zmejkoski, D.; Spasojević, D.; Orlovska, I.; Kozyrovska, N.; Soković, M.; Glamočlija, J.; Dmitrović, S.; Matović, B.; Tasić, N.; Maksimović, V.; et al. Bacterial Cellulose-Lignin Composite Hydrogel as a Promising Agent in Chronic Wound Healing. Int. J. Biol. Macromol. 2018, 118, 494–503. DOI: 10.1016/j.ijbiomac.2018.06.067.
  • Mohamad, N.; Loh, E. Y. X.; Fauzi, M. B.; Ng, M. H.; Mohd Amin, M. C. I. In Vivo Evaluation of Bacterial Cellulose/Acrylic Acid Wound Dressing Hydrogel Containing Keratinocytes and Fibroblasts for Burn Wounds. Drug Deliv. Transl. Res. 2019, 9, 444–452. DOI: 10.1007/s13346-017-0475-3.
  • Khamrai, M.; Banerjee, S. L.; Paul, S.; Samanta, S.; Kundu, P. P. Curcumin Entrapped Gelatin/Ionically Modified Bacterial Cellulose Based Self-Healable Hydrogel Film: An Eco-Friendly Sustainable Synthesis Method of Wound Healing Patch. Int. J. Biol. Macromol. 2019, 122, 940–953. DOI: 10.1016/j.ijbiomac.2018.10.196.
  • Shefa, A. A.; Sultana, T.; Park, M. K.; Lee, S. Y.; Gwon, J. G.; Lee, B. T. Curcumin Incorporation into an Oxidized Cellulose Nanofiber-Polyvinyl Alcohol Hydrogel System Promotes Wound Healing. Mater. Des. 2020, 186, 108313. DOI: 10.1016/j.matdes.2019.108313.
  • Ribeiro, A. S.; Costa, S. M.; Ferreira, D. P.; Calhelha, R. C.; Barros, L.; Stojković, D.; Soković, M.; Ferreira, I. C. F. R.; Fangueiro, R. Chitosan/Nanocellulose Electrospun Fibers with Enhanced Antibacterial and Antifungal Activity for Wound Dressing Applications. React. Funct. Polym. 2021, 159, 104808. DOI: 10.1016/j.reactfunctpolym.2020.104808.
  • Yang, W.; Xu, F.; Ma, X.; Guo, J.; Li, C.; Shen, S.; Puglia, D.; Chen, J.; Xu, P.; Kenny, J.; Ma, P. Highly-Toughened PVA/Nanocellulose Hydrogels with anti-Oxidative and Antibacterial Properties Triggered by lignin-Ag Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112385. DOI: 10.1016/j.msec.2021.112385.
  • Sultana, T.; Hossain, M.; Rahaman, S.; Kim, Y. S.; Gwon, J. G.; Lee, B. T. Multi-Functional Nanocellulose-Chitosan Dressing Loaded with Antibacterial Lawsone for Rapid Hemostasis and Cutaneous Wound Healing. Carbohydr. Polym. 2021, 272, 118482. DOI: 10.1016/j.carbpol.2021.118482.
  • Basti, A. T. K.; Jonoobi, M.; Sepahvand, S.; Ashori, A.; Siracusa, V.; Rabie, D.; Mekonnen, T. H.; Naeijian, F. Employing Cellulose Nanofiber-Based Hydrogels for Burn Dressing. Polymers. (Basel)2022, 14,1207. DOI: 10.3390/polym14061207.
  • Jose, J.; Pai, A. R.; Gopakumar, D. A.; Dalvi, Y.; Ruby, V.; Bhat, S. G.; Pasquini, D.; Kalarikkal, N.; Thomas, S. Novel 3D Porous Aerogels Engineered at Nano Scale from Cellulose Nano Fibers and Curcumin: An Effective Treatment for Chronic Wounds. Carbohydr. Polym. 2022, 287, 119338. DOI: 10.1016/j.carbpol.2022.119338.
  • Afrin Shefa, A.; Park, M.; Gwon, J. G.; Lee, B. T. Alpha Tocopherol-Nanocellulose Loaded Alginate Membranes and Pluronic Hydrogels for Diabetic Wound Healing. Mater. Des. 2022, 224, 111404. DOI: 10.1016/j.matdes.2022.111404.
  • Zmejkoski, D. Z.; Marković, Z. M.; Mitić, D. D.; Zdravković, N. M.; Kozyrovska, N. O.; Bugárová, N.; Todorović Marković, B. M. Antibacterial Composite Hydrogels of Graphene Quantum Dots and Bacterial Cellulose Accelerate Wound Healing. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 1796–1805. DOI: 10.1002/jbm.b.35037.
  • Rooholghodos, S. H.; Pourmadadi, M.; Yazdian, F.; Rashedi, H. Optimization of Electrospun CQDs-Fe3O4-RE Loaded PVA-Cellulose Nanofibrils via Central Composite Design for Wound Dressing Applications: Kinetics and in Vitro Release Study. Int. J. Biol. Macromol. 2023, 237, 124067. DOI: 10.1016/j.ijbiomac.2023.124067.
  • Razack, S. A.; Lee, Y.; Shin, H.; Duraiarasan, S.; Chun, B. S.; Kang, H. W. Cellulose Nanofibrils Reinforced Chitosan-Gelatin Based Hydrogel Loaded with Nanoemulsion of Oregano Essential Oil for Diabetic Wound Healing Assisted by Low Level Laser Therapy. Int. J. Biol. Macromol. 2023, 226, 220–239. DOI: 10.1016/j.ijbiomac.2022.12.003.
  • Abdul Khalil, H. P. S.; Yahya, E. B.; Tajarudin, H. A.; Surya, I.; Muhammad, S.; Fazita, M. R. N. Enhancing the Properties of Industrial Waste Nanocellulose Bioaerogels Using Turmeric Nano Particles. Ind. Crops Prod. 2023, 197, 116500. DOI: 10.1016/j.indcrop.2023.116500.
  • Yan, J.; Nie, Y.; Luo, M.; Chen, Z.; He, B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front. Pharmacol. 2021, 12, 694475. DOI: 10.3389/fphar.2021.694475.
  • Poonguzhali, R.; Khaleel Basha, S.; Sugantha Kumari, V. Novel Asymmetric Chitosan/PVP/Nanocellulose Wound Dressing: In Vitro and in Vivo Evaluation. Int. J. Biol. Macromol. 2018, 112, 1300–1309. DOI: 10.1016/j.ijbiomac.2018.02.073.
  • Razi, M. A. Chitosan Oligosaccharides as a Nanomaterial Platform: Biological Properties and Applications in the Biomedical and Pharmaceutical Fields. Makara J. Sci. 2022, 26, 238–254.
  • Huang, W.; Wang, Y.; Huang, Z.; Wang, X.; Chen, L.; Zhang, Y.; Zhang, L. On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Appl. Mater. Interfaces. 2018, 10, 41076–41088. DOI: 10.1021/acsami.8b14526.
  • Patel, D. K.; Ganguly, K.; Hexiu, J.; Dutta, S. D.; Patil, T. V.; Lim, K. T. Functionalized Chitosan/Spherical Nanocellulose-Based Hydrogel with Superior Antibacterial Efficiency for Wound Healing. Carbohydr. Polym. 2022, 284, 119202. DOI: 10.1016/j.carbpol.2022.119202.
  • Yuan, H.; Chen, L.; Hong, F. F. A Biodegradable Antibacterial Nanocomposite Based on Oxidized Bacterial Nanocellulose for Rapid Hemostasis and Wound Healing. ACS Appl. Mater. Interfaces. 2020, 12, 3382–3392. DOI: 10.1021/acsami.9b17732.
  • Cheng, H.; Xiao, D.; Tang, Y.; Wang, B.; Feng, X.; Lu, M.; Vancso, G. J.; Sui, X. Sponges with Janus Character from Nanocellulose: Preparation and Applications in the Treatment of Hemorrhagic Wounds. Adv. Healthc. Mater 2020, 9, 1–8.
  • Ahn, S.; Chantre, C. O.; Gannon, A. R.; Lind, J. U.; Campbell, P. H.; Grevesse, T.; O’Connor, B. B.; Parker, K. K. Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular Matrix for Enhanced Wound Healing. Adv. Healthc. Mater. 2018, 7, 1–13.
  • Xu, W.; Molino, B. Z.; Cheng, F.; Molino, P. J.; Yue, Z.; Su, D.; Wang, X.; Willför, S.; Xu, C.; Wallace, G. G. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. ACS Appl. Mater. Interfaces. 2019, 11, 8838–8848. DOI: 10.1021/acsami.8b21268.
  • Pajorova, J.; Skogberg, A.; Hadraba, D.; Broz, A.; Travnickova, M.; Zikmundova, M.; Honkanen, M.; Hannula, M.; Lahtinen, P.; Tomkova, M.; et al. Cellulose Mesh with Charged Nanocellulose Coatings as a Promising Carrier of Skin and Stem Cells for Regenerative Applications. Biomacromolecules 2020, 21, 4857–4870. DOI: 10.1021/acs.biomac.0c01097.
  • Blasi-Romero, A.; Palo-Nieto, C.; Sandström, C.; Lindh, J.; Strømme, M.; Ferraz, N. In Vitro Investigation of Thiol-Functionalized Cellulose Nanofibrils as a Chronic Wound Environment Modulator. Polymers. (Basel) 2021, 13,249. DOI: 10.3390/polym13020249.
  • Kim, S.; Ko, J.; Choi, J. H.; Kang, J. Y.; Lim, C.; Shin, M.; Lee, D. W.; Kim, J. W. Antigen–Antibody Interaction-Derived Bioadhesion of Bacterial Cellulose Nanofibers to Promote Topical Wound Healing. Adv. Funct. Mater. 2022, 32, 2110557. DOI: 10.1002/adfm.202110557.
  • Shahriari-Khalaji, M.; Li, G.; Liu, L.; Sattar, M.; Chen, L.; Zhong, C.; Hong, F. F. A poly-L-Lysine-Bonded TEMPO-Oxidized Bacterial Nanocellulose-Based Antibacterial Dressing for Infected Wound Treatment. Carbohydr. Polym. 2022, 287, 119266. DOI: 10.1016/j.carbpol.2022.119266.
  • Biranje, S. S.; Sun, J.; Cheng, L.; Cheng, Y.; Shi, Y.; Yu, S.; Jiao, H.; Zhang, M.; Lu, X.; Han, W.; et al. Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application. ACS Appl. Mater. Interfaces. 2022, 14, 3792–3808. DOI: 10.1021/acsami.1c21039.
  • Eskilson, O.; Zattarin, E.; Berglund, L.; Oksman, K.; Hanna, K.; Rakar, J.; Sivlér, P.; Skog, M.; Rinklake, I.; Shamasha, R.; et al. Nanocellulose Composite Wound Dressings for Real-Time pH Wound Monitoring. Mater. Today. Bio 2023, 19, 100574. DOI: 10.1016/j.mtbio.2023.100574.
  • Liu, Y.; Sui, Y.; Liu, C.; Liu, C.; Wu, M.; Li, B.; Li, Y. A Physically Crosslinked Polydopamine/Nanocellulose Hydrogel as Potential Versatile Vehicles for Drug Delivery and Wound Healing. Carbohydr. Polym. 2018, 188, 27–36. DOI: 10.1016/j.carbpol.2018.01.093.
  • Chen, R.; Zhao, C.; Chen, Z.; Shi, X.; Zhu, H.; Bu, Q.; Wang, L.; Wang, C.; He, H. A Bionic Cellulose Nanofiber-Based Nanocage Wound Dressing for NIR-Triggered Multiple Synergistic Therapy of Tumors and Infected Wounds. Biomaterials 2022, 281, 121330. DOI: 10.1016/j.biomaterials.2021.121330.
  • Dong, D.; Chen, R.; Jia, J.; Zhao, C.; Chen, Z.; Lu, Q.; Sun, Y.; Huang, W.; Wang, C.; Li, Y.; He, H. Tailoring and Application of a Multi-Responsive Cellulose Nanofibre-Based 3D Nanonetwork Wound Dressing. Carbohydr. Polym. 2023, 305, 120542. DOI: 10.1016/j.carbpol.2023.120542.
  • Zhou, T.; Qiao, Z.; Yang, M.; Wu, K.; Xin, N.; Xiao, J.; Liu, X.; Wu, C.; Wei, D.; Sun, J.; Fan, H. Hydrogen-Bonding Topological Remodeling Modulated Ultra-Fine Bacterial Cellulose Nanofibril-Reinforced Hydrogels for Sustainable Bioelectronics. Biosens. Bioelectron. 2023, 231, 115288. DOI: 10.1016/j.bios.2023.115288.
  • Eichhorn, S. J.; Etale, A.; Wang, J.; Berglund, L. A.; Li, Y.; Cai, Y.; Chen, C.; Cranston, E. D.; Johns, M. A.; Fang, Z.; et al. Current International Research into Cellulose as a Functional Nanomaterial for Advanced Applications. J. Mater. Sci. 2022, 57, 5697–5767. DOI: 10.1007/s10853-022-06903-8.
  • Portela, R.; Leal, C. R.; Almeida, P. L.; Sobral, R. G. Bacterial Cellulose: A Versatile Biopolymer for Wound Dressing Applications. Microb. Biotechnol. 2019, 12, 586–610. DOI: 10.1111/1751-7915.13392.
  • Koivuniemi, R.; Hakkarainen, T.; Kiiskinen, J.; Kosonen, M.; Vuola, J.; Valtonen, J.; Luukko, K.; Kavola, H.; Yliperttula, M. Clinical Study of Nanofibrillar Cellulose Hydrogel Dressing for Skin Graft Donor Site Treatment. Adv Wound Care (New Rochelle) 2020, 9, 199–210. DOI: 10.1089/wound.2019.0982.
  • Dourado, F.; Fontão, A.; Leal, M.; Rodrigues, A. C. Process Modeling and Techno-Economic Evaluation of an Industrial Bacterial NanoCellulose Fermentation Process. In Bacterial Nanocellulose: From Biotechnology to Bio-economy; Gama, M., Bielecki, S., Dourado, F. Eds. Elsevier B.V.: Amsterdam, Netherlands, 2016.
  • de Assis, C. A.; Iglesias, M. C.; Bilodeau, M.; Johnson, D.; Phillips, R.; Peresin, M. S.; Bilek, E. M. T.; Rojas, O. J.; Venditti, R.; Gonzalez, R. Cellulose Micro- and Nanofibrils (CMNF) Manufacturing - Financial and Risk Assessment. Biofuels. Bioprod. Bioref. 2018, 12, 251–264. DOI: 10.1002/bbb.1835.
  • Ventura, C.; Pinto, F.; Lourenço, A. F.; Ferreira, P. J. T.; Louro, H.; Silva, M. J. On the Toxicity of Cellulose Nanocrystals and Nanofibrils in Animal and Cellular Models. Cellulose 2020, 27, 5509–5544. DOI: 10.1007/s10570-020-03176-9.
  • Agarwal, P.; Kukrele, R.; Sharma, D. Vacuum Assisted Closure (VAC)/Negative Pressure Wound Therapy (NPWT) for Difficult Wounds: A Review. J. Clin. Orthop. Trauma. 2019, 10, 845–848. DOI: 10.1016/j.jcot.2019.06.015.
  • Frykberg, R. G. Topical Wound Oxygen Therapy in the Treatment of Chronic Diabetic Foot Ulcers. Med 2021, 57, 917. DOI: 10.3390/medicina57090917.
  • Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. DOI: 10.1007/s12325-017-0478-y.
  • Ni, H.; Xi, J.; Tang, J.; Yan, Y.; Chu, Y.; Zhou, J. Therapeutic Potential of Extracellular Vesicles from Different Stem Cells in Chronic Wound Healing. Stem Cell Rev. Rep. 2023, 19, 1596–1614. DOI: 10.1007/s12015-023-10540-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.