125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chitosan-based hydrogel incorporating mesoporous silica/zinc oxide nanoparticles with controlled swelling and potent antibacterial activity

, , &
Received 24 Nov 2023, Accepted 15 Apr 2024, Published online: 23 Apr 2024

References

  • Zhang, X.; Qin, M.; Xu, M.; Miao, F.; Merzougui, C.; Zhang, X.; Wei, Y.; Chen, W.; Huang, D. The Fabrication of Antibacterial Hydrogels for Wound Healing. Eur. Polym. J. 2021, 146, 110268. DOI: 10.1016/j.eurpolymj.2021.110268.
  • Rao, K. M.; Suneetha, M.; Zo, S.; Duck, K. H.; Han, S. S. One-Pot Synthesis of ZnO Nanobelt-like Structures in Hyaluronan Hydrogels for Wound Dressing Applications. Carbohydr. Polym. 2019, 223, 115124. DOI: 10.1016/j.carbpol.2019.115124.
  • Norbury, W.; Herndon, D. N.; Tanksley, J.; Jeschke, M. G.; Finnerty, C. C. Infection in Burns. Surg. Infect. (Larchmt) 2016, 17, 250–255. DOI: 10.1089/sur.2013.134.
  • Li, J.; Mooney, D. J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. DOI: 10.1038/natrevmats.2016.71.
  • Shariatinia, Z.; Jalali, A. M. Chitosan-Based Hydrogels: Preparation, Properties and Applications. Int. J. Biol. Macromol. 2018, 115, 194–220. DOI: 10.1016/j.ijbiomac.2018.04.034.
  • Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature [Internet] 1960, 185, 117–118. DOI: 10.1038/185117a0.
  • Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-Zinc Oxide Nanoparticle Composite Coating for Active Food Packaging Applications. Innov Food Sci Emerg Technol 2016, 38, 231–237. DOI: 10.1016/j.ifset.2016.10.010.
  • Chi, S. Development and characterization of antimicrobial food coatings based on chitosan and essential oils, 2004.
  • Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A Functional Chitosan-Based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing. RSC Adv. 2018, 8, 7533–7549. DOI: 10.1039/C7RA13510F.
  • Shafiq, M., Yasin, T., Aftab Rafiq, M., Shaista. Structural, Thermal, and Antibacterial Properties of Chitosan/ZnO Composites. Polym. Compos. 2014;35(1):79–85. DOI: 10.1002/pc.22636.
  • Zhang, M.; Yang, M.; Woo, M. W.; Li, Y.; Han, W.; Dang, X. High-Mechanical Strength Carboxymethyl Chitosan-Based Hydrogel Film for Antibacterial Wound Dressing. Carbohydr. Polym. 2021, 256, 117590. https://www.sciencedirect.com/science/article/pii/S014486172031763X. DOI: 10.1016/j.carbpol.2020.117590.
  • Vasile, B. S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and Characterization of a Novel Controlled Release Zinc Oxide/Gentamicin-Chitosan Composite with Potential Applications in Wounds Care. Int. J. Pharm. 2014, 463, 161–169. DOI: 10.1016/j.ijpharm.2013.11.035.
  • Yadollahi, M.; Farhoudian, S.; Barkhordari, S.; Gholamali, I.; Farhadnejad, H.; Motasadizadeh, H. Facile Synthesis of Chitosan/ZnO Bio-Nanocomposite Hydrogel Beads as Drug Delivery Systems. Int. J. Biol. Macromol. 2016, 82, 273–278. DOI: 10.1016/j.ijbiomac.2015.09.064.
  • Aykaç, A.; Akkaş, E. Ö. Synthesis, Characterization, and Antibacterial Properties of ZnO Nanostructures Functionalized Flexible Carbon Fibers. Recent Pat. Nanotechnol. 2023, 17, 119–130. DOI: 10.2174/1872210516666220414103629.
  • Bharathi, D.; Ranjithkumar, R.; Chandarshekar, B.; Bhuvaneshwari, V. Preparation of Chitosan Coated Zinc Oxide Nanocomposite for Enhanced Antibacterial and Photocatalytic Activity: As a Bionanocomposite. Int. J. Biol. Macromol. 2019, 129, 989–996. https://www.sciencedirect.com/science/article/pii/S0141813018368843. DOI: 10.1016/j.ijbiomac.2019.02.061.
  • Rakhshaei, R.; Namazi, H.; Hamishehkar, H.; Kafil, H. S.; Salehi, R. In Situ Synthesized Chitosan–Gelatin/ZnO Nanocomposite Scaffold with Drug Delivery Properties: Higher Antibacterial and Lower Cytotoxicity Effects. J. Appl. Polym. Sci. 2019, 136, 47590. DOI: 10.1002/app.47590.
  • Rastegari, A.; Hasanshakir, F.; Mohammadi, Z.; Saadatpour, F.; Faghihi, H.; Moraffah, F. A Chitosan-Based Hydrogel Containing Zinc Oxide Nanoparticles as a Carrier for İmproving Antibacterial Activity and Controlling the Release of Antibiotics. Micro Nano Lett. 2023, 18, e12172. DOI: 10.1049/mna2.12172.
  • Vazquez, N. I.; Gonzalez, Z.; Ferrari, B.; Castro, Y. Synthesis of Mesoporous Silica Nanoparticles by Sol–Gel as Nanocontainer for Future Drug Delivery Applications. Bol. Soc. Esp. Cerám. Vidr. 2017, 56, 139–145. DOI: 10.1016/j.bsecv.2017.03.002.
  • Boccardi, E.; Liverani, L.; Beltrán, A. M.; Günther, R.; Schmidt, J.; Peukert, W.; Boccaccini, A. R. Mesoporous Silica Submicron Particles (MCM-41) İncorporating Nanoscale Ag: Synthesis, Characterization and Application as Drug Delivery Coatings. J. Porous Mater. 2019, 26, 443–453. DOI: 10.1007/s10934-018-0621-4.
  • Zhao, P.; Liu, H.; Deng, H.; Xiao, L.; Qin, C.; Du, Y.; Shi, X. A Study of Chitosan Hydrogel with Embedded Mesoporous Silica Nanoparticles Loaded by İbuprofen as a Dual Stimuli-Responsive Drug Release System for Surface Coating of Titanium İmplants. Colloids Surf. B Biointerfaces 2014, 123, 657–663. http://www.sciencedirect.com/science/article/pii/S092777651400544X. DOI: 10.1016/j.colsurfb.2014.10.013.
  • Mohseni, M.; Gilani, K.; Mortazavi, S. A. Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery. Iran. J. Pharm. Res. 2015, 14, 27–34.
  • Hassan, S. M. U.; Anis, T.; Khurshid, A.; Shahzad, F.; Iqbal, Z.; Ali, Z.; Shah, A.; Ahmad, J.; Mehmood, M. Facile Synthesis of Multifunctional m-SiO2@ZnO Nanocomposite Employing Biocompatible Polymers for Potential Theranostic Applications. Micro Nano Lett. 2021, 16, 149–156. DOI: 10.1049/mna2.12028.
  • Gnanasangeetha, D.; Saralathambavani, D. One Pot Synthesis of Zinc Oxide Nanoparticles via Chemical and Green Method. Res. J. Mater. Sci. 2013, 1, 1–8.
  • Ok, I.; Aykac, A. Enhancement of the Mechanical and Antibacterial Properties of Bis-GMA/TEGDMA Dental Composite İncorporated with ZnO/CS and Si/PMMA Core–Shell Nanostructures. Chem. Pap. 2023, 77, 6959–6973. DOI: 10.1007/s11696-023-02989-9.
  • Zhu, M.; Zhu, Y.; Zhang, L.; Shi, J. Preparation of Chitosan/Mesoporous Silica Nanoparticle Composite Hydrogels for Sustained Co-Delivery of Biomacromolecules and Small Chemical Drugs. Sci Technol Adv Mater [Internet] 2013, 14, 45005. https://pubmed.ncbi.nlm.nih.gov/27877598.
  • Kumar, P. T. S.; Lakshmanan, V.-K.; Anilkumar, T. V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A. G.; Nair, S. V.; Jayakumar, R. Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: İn Vitro and in Vivo Evaluation. ACS Appl. Mater. Interfaces 2012, 4, 2618–2629. DOI: 10.1021/am300292v.
  • Mishra, K. K.; Srivastava, S.; Garg, A.; Ayyagari, A. Antibiotic Susceptibility of Helicobacter pylori Clinical Isolates: Comparative Evaluation of Disk-Diffusion and E-Test Methods. Curr. Microbiol. 2006, 53, 329–334. DOI: 10.1007/s00284-006-0143-1.
  • Lotfinia, F.; Norouzi, M.-R.; Ghasemi-Mobarakeh, L.; Naeimirad, M. Anthocyanin/Honey-Incorporated Alginate Hydrogel as a Bio-Based pH-Responsive/Antibacterial/Antioxidant Wound Dressing. J. Funct. Biomater. 2023, 14, 72. DOI: 10.3390/jfb14020072.
  • Jayarambabu, N.; Kumari, B. S.; Rao, K. V.; Prabhu, Y. T. Beneficial Role of Zinc Oxide Nanoparticles on Green Crop Production. Int. J. Multidiscip. Adv. Res. Trends 2015, 2, 273–282.
  • Masud, R. A.; Islam, M. S.; Haque, P.; Khan, M. N. I.; Shahruzzaman, M.; Khan, M.; Takafuji, M.; Rahman, M. M. Preparation of Novel Chitosan/Poly (Ethylene Glycol)/ZnO Bionanocomposite for Wound Healing Application: effect of Gentamicin Loading. Materialia 2020, 12, 100785. DOI: 10.1016/j.mtla.2020.100785.
  • Dananjaya, S. H. S.; Kumar, R. S.; Yang, M.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Synthesis, Characterization of ZnO-Chitosan Nanocomposites and Evaluation of İts Antifungal Activity against Pathogenic Candida albicans. Int. J. Biol. Macromol. 2018, 108, 1281–1288. https://www.sciencedirect.com/science/article/pii/S0141813017328349. DOI: 10.1016/j.ijbiomac.2017.11.046.
  • Radhakrishnan, K.; Tripathy, J.; Datey, A.; Chakravortty, D.; Raichur, A. M. Mesoporous Silica–Chondroitin Sulphate Hybrid Nanoparticles for Targeted and Bio-Responsive Drug Delivery. New J. Chem. 2015, 39, 1754–1760. DOI: 10.1039/C4NJ01430H.
  • Li, Z.; Zhang, Y.; Feng, N. Mesoporous Silica Nanoparticles: synthesis, Classification, Drug Loading, Pharmacokinetics, Biocompatibility, and Application in Drug Delivery. Expert Opin. Drug Deliv. 2019, 16, 219–237. DOI: 10.1080/17425247.2019.1575806.
  • Lv, Y.; Li, J.; Chen, H.; Bai, Y.; Zhang, L. Glycyrrhetinic Acid-Functionalized Mesoporous Silica Nanoparticles as Hepatocellular Carcinoma-Targeted Drug Carrier. Int. J. Nanomed. 2017, 12, 4361–4370. DOI: 10.2147/IJN.S135626.
  • Pourjavadi, A.; Tehrani, Z. M. Mesoporous Silica Nanoparticles (MCM-41) Coated PEGylated Chitosan as a pH-Responsive Nanocarrier for Triggered Release of Erythromycin. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 692–697. DOI: 10.1080/00914037.2013.862534.
  • Paramanantham, P.; Antony, A. P.; Sruthil Lal, S. B.; Sharan, A.; Syed, A.; Ahmed, M.; Alarfaj, A. A.; Busi, S.; Maaza, M.; Kaviyarasu, K. Antimicrobial Photodynamic İnactivation of Fungal Biofilm Using Amino Functionalized Mesoporus Silica-Rose Bengal Nanoconjugate against Candida albicans. Sci. Afr. [Internet] 2018, 1, e00007. https://www.sciencedirect.com/science/article/pii/S246822761830098X. DOI: 10.1016/j.sciaf.2018.e00007.
  • Mohebian, Z.; Babazadeh, M.; Zarghami, N. In Vitro Efficacy of Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles against MCF-7 Breast Cancer Cells. Adv. Pharm. Bull. 2023, 13, 317–327. https://apb.tbzmed.ac.ir/Article/apb-32944. DOI: 10.34172/apb.2023.035.
  • Rameli, N.; Jumbri, K.; Wahab, R. A.; Ramli, A.; Huyop, F. Synthesis and Characterization of Mesoporous Silica Nanoparticles Using İonic Liquids as a Template. J. Phys: Conf. Ser. 2018, 1123, 012068. DOI: 10.1088/1742-6596/1123/1/012068.
  • P T, S. K.; Lakshmanan, V.-K.; Raj, M.; Biswas, R.; Hiroshi, T.; Nair, S. V.; Jayakumar, R. Evaluation of Wound Healing Potential of β-Chitin Hydrogel/Nano Zinc Oxide Composite Bandage. Pharm. Res. 2013, 30, 523–537. DOI: 10.1007/s11095-012-0898-y.
  • Rata, D. M.; Cadinoiu, A. N.; Daraba, O. M.; Gradinaru, L. M.; Atanase, L. I.; Ichim, D. L. Influence of ZnO Nanoparticles on the Properties of Ibuprofen-Loaded Alginate-Based Biocomposite Hydrogels with Potential Antimicrobial and Anti-Inflammatory Effects. Pharmaceutics 2023, 15, 2240. DOI: 10.3390/pharmaceutics15092240.
  • Tian, Y.; Qi, J.; Zhang, W.; Cai, Q.; Jiang, X. Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 12038–12045. DOI: 10.1021/am5026424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.