79
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Poly (lactic) acid (PLA) hybrid bionanoarchitectures for tissue engineering

& ORCID Icon
Received 18 Oct 2023, Accepted 11 Apr 2024, Published online: 02 May 2024

References

  • Dodda, J. M.; Azar, M. G.; Bělský, P.; Šlouf, M.; Gajdošová, V.; Kasi, P. B.; Anerillas, L. O.; Kovářík, T. Bioresorbable Films of Polycaprolactone Blended with Poly (Lactic Acid) or Poly (Lactic-co-Glycolic Acid). Int. J. Biol. Macromol. 2023, 248, 126654. DOI: 10.1016/j.ijbiomac.2023.126654.
  • Flora, B.; Kumar, R.; Mahdieh, R.; Zarei, K.; Chehrazi, S.; Kaur, S. D.; Sharma, A.; Mohapatra, P.; Sakshi, A.; Singh, A.; et al. Recent Updates on Metal-Polymer Nanocomposites in 3D Bioprinting for Tissue Engineering Applications. Nanofabrication 2023, 8, DOI: 10.37819/nanofab.008.291.
  • Rashdan, H. R.; El-Naggar, M. E. 2023. Biodegradable and Biocompatible Polymer Nanocomposites for Tissue Engineering Applications. In Biodegradable and Biocompatible Polymer Nanocomposites. Elsevier; pp. 271–309.
  • Chong, W. J.; Shen, S.; Li, Y.; Trinchi, A.; Pejak Simunec, D.; Kyratzis, I.; Sola, A.; Wen, C. Biodegradable PLA-ZnO Nanocomposite Biomaterials with Antibacterial Properties, Tissue Engineering Viability, and Enhanced Biocompatibility. Smart Mater. Manuf. 2023, 1, 100004. DOI: 10.1016/j.smmf.2022.100004.
  • Meyhami, T.; Hassanajili, S.; Tanideh, N.; Taheri, E. Three Dimensional Scaffolds of Hybrid PLA/PCL/HA/Silica Nanocomposites for Bone Tissue Engineering. Polym. Bull. 2023, 81, 6025–6053. DOI: 10.1007/s00289-023-04978-0.
  • Javid‐Naderi, M. J.; Behravan, J.; Karimi‐Hajishohreh, N.; Toosi, S. Synthetic Polymers as Bone Engineering Scaffold. Polym. Adv. Technol. 2023, 34, 2083–2096. DOI: 10.1002/pat.6046.
  • Dixit, G.; Pandey, P. M.; Kaur, T.; Singh, N. Development and Characterization of Solvent-Based 3D Printed Polylactic Acid/45S5 Bioactive Glass Composites for Soft and Hard Tissue Engineering. Proc. Inst. Mech. Eng. H 2023, 237, 749–761. DOI: 10.1177/09544119231173826.
  • Chen, X.; Liu, Y.; Liu, H.; Li, L.; Liu, Y.; Liu, P.; Yang, X. Bioactive Bone Scaffolds Manufactured by 3D Printing and Sacrificial Templating of Poly(ε-Caprolactone) Composites as Filler for Bone Tissue Engineering. J. Mater. Sci. 2023, 58, 5444–5455. DOI: 10.1007/s10853-023-08319-4.
  • Emadi, H.; Karevan, M.; Masoudi Rad, M.; Sadeghzade, S.; Pahlevanzadeh, F.; Khodaei, M.; Khayatzadeh, S.; Lotfian, S. Bioactive and Biodegradable Polycaprolactone- Based Nanocomposite for Bone Repair Applications. Polymers (Basel) 2023, 15, 3617. DOI: 10.3390/polym15173617.
  • Zhou, Y.; Chen, J.; Liu, X.; Xu, J. Three/Four-Dimensional Printed PLA Nano/Microstructures: Crystallization Principles and Practical Applications. Int. J. Mol. Sci. 2023, 24, 13691. DOI: 10.3390/ijms241813691.
  • Salaris, V.; San Félix García-Obregón, I.; López, D.; Peponi, L. Fabrication of PLA-Based Electrospun Nanofibers Reinforced with ZnO Nanoparticles and in Vitro Degradation Study. Nanomaterials 2023, 13, 2236. DOI: 10.3390/nano13152236.
  • Ricci, C.; Azimi, B.; Panariello, L.; Antognoli, B.; Cecchini, B.; Rovelli, R.; Rustembek, M.; Cinelli, P.; Milazzo, M.; Danti, S.; Lazzeri, A. Assessment of Electrospun Poly("-Caprolactone) and Poly(Lactic Acid) Fiber Scaffolds to Generate 3D in Vitro Models of Colorectal Adenocarcinoma: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 9443. DOI: 10.3390/ijms24119443.
  • Gögele, C.; Vogt, J.; Hahn, J.; Breier, A.; Bernhardt, R.; Meyer, M.; Schröpfer, M.; Schäfer-Eckart, K.; Schulze-Tanzil, G. Co-Culture of Mesenchymal Stem Cells and Ligamentocytes on Triphasic Embroidered Poly(L-Lactide-co-Caprolactone) and Polylactic Acid Scaffolds for Anterior Cruciate Ligament Enthesis Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 6714. DOI: 10.3390/ijms24076714.
  • Injorhor, P.; Trongsatitkul, T.; Wittayakun, J.; Ruksakulpiwat, C.; Ruksakulpiwat, Y. Biodegradabl Polylactic Acid-Polyhydroxyalkanoate- Based Nanocomposites with Bio-Hydroxyapatite: Preparation and Characterization. Polymers (Basel) 2023, 15, 1261. DOI: 10.3390/polym15051261.
  • Castro, J. I.; Araujo-Rodríguez, D. G.; Valencia-Llano, C. H.; López Tenorio, D.; Saavedra, M.; Zapata, P. A.; Grande-Tovar, C. D. Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites under in Vivo Conditions for Biomedical Applications. Pharmaceutics 2023, 15, 2196. DOI: 10.3390/pharmaceutics15092196.
  • Zhang, Z.; Cao, B.; Jiang, N. The Mechanical Properties and Degradation Behavior of 3D-Printed Cellulose Nanofiber/Polylactic Acid Composites. Materials 2023, 16, 6197. DOI: 10.3390/ma16186197.
  • Leonovich, M.; Korzhikov-Vlakh, V.; Lavrentieva, A.; Pepelanova, I.; Korzhikova-Vlakh, E.; Tennikova, T. Poly(Lactic Acid) and Nanocrystalline Cellulose Methacrylated Particles for Preparation of Cryogelated and 3D-Printed Scaffolds for Tissue Engineering. Polymers (Basel) 2023, 15, 651. DOI: 10.3390/polym15030651.
  • Nguyen, N. M.; Kakarla, A. B.; Nukala, S. G.; Kong, C.; Baji, A.; Kong, I. Evaluation of Physicochemical Properties of a Hydroxyapatite Polymer Nanocomposite for Use in Fused Filament Fabrication. Polymers (Basel) 2023, 15, 3980. DOI: 10.3390/polym15193980.
  • Ali, F.; Al Rashid, A.; Kalva, S. N.; Koç, M. Mg-Doped PLA Composite as a Potential Material for Tissue Engineering—Synthesis, Characterization, and Additive Manufacturing. Materials 2023, 16, 6506. DOI: 10.3390/ma16196506.
  • Silva, M.; Gomes, S.; Correia, C.; Peixoto, D.; Vinhas, A.; Rodrigues, M. T.; Gomes, M. E.; Covas, J. A.; Paiva, M. C.; Alves, N. M. Biocompatible 3D-Printed Tendon/Ligamen Scaffolds Based on Polylactic Acid/Graphite Nanoplatelet Composites. Nanomaterials 2023, 13, 2518. DOI: 10.3390/nano13182518.
  • Al Abir, A.; Chakrabarti, D.; Trindade, B. Fused Filament Fabricated Poly(Lactic Acid) Parts Reinforced with Short Carbon Fiber and Graphene Nanoparticles with Improved Tribological Properties. Polymers (Basel) 2023, 15, 2451. DOI: 10.3390/polym15112451.
  • Oksiuta, Z.; Jalbrzykowski, M.; Mystkowska, J.; Romanczuk, E.; Osiecki, T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers (Basel) 2020, 12, 2939. DOI: 10.3390/polym12122939.
  • Esposito Corcione, C.; Gervaso, F.; Scalera, F.; Montagna, F.; Sannino, A.; Maffezzoli, A. The Feasibility of Printing Polylactic Acid-Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer. J. Appl. Polym. Sci. 2017, 134, 44656.
  • Kim, C. G.; Han, K. S.; Lee, S.; Kim, M. C.; Kim, S. Y.; Nah, J. Fabrication of Biocompatible Polycaprolactone–Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds. Appl. Sci. 2021, 11, 6351. DOI: 10.3390/app11146351.
  • Pandele, A. M.; Constantinescu, A.; Radu, I. C.; Miculescu, F.; Ioan Voicu, S.; Ciocan, L. T. Synthesis and Characterization of PLA-Micro-Structured Hydroxyapatite Composite Films. Materials 2020, 13, 274. DOI: 10.3390/ma13020274.
  • Niaza, K. V.; Senatov, F. S.; Kaloshkin, S. D.; Maksimkin, A. V.; Chukov, D. I. 3D-Printed Scaffolds Based on PLA/HA Nanocomposites for Trabecular Bone Reconstruction. J. Phys: Conf. Ser. 2016, 741, 012068. DOI: 10.1088/1742-6596/741/1/012068.
  • Gregor-Svetec, D.; Leskovšek, M.; Leskovar, B.; Stanković Elesini, U.; Vrabič-Brodnjak, U. Analysis of PLA Composite Filaments Reinforced with Lignin and Polymerised-Lignin-Treated NFC. Polymers (Basel) 2021, 13, 2174. DOI: 10.3390/polym13132174.
  • Wang, W.; Zhang, B.; Li, M.; Li, J.; Zhang, C.; Han, Y.; Wang, L.; Wang, K.; Zhou, C.; Liu, L.; et al. 3D Printing of PLA/n-HA Composite Scaffolds with Customized Mechanical Properties and Biological Functions for Bone Tissue Engineering. Composites Part B 2021, 224, 109192. DOI: 10.1016/j.compositesb.2021.109192.
  • Zerankeshi, M. M.; Sayedain, S. S.; Tavangarifard, M.; Alizadeh, R. Developing a Novel Technique for the Fabrication of PLA Graphite Composite Filaments Using FDM 3D Printing Process. Ceram. Int. 2022, 48, 31850–31858. DOI: 10.1016/j.ceramint.2022.07.117.
  • Lee, J.; Lee, H.; Cheon, K.-H.; Park, C.; Jang, T.-S.; Kim, H.-E.; Jung, H.-D. Fabrication of Poly(Lactic Acid)/Ti Composite Scaffolds with Enhanced Mechanical Properties and Biocompatibility via Fused Filament Fabrication (FFF)–Based 3D Printing. Addit. Manuf. 2019, 30, 100883. DOI: 10.1016/j.addma.2019.100883.
  • Hasanpur, E.; Ghazavizadeh, A.; Sadeghi, A.; Haboussi, M. In Vitro Corrosion Study of PLA/Mg Composites for Cardiovascular Stent Applications. J. Mech. Behav. Biomed. Mater. 2021, 124, 104768. DOI: 10.1016/j.jmbbm.2021.104768.
  • Antoniac, I.; Popescu, D.; Zapciu, A.; Antoniac, A.; Miculescu, F.; Moldovan, H. Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing. Materials 2019, 12, 719. DOI: 10.3390/ma12050719.
  • Ali, F.; Kalva, S. N.; Mroue, K. H.; Keyan, K. S.; Tong, Y.; Khan, O. M.; Koç, M. Degradation Assessment of Mg-Incorporated 3D Printed PLA Scaffolds for Biomedical Applications. Bioprinting 2023, 35, e00302. DOI: 10.1016/j.bprint.2023.e00302.
  • Asadollahi, M.; Gerashi, E.; Zohrevand, M.; Zarei, M.; Sayedain, S. S.; Alizadeh, R.; Labbaf, S.; Atari, M. Improving Mechanica Properties and Biocompatibility of 3D Printed PLA by the Addition of PEG and Titanium Particles, Using a Novel Incorporation Method. Bioprinting 2022, 27, e00228. DOI: 10.1016/j.bprint.2022.e00228.
  • Gasparotto, M.; Bellet, P.; Scapin, G.; Busetto, R.; Rampazzo, C.; Vitiello, L.; Shah, D. I.; Filippini, F. 3D Printed Graphene-PLA Scaffolds Promote Cell Alignment and Differentiation. Int. J. Mol. Sci. 2022, 23, 1736. DOI: 10.3390/ijms23031736.
  • Pinto, V. C.; Costa, R. A.; Rodrigues, I.; Guardão, L.; Soares, R.; Miranda, G. R. Exploring the in Vitro and in Vivo Compatibility of PLA, PLA/GNP and PLA/CNT-COOH Biodegradable Nanocomposites: Prospects for Tendon and Ligament Applications. J. Biomed. Mater. Res. A 2017, 105, 2182–2190. DOI: 10.1002/jbm.a.36075.
  • Gonçalves, C.; Pinto, A.; Machado, A. V.; Moreira, J.; Gonçalves, I. C.; Magalhães, F. Biocompatible Reinforcement of Poly (Lactic Acid) with Graphene Nanoplatelets. Polym. Compos. 2018, 39, E308–E320.
  • Liu, C.; Shen, J.; Yeung, K. W. K.; Tjong, S. C. Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared by Electrospinning. ACS Biomater. Sci. Eng. 2017, 3, 471–486. DOI: 10.1021/acsbiomaterials.6b00766.
  • Pascual-González, C.; de la Vega, J.; Thompson, C.; Fernández-Blázquez, J. P.; Herráez-Molinero, D.; Biurrun, N.; Lizarralde, I.; Sánchez del Río, J.; González, C.; LLorca, J. Processing and Mechanical Properties of Novel Biodegradable Poly-Lactic Acid/Zn 3D Printed Scaffolds for Application in Tissue Regeneration. J. Mech. Behav. Biomed. Mater. 2022, 132, 105290. DOI: 10.1016/j.jmbbm.2022.105290.
  • Xu, Y.; Wu, J.; Wang, H.; Li, H.; Di, N.; Song, L.; Li, S.; Li, D.; Xiang, Y.; Liu, W.; et al. Fabrication of Electrospun Poly(L-Lactideco Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering. Tissue Eng. Part C Methods 2013, 19, 925–936. DOI: 10.1089/ten.TEC.2012.0328.
  • Li, X.; Xiao, Y.; Bergeret, A.; Longerey, M.; Che, J. Preparation of Polylactide/Graphene Composites from Liquid-Phase Exfoliated Graphite Sheets. Polym. Compos. 2014, 35, 396–403. DOI: 10.1002/pc.22673.
  • da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chem. Eng. J. 2018, 340, 9–14. DOI: 10.1016/j.cej.2018.01.010.
  • Ning, C.; Li, P.; Gao, C.; Fu, L.; Liao, Z.; Tian, G.; Yin, H.; Li, M.; Sui, X.; Yuan, Z.; et al. Recent Advances in Tendon Tissue Engineering Strategy. Front. Bioeng. Biotechnol. 2023, 11, 1115312. DOI: 10.3389/fbioe.2023.1115312.
  • Caminero, M. Á.; Chacón, J. M.; García-Plaza, E.; Núñez, P. J.; Reverte, J. M.; Becar, J. P. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers (Basel) 2019, 11, 799. DOI: 10.3390/polym11050799.
  • Bayer, I. Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. Materials 2017, 10, 748. DOI: 10.3390/ma10070748.
  • Vidakis, N.; Petousis, M.; Savvakis, K.; Maniadi, A.; Koudoumas, E. A Comprehensive Investigation of the Mechanical Behavior and the Dielectrics of Pure Polylactic Acid (PLA) and PLA with Graphene (GnP) in Fused Deposition Modeling (FDM). Int. J. Plast. Technol. 2019, 23, 195–206. DOI: 10.1007/s12588-019-09248-1.
  • Cicero, S.; Martínez-Mata, V.; Castanon-Jano, L.; Alonso-Estebanez, A.; Arroyo, B. Analysis of Notch Effect in the Fracture Behaviour of Additively Manufactured PLA and Graphene Reinforced PLA. Theor. Appl. Fract. Mech. 2021, 114, 103032. DOI: 10.1016/j.tafmec.2021.103032.
  • Bikiaris, N. D.; Koumentakou, I.; Samiotaki, C.; Meimaroglou, D.; Varytimidou, D.; Karatza, A.; Kalantzis, Z.; Roussou, M.; Bikiaris, R. D.; Papageorgiou, G. Z. Recent Advances in the Investigation of Poly(Lactic Acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and Their Properties and Applications. Polymers (Basel) 2023, 15, 1196. DOI: 10.3390/polym15051196.
  • Ferreira, R. T. L.; Amatte, I. C.; Dutra, T. A.; Bürger, D. Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Composites B 2017, 124, 88–100. DOI: 10.1016/j.compositesb.2017.05.013.
  • Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A. M. Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites. Composites B 2019, 175, 107147. DOI: 10.1016/j.compositesb.2019.107147.
  • Gao, Y.; Picot, O. T.; Bilotti, E.; Peijs, T. Influence of Filler Size on the Properties of Poly(Lactic Acid) (PLA)/Graphene Nanoplatelet (GNP) Nanocomposites. Eur. Polym. J. 2017, 86, 117–131. DOI: 10.1016/j.eurpolymj.2016.10.045.
  • Fei, F.; Yao, H.; Wang, Y.; Wei, J. Graphene Oxide/RhPTH(1-34)/Polylactide Composite Nanofibrous Scaffold for Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 5799. DOI: 10.3390/ijms24065799.
  • Nieto, A.; Dua, R.; Zhang, C.; Boesl, B.; Ramaswamy, S.; Agarwal, A. Three Dimensional Graphene Foam/Polymer Hybrid as a High Strength Biocompatible Scaffold. Adv. Funct. Mater. 2015, 25, 3916–3924. DOI: 10.1002/adfm.201500876.
  • Laraba, S. R.; Ullah, N.; Bouamer, A.; Ullah, A.; Aziz, T.; Luo, W.; Djerir, W.; Zahra, Q.; Rezzoug, A.; Wei, J.; et al. Enhancing Structural and Thermal Properties of Poly(Lactic Acid) Using Graphene Oxide Filler and Anionic Surfactant Treatment. Molecules 2023, 28, 6442. DOI: 10.3390/molecules28186442.
  • Mao, Z.; Li, J.; Huang, W.; Jiang, H.; Zimba, B. L.; Chen, L.; Wan, J.; Wu, Q. Preparation of Poly(Lactic Acid)/Graphene Oxide Nanofiber Membranes with Different Structures by Electrospinning for Drug Delivery. RSC Adv. 2018, 8, 16619–16625. DOI: 10.1039/c8ra01565a.
  • Pinto, A. M.; Moreira, S.; Gonçalves, I. C.; Gama, F. M.; Mendes, A. M.; Magalhães, F. D. Biocompatibility of Poly(Lactic Acid) with Incorporated Graphene-Based Materials. Colloids Surf. B Biointerfaces 2013, 104, 229–238. DOI: 10.1016/j.colsurfb.2012.12.006.
  • Belaid, H.; Nagarajan, S.; Teyssier, C.; Barou, C.; Barés, J.; Balme, S.; Garay, H.; Huon, V.; Cornu, D.; Cavaillès, V.; Bechelany, M. Development of New Biocompatible 3D Printed Graphene Oxide-Based Scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110595. DOI: 10.1016/j.msec.2019.110595.
  • Mohammed, A.; Saeed, A.; Elshaer, A.; Melaibari, A. A.; Memić, A.; Hassanin, H.; Essa, K. Fabrication and Characterization of Oxygen-Generating Polylactic Acid/Calcium Peroxide Composite Filaments for Bone Scaffolds. Pharmaceuticals 2023, 16, 627. DOI: 10.3390/ph16040627.
  • Jia, Z.; Ma, H.; Liu, J.; Yan, X.; Liu, T.; Cheng, Y. Y.; Li, X.; Wu, S.; Zhang, J.; Song, K. Preparation and Characterization of Polylactic Acid/Nano Hydroxyapatite/Nano Hydroxyapatite/Human Acellular Amniotic Membrane (PLA/nHAp/HAAM) Hybrid Scaffold for Bone Tissue Defect Repair. Materials 2023, 16, 1937. DOI: 10.3390/ma16051937.
  • Samokhin, Y.; Varava, Y.; Diedkova, K.; Yanko, I.; Husak, Y.; Radwan-Pragłowska, J.; Pogorielova, O.; Janus, Ł.; Pogorielov, M.; Korniienko, V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023, 14, 414. DOI: 10.3390/jfb14080414.
  • Vidakis, N.; Petousis, M.; Kourinou, M.; Velidakis, E.; Mountakis, N.; Fischer-Griffiths, P. E.; Grammatikos, S.; Tzounis, L. Additive Manufacturing of Multifunctional Polylactic Acid (PLA)—Multiwalled Carbon Nanotubes (MWCNTs) Nanocomposites. Nanocomposites 2021, 7, 184–199. DOI: 10.1080/20550324.2021.2000231.
  • Yang, L.; Li, S.; Zhou, X.; Liu, J.; Li, Y.; Yang, M.; Yuan, Q.; Zhang, W. Effects of Carbon Nanotube on the Thermal, Mechanical, and Electrical Properties of PLA/CNT Printed Parts in the FDM Process. Synth. Met. 2019, 253, 122–130. DOI: 10.1016/j.synthmet.2019.05.008.
  • Batakliev, T.; Georgiev, V.; Angelov, V.; Ivanov, E.; Kalupgian, C.; Muñoz, P. A. R.; Fechine, G. J. M.; Andrade, R. J. E.; Kotsilkova, R. Synergistic Effect of Graphene Nanoplatelets and Multiwall Carbon Nanotubes Incorporated in PLA Matrix: Nanoindentation of Composites with Improved Mechanical Properties. J. Mater. Eng. Perform. 2021, 30, 3822–3830. DOI: 10.1007/s11665-021-05679-3.
  • Mohammed Basheer, E. P.; Marimuthu, K. Carbon Fibre-Graphene Composite Polylactic Acid (PLA) Material for COVID Shield Frame. Materialwissenschaft Werkst. 2022, 53, 119–127. DOI: 10.1002/mawe.202100154.
  • Batakliev, T. Tribological Investigation of PLA-Based Nanocomposites by Scratch and Wear Experiments. J. Theor. Appl. Mech. 2020, 50, 105–113.
  • Bustillos, J.; Montero, D.; Nautiyal, P.; Loganathan, A.; Boesl, B.; Agarwal, A. Integration of Graphene in Poly(Lactic) Acid by 3D Printing to Develop Creep and Wear-Resistant Hierarchical Nanocomposites. Polym. Compos. 2017, 39, 3877–3888.
  • Suresha, B.; Hanamasagar, V.; Anand, A. Processing and Tribological Behaviour of Carbon Fiber Reinforced Polylactic Acid Composites. IOP Conf. Ser: Mater. Sci. Eng. 2022, 1272, 012022. DOI: 10.1088/1757-899X/1272/1/012022.
  • Abir, A. A.; Trindade, B. A Comparative Study of Different Poly (Lactic Acid) Bio-Composites Produced by Mechanical Alloying and Casting for Tribological Applications. Materials 2023, 16, 1608. DOI: 10.3390/ma16041608.
  • Kraghelsky, I. V. Calculation of Wear Rate. J. Basic Eng. 1965, 87, 785–790. DOI: 10.1115/1.3650690.
  • Ruz-Cruz, M. A.; Herrera-Franco, P. J.; Flores-Johnson, E. A.; Moreno-Chulim, M. V.; Galera-Manzano, L. M.; Valadez-González, A. Thermal and Mechanical Properties of PLA-Based Multiscale Cellulosic Biocomposites. J. Mater. Res. Technol. 2022, 18, 485–495. DOI: 10.1016/j.jmrt.2022.02.072.
  • Vinyas, M.; Athul, S. J.; Harursampath, D.; Nguyen Thoi, T. Experimental Evaluation of the Mechanical and Thermal Properties of 3D Printed PLA and Its Composites. Mater. Res. Express 2019, 6, 115301. DOI: 10.1088/2053-1591/ab43ab.
  • Peixoto, T.; Nunes, J.; Lopes, M. A.; Marinho, E.; Proença, M. F.; Lopes, P. E.; Paiva, M. C. Poly(Lactic Acid) Composites with Few Layer Graphene Produced by Non Covalent Chemistry. Polym. Compos. 2022, 43, 8409–8425. DOI: 10.1002/pc.27012.
  • Silva, M.; Pinho, I.; Gonçalves, H.; Vale, A. C.; Paiva, M. C.; Alves, N. M.; Covas, J. A. Engineering Ligament Scaffolds Based on PLA/Graphite Nanoplatelet Composites by 3D Printing or Braiding. J. Compos. Sci. 2023, 7, 104. DOI: 10.3390/jcs7030104.
  • Wei, X.; Li, D.; Jiang, W.; Gu, Z.; Wang, X.; Zhang, Z.; Sun, Z. 3D Printable Graphene Composite. Sci. Rep. 2015, 5, 11181. DOI: 10.1038/srep11181.
  • Freeman, J. W.; Woods, M. D.; Cromer, D. A.; Ekwueme, E. C.; Andric, T.; Atiemo, E. A.; Bijoux, C. H.; Laurencin, C. T. Evaluation of a Hydrogel–Fiber Composite for ACL Tissue Engineering. J. Biomech. 2011, 44, 694–699. DOI: 10.1016/j.jbiomech.2010.10.043.
  • Li, X.; Cheng, R.; Sun, Z.; Su, W.; Pan, G.; Zhao, S.; Zhao, J.; Cui, W. Flexible Bipolar Nanofibrous Membranes for Improving Gradient Microstructure in Tendon-to-Bone Healing. Acta Biomater. 2017, 61, 204–216. DOI: 10.1016/j.actbio.2017.07.044.
  • Nedaipour, F.; Bagheri, H.; Mohammadi, S. Polylactic Acid-Polyethylene Glycol-Hydroxyapatite Composite an Efficient Composition for Interference Screws. Nanocomposites 2020, 6, 99–110. DOI: 10.1080/20550324.2020.1794688.
  • Sensini, A.; Gualandi, C.; Zucchelli, A.; Boyle, L. A.; Kao, A. P.; Reilly, G. C.; Tozzi, G.; Cristofolini, L.; Focarete, M. L. Tendon Fascicle-Inspired Nanofibrous Scaffold of Polylactic Acid/Collagen with Enhanced 3D-Structure and Biomechanical Properties. Sci. Rep. 2018, 8, 17167. DOI: 10.1038/s41598-018-35536-8.
  • Kwan, K. H.; Yeung, K. W.; Liu, X.; Wong, K. K.; Shum, H. C.; Lam, Y. W.; Cheng, S. H.; Cheung, K. M.; To, M. K. Silver Nanoparticles Alter Proteoglycan Expression in the Promotion of Tendon Repair. Nanomedicine 2014, 10, 1375–1383. DOI: 10.1016/j.nano.2013.11.015.
  • Idumah, C. I. Emerging Advances in Thermal Conductivity of Polymeric Nanoarchitectures. Polymer 2023, 62, 1878–1911. DOI: 10.1080/25740881.2023.2240404.
  • Idumah, C. I. Molybdenum Disulfide Polymeric Nanoarchitectures and Applications: A Review. Polym. Eng. Sci. 2023, 63, 2700–2718. DOI: 10.1002/pen.26421.
  • Idumah, C. I. Recent Advancements in Fire Retardant Mechanisms of Carbon Nanotubes, Graphene, and Fullerene Polymeric Nanoarchitectures. J. Anal. Appl. Pyrolysis 2023, 174, 106113. DOI: 10.1016/j.jaap.2023.106113.
  • Idumah, C. I. Influence of Interfacial Engineering on Properties of Polymeric Nanoarchitectures. Polymer 2023, 62, 1844–1877. DOI: 10.1080/25740881.2023.2240393.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Electrochemical Energy Storage Applications. J. Storage Mater. 2023, 69, 107940. DOI: 10.1016/j.est.2023.107940.
  • Idumah, C. I.; Odera, R. S.; Ezeani, E. O.; Low, J. H.; Tanjung, F. A.; Damiri, F.; Wong, S. L. Construction, Characterization, Properties and Multifunctional Applications of Stimuli-Responsive Shape Memory Polymeric Nanoarchitectures: A Review. Polymer 2023, 62, 1247–1272. DOI: 10.1080/25740881.2023.2204936.
  • Idumah, C. I. Design, Fabrication, Characterization and Properties of Metallic and Conductive Smart Polymeric Textiles for Multifunctional Applications. Nano-Struct. Nano-Objects 2023, 35, 100982. DOI: 10.1016/j.nanoso.2023.100982.
  • Idumah, C. I. Thermal Expansivity of Polymer Nanocomposites and Applications. Polymer 2023, 62, 1178–1203. DOI: 10.1080/25740881.2023.2204952.
  • Idumah, C. I. Borophene Polymeric Nanoarchitecture and Applications: A Review. Polymer 2023, 62, 1560–1575. DOI: 10.1080/25740881.2023.2222798.
  • Idumah, C. I.; Obumneme, E. E. Novel Trends in Phosphorene and Phosphorene@ Polymeric Nanoarchitectures and Applications. Emergent Mater. 2023, 6, 853–874. DOI: 10.1007/s42247-023-00507-x.
  • Idumah, C. I. Novel Advancements in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. J. Porous Mater. 2023, 1–19.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emergent Mater. 1–31.
  • Ng, Q. Y.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J. Polym. Environ. 2023, 31, 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis 2023, 169, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and MXene Nanocomposites. Polymer 2023, 62, 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34, 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 73, 292–309.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications. JCIS Open 2022, 9, 100073. DOI: 10.1016/j.jciso.2022.100073.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emergent Mater. 2023, 6, 777–807. DOI: 10.1007/s42247-023-00465-4.
  • Idumah, C. I.; Low, J. H.; Emmanuel, E. O. Recently Emerging Trends in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. Polym. Bull. 1–31.
  • Idumah, C. I. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35, 2665–2704. DOI: 10.1177/0892705720930782.
  • Idumah, C. I. Recent Advances on Graphene Polymeric Bionanoarchitectures for Biomedicals. JCIS Open 2022, 9, 100070. DOI: 10.1016/j.jciso.2022.100070.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polymer 61, 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Idumah, C. I.; Ezika, A. C. Recent Advancements in Hybridized Polymer Nano-Biocomposites for Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 1262–1276. DOI: 10.1080/00914037.2021.1960344.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Nanogel Nanoarchitectures for Drug Delivery Applications . Int. J. Polym. Mater. Polym. Biomater.  2022, 73, 1–32. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polymer 2022, 62, 510–546. DOI: 10.1080/25740881.2022.2121220.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, S. R.; Timothy, U. J.; Ngenegbo, U.; Tanjung, F. A. Recent Advances in Polymeric Hydrogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 73, 1–32.
  • Idumah, C. I.; Ezika, A. C.; Enwerem, U. E. A Review on Biomolecular Immobilization of Polymeric Textile Biocomposites, Bionanocomposites, and Nano-Biocomposites. J. Textile Inst. 2022, 113, 2016–2032. DOI: 10.1080/00405000.2021.1957277.
  • Idumah, C. I. MXene Polymeric Nanoarchitectures Mechanical, Deformation, and Failure Mechanism: A Review. Polymer 1–24.
  • Idumah, C. I. On MXene Conducting Polymer Nanocomposites Micro-Supercapacitors and Applications, 2022
  • Idumah, C. I. Influence of Morphology and Architecture on Properties and Applications of MXene Polymeric Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 36, 4124–4161. DOI: 10.1177/08927057221122096.
  • Idumah, C. I. Characterization and Fabrication of Xerogel Polymeric Nanocomposites and Multifunctional Applications, 2022.
  • Okonkwo, U. C.; Idumah, C. I.; Okafor, C. E.; Ohagwu, C. C.; Aronu, M. E.; Okokpujie, I. P.; Chukwu, N. N.; Chukwunyelu, C. E. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J. Inorg. Organomet. Polym. 2022, 32, 4093–4113. DOI: 10.1007/s10904-022-02420-y.
  • Idumah, C. I. Influence of Surfaces and Interfaces on MXene and MXene Hybrid Polymeric Nanoarchitectures, Properties, and Applications. J. Mater. Sci. 2022, 57, 14579–14619. DOI: 10.1007/s10853-022-07526-9.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Cryogel Nanostructures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 72, 1307–1327. DOI: 10.1080/00914037.2022.2097678.
  • Idumah, C. I. Emerging Advancements in MXene Polysaccharide Bionanoarchitectures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 72, 1375–1396. DOI: 10.1080/00914037.2022.2098297.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polymer 2022, 61, 1039–1070. DOI: 10.1080/25740881.2022.2033769.
  • Idumah, C. I. Emerging Trends in Poly (lactic-co-glycolic) Acid Bionanoarchitectures and Applications. Clean. Mater. 2022, 5, 100102. DOI: 10.1016/j.clema.2022.100102.
  • Idumah, C. I. Recent Trends in MXene Polymeric Hydrogel Bionanoarchitectures and Applications. Clean. Mater. 2022, 5, 100103. DOI: 10.1016/j.clema.2022.100103.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bionanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Clean. Mater. 2022, 4, 100071. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Polypropylene Composites Filled with Chitosan Fibers. Polym. Polym. Compos. 2022, 30, 096739112210824. DOI: 10.1177/09673911221082482.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends in Poly (Lactic) Acid Hybrid Bionanocomposites. Clean. Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I. Influence of Nanotechnology in Polymeric Textiles, Applications, and Fight against COVID-19. J. Textile Inst. 2021, 112, 2056–2076. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Ezeani, E. O.; Ezika, A. C.; Timothy, U. J. Recent Advancements in Flame Retardancy of MXene Polymer Nanoarchitectures. Saf. Extreme Environ. 2021, 3, 253–273. DOI: 10.1007/s42797-021-00046-w.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites . Polymer  2021, 60, 830–848. DOI: 10.1080/25740881.2020.1869780.
  • Idumah, C. I.; Nwuzor, I.; Odera, S. R. Recent Advancements in Self-Healing Polymeric Hydrogels, Shape Memory, and Stretchable Materials. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 941–966. DOI: 10.1080/00914037.2020.1767615.
  • Idumah, C. I.; Ezika, A. C.; Okpechi, V. U. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interfaces 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2021, 29, 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34, 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I. Novel Trends in Magnetic Polymeric Nanoarchitectures. Polymer 2021, 60, 830–848.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: advancements in Conductive Polymers Nanocomposites. Polymer 2021, 60, 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2021, 29, 246–258. DOI: 10.1177/0967391120910882.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing anti-Fouling Coatings for Marine Environment. Saf. Extreme Environ. 2021, 3, 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Synth. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Idumah, C. I. Novel Advancements in Green and Sustainable Polymeric Nanocomposites Coatings. Curr. Res. Green Sustain. Chem. 2021, 4, 100173. DOI: 10.1016/j.crgsc.2021.100173.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanoarchitectures and Applications. Curr. Res. Green Sustain. Chem. 2021, 4, 100104–100110. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021, 147, 3495–3508. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interfaces 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer Nano-Biocomposites. J. Polym. Plast. Technol. Mater. 2020, 60, 233–252. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, C. I.; Odera, S. R. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym. Plast. Technol. Mater. 2020, 59, 1167–1190. DOI: 10.1080/25740881.2020.1725816.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J. U.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf–Reinforced Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2020, 33, 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Zurina, M.; Ogbu, J.; Ndem, J. U.; Igba, E. C. A Review on Innovations in Polymeric Nanocomposite Packaging Materials and Electrical Sensors for Food and Agriculture. Compos. Interfaces 2020, 27, 1–72. DOI: 10.1080/09276440.2019.1600972.
  • Idumah, C. I.; Nwuzor, I. C. Novel Trends in Plastic Waste Management. SN Appl. Sci. 2019, 1, 1–14. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I.; Ogbu, J. E.; Ndem, J. U.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP Nano-Biocomposites. SN Appl. Sci. 2019, 1, 1–11 54. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J. U.; Nwuzor, I. C. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces 2019, 26, 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C. I.; Hassan, A.; Ihuoma, D. E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym. Plast. Technol. Mater. 2019, 58, 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Orhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. In Nanostructured Polymer Composites for Biomedical Applications. Elsevier: Amsterdam, 2019, pp. 139–166
  • Akubue, B. N.; Idumah, C. I.; David, E. Challenges of Teaching and Learning Clothing and Textiles for Entrepreneurship: Case Study of Ebonyi State University. Abakaliki. JHER 2018, 25, 11.
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C. I.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers 2017, 14, 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C. I.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C. I.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32, 413–457. DOI: 10.1515/revce-2016-0004.
  • Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361 67.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–264. DOI: 10.1515/revce-2015-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Synth. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2016, 32, 115–148. DOI: 10.1515/revce-2015-0017.
  • Idumah, C. I.; Hassan, A.; Affam, A. C. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C. I. Comparative Evaluation of the Effects of Time of Heat Setting and Wet Processing on Shearing Properties of Knitted Ingeo™ Poly (Lactic Acid) (PLA) and Polyethyleneterepthalate. Am. J. Mater. Eng. Technol. 2014, 2, 1–6.
  • Idumah, C. I.; Nwachukwu, A. Comparative Analysis of the Effect of Heatsetting and Wet Processes on the Tensile Properties of Poly Lactic Acid (PLA) and Poly Ethylene Terephthalate (PET) Knitted Fabrics. Int. J. Mater. Methods Technol. 2013, 1, 45–64.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heatsetting on the Tensile Properties of Ingeo™ Poly (Lactic Acid)(PLA) Fabric. IEE Found. Org. 2013, 797–806.
  • Idumah, C. I. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. J. Textile Sci. Eng. 2013, 3, 137. DOI: 10.4172/2165-8064.1000137.
  • Idumah, C. I. Comparative Analysis of the Effects of Time of Heat Setting and Wet Processing on Tensile Properties of Treated and Untreated Knitted PLA Fabric. Am. J. Mater. Sci. Eng. 2013, 1, 40–45.
  • Idumah, C. I. A Study of the Effects of Time of Heat Setting and Wet Processes on Shearing (Gf/Cm) Properties of Treated and Untreated Griege Knitted Ingeo™ Poly (Lactic Acid) (PLA) and Polyethylen Eterepthalate (PET) Fabric. J. Textile Sci. Eng. 2013, 4, 148. DOI: 10.4172/2165-8064.1000148.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heat Setting on the Tensile Properties of Ingeo Poly (Lactic Acid) (PLA) Fabric. Int. J. Energy Environ. 2013, 4, 797–806.
  • Idumah, C. I.; Ogbu, J. E. Flame Retardant Mechanisms of Montmorillonites, Layered Double Hydroxides and Molybdenum Disulfide Polymeric Nanoarchitectures for Safety in Extreme Environments. Polymer 2024, 63, 639–666. DOI: 10.1080/25740881.2023.2301294.
  • Idumah, C. I.; Iwuchukwu, F. U.; Okoye, I.; Ogbu, J. E. Flame Retardant Mechanisms of Metal Organic Frameworks (MOFs) Polymeric Nanoarchitectures. Polymer 2024, 63, 161–187. DOI: 10.1080/25740881.2023.2280600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.