46
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in chitosan-based nanofibers as potential drug carriers in cancer therapy

, , &
Received 26 Jan 2024, Accepted 15 Apr 2024, Published online: 05 May 2024

References

  • Balusamy, B.; Celebioglu, A.; Senthamizhan, A.; Uyar, T. Progress in the Design and Development of “Fast-Dissolving” Electrospunnanofibers Based Drug Delivery systems-A Systematic Review. J. Control. Release 2020, 326, 482–509. DOI: 10.1016/j.jconrel.2020.07.038.
  • Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5, 951–967. DOI: 10.1038/s41551-021-00698-w.
  • Babadi, D.; Dadashzadeh, S.; Osouli, M.; Abbasian, Z.; Daryabari, M. S.; Sadrai, S.; Haeri, A. Biopharmaceutical and Pharmacokinetic Aspects of Nanocarrier-Mediated Oral Delivery of Poorly Soluble Drugs. J. Drug Deliv. Sci. Technol. 2021, 62, 102324. DOI: 10.1016/j.jddst.2021.102324.
  • Vinarov, Z.; Abdallah, M.; Agundez, J. A. G.; Allegaert, K.; Basit, A. W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B. T.; Grimm, M.; et al. Impact of Gastrointestinal Tract Variability on Oral Drug Absorption and Pharmacokinetics: An UNGAP Review. Eur. J. Pharm. Sci. 2021, 162, 105812. DOI: 10.1016/j.ejps.2021.105812.
  • Babadi, D.; Dadashzadeh, S.; Osouli, M.; Daryabari, M. S.; Haeri, A. Nanoformulation Strategies for Improving Intestinal Permeability of Drugs: A More Precise Look at Permeability Assessment Methods and Pharmacokinetic Properties Changes. J. Control. Release 2020, 321, 669–709. DOI: 10.1016/j.jconrel.2020.02.041.
  • Li, L.; Xing, R.; Li, J.; Li, P. Fabrication of Guanidinylated Chitosan Nanoparticles Loaded with Bioactive Factors for Facilitating Wound Healing. Int. J. Polym. Mater. 2022, 71, 173–179. DOI: 10.1080/00914037.2020.1817017.
  • Semnani, D.; Naghashzargar, E.; Hadjianfar, M.; Dehghan Manshadi, F.; Mohammadi, S.; Karbasi, S.; Effaty, F. Evaluation of PCL/Chitosan Electrospun Nanofibers for Liver Tissue Engineering. Int. J. Polym. Mater. 2017, 66, 149–157. DOI: 10.1080/00914037.2016.1190931.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. DOI: 10.1016/j.arabjc.2017.05.011.
  • Sousa, M. G.; Maximiano, M. R.; Costa, R. A.; Rezende, T. M.; Franco, O. L. Nanofibers as Drug-Delivery Systems for Infection Control in Dentistry. Expert Opin. Drug Deliv. 2020, 17, 919–930. DOI: 10.1080/17425247.2020.1762564.
  • Kenry, Lim, C. T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. DOI: 10.1016/j.progpolymsci.2017.03.002.
  • Amini, F.; Semnani, D.; Karbasi, S.; Banitaba, S. N. A Novel Bilayer Drug-Loaded Wound Dressing of PVDF and PHB/Chitosan Nanofibers Applicable for Post-Surgical Ulcers. Int. J. Polym. Mater. 2019, 68, 772–777. DOI: 10.1080/00914037.2018.1506982.
  • Mayilswamy, N.; Jaya Prakash, N.; Kandasubramanian, B. Design and Fabrication of Biodegradable Electrospun Nanofibers Loaded with Biocidal Agents. Int. J. Polym. Mater. 2023, 72, 433–459. DOI: 10.1080/00914037.2021.2021905.
  • Anusiya, G.; Jaiganesh, R. A Review on Fabrication Methods of Nanofibers and a Special Focus on Application of Cellulose Nanofibers. Carbohydrate Polym. Technol. Appl. 2022, 4, 100262. DOI: 10.1016/j.carpta.2022.100262.
  • Chigome, S.; Abiona, A. A.; Ajao, J. A.; Kana, J. B. K.; Guerbous, L.; Torto, N.; Maaza, M. Synthesis and Characterization of Electrospun Poly (Ethylene Oxide)/Europium-Doped Yttrium Orthovanadate (PEO/YVO4: Eu3+) Hybrid Nanofibers. Int. J. Polym. Mater. 2010, 59, 863–872. DOI: 10.1080/00914037.2010.504146.
  • Jain, R.; Shetty, S.; Yadav, K. S. Unfolding the Electrospinning Potential of Biopolymers for Preparation of Nanofibers. J. Drug Deliv. Sci. Technol. 2020, 57, 101604. DOI: 10.1016/j.jddst.2020.101604.
  • Zeien, J.; Qiu, W.; Triay, M.; Dhaibar, H. A.; Cruz-Topete, D.; Cornett, E. M.; Urits, I.; Viswanath, O.; Kaye, A. D. Clinical Implications of Chemotherapeutic Agent Organ Toxicity on Perioperative Care. Biomed. Pharmacother. 2022, 146, 112503. DOI: 10.1016/j.biopha.2021.112503.
  • Anand, U.; Dey, A.; Chandel, A. K. S.; Sanyal, R.; Mishra, A.; Pandey, D. K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2022, 10, 1367–1401. DOI: 10.1016/j.biopha.2021.112503
  • Shahriar, S. S.; Mondal, J.; Hasan, M. N.; Revuri, V.; Lee, D. Y.; Lee, Y. K. Electrospinning Nanofibers for Therapeutics Delivery. Nanomaterials (Basel) 2019, 9, 532. 2019,DOI: 10.3390/nano9040532.
  • Parlayıcı, Ş.; Avcı, A.; Pehlivan, E. Electrospinning of Polymeric Nanofiber (Nylon 6, 6/Graphene Oxide) for Removal of Cr (VI): Synthesis and Adsorption Studies. J. Anal. Sci. Technol. 2019, 10, 1–3. DOI: 10.1186/s40543-019-0173-5.
  • Gaydhane, M. K.; Sharma, C. S.; Majumdar, S. Electrospunnanofibres in Drug Delivery: advances in Controlled Release Strategies. RSC Adv. 2023, 13, 7312–7328. DOI: 10.1039/D2RA06023J.
  • Nadaf, A., Gupta, A., Hasan, N., Fauziya, Ahmad, S., Kesharwani, P., Ahmad, F. J. Recent Update on Electrospinning and Electrospun Nanofibers: current Trends and Their Applications. RSC Adv. 2022, 12(37), 23808–23828. DOI: 10.1039/D2RA02864F.
  • Contreras-Cáceres, R.; Cabeza, L.; Perazzoli, G.; Díaz, A.; López-Romero, J. M.; Melguizo, C.; Prados, J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials (Basel) 2019, 9, 656. DOI: 10.3390/nano9040656.
  • Beachley, V.; Wen, X. Polymer Nanofibrous Structures: Fabrication, Biofunctionalization, and Cell Interactions. Prog. Polym. Sci. 2010, 35, 868–892. DOI: 10.1016/j.progpolymsci.2010.03.003.
  • Jayaraman, K.; Kotaki, M.; Zhang, Y.; Mo, X.; Ramakrishna, S. Recent Advances in Polymer Nanofibers. J. Nanosci. Nanotechnol. 2004, 4, 52–65. DOI: 10.1166/jnn.2004.078.
  • Sánchez-Machado, D. I.; López-Cervantes, J.; Vega-Cázarez, C. A.; Hernández-Ruiz, K. L.; Campas-Baypoli, O. N.; Soto-Cota, A.; Madera-Santana, T. J. Functional and Antibacterial Characterization of Electrospun Nanofiber Membranes Made of Chitosan and Polyvinyl Alcohol. Results Chem. 2024, 7, 101314. DOI: 10.1016/j.ijbiomac.2024.129272.
  • Narayanan, G.; Shen, J.; Boy, R.; Gupta, B. S.; Tonelli, A. E. Aliphatic Polyester Nanofibers Functionalized with Cyclodextrins and Cyclodextrin-Guest Inclusion Complexes. Polymers (Basel) 2018, 10, 428. DOI: 10.3390/polym10040428.
  • Wang, X.; Wang, B.; Liu, W.; Yu, D.; Song, Z.; Li, G.; Liu, X.; Wang, H.; Ge, S. Using Chitosan Nanofibers to Simultaneously Improve the Toughness and Sensing Performance of Chitosan-Based Ionic Conductive Hydrogels. Int. J. Biol. Macromol. 2024, 260, 129272.
  • Kiliç, E.; Yakar, A.; Pekel Bayramgil, N. Preparation of Electrospun Polyurethane Nanofiber Mats for the Release of Doxorubicine. J. Mater. Sci. Mater. Med. 2018, 29, 8. DOI: 10.1007/s10856-017-6013-5.
  • Moohan, J.; Stewart, S. A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R. F.; Domínguez-Robles, J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Appl. Sci. 2019, 10, 65. DOI: 10.3390/app10010065.
  • Fazal, T.; Murtaza, B. N.; Shah, M.; Iqbal, S.; Rehman, M. U.; Jaber, F.; Dera, A. A.; Awwad, N. S.; Ibrahium, H. A. Recent Developments in Natural Biopolymer Based Drug Delivery Systems. RSC Adv. 2023, 13, 23087–23121. DOI: 10.1039/D3RA03369D.
  • Li, D.; Wang, Y.; Huang, W.; Gong, H. Biomass-Derived Fiber Materials for Biomedical Applications. Front. Mater. 2023, 10, 1058050. DOI: 10.3389/fmats.2023.1058050.
  • Olmos-Juste, R.; Alonso-Lerma, B.; Pérez-Jiménez, R.; Gabilondo, N.; Eceiza, A. 3D Printed Alginate-Cellulose Nanofibers Based Patches for Local Curcumin Administration. Carbohydr. Polym. 2021, 264, 118026. DOI: 10.1016/j.carbpol.2021.118026.
  • Yu, M.; Guo, Y.; Wang, X.; Zhu, H.; Li, W.; Zhou, J. Lignin-Based Electrospinning Nanofibers for Reversible Iodine Capture and Potential Applications. Int. J. Biol. Macromol. 2022, 208, 782–793. DOI: 10.1016/j.ijbiomac.2022.03.184.
  • Maleki, F.; Rashidi, M. R.; Razmi, H.; Ghorbani, M. Label-Free Electrochemical Immunosensor for Detection of Insulin-like Growth Factor-1 (IGF-1) Using a Specific Monoclonal Receptor on electrospunZein-Based Nanofibers/rGO-Modified Electrode. Talanta 2023, 265, 124844. DOI: 10.1016/j.talanta.2023.124844.
  • Mbese, Z.; Alven, S.; Aderibigbe, B. A. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel) 2021, 13, 4368. DOI: 10.3390/polym13244368.
  • Bharadwaz, A.; Jayasuriya, A. C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110698. DOI: 10.1016/j.msec.2020.110698.
  • Furuno, K.; Suzuki, K.; Sakai, S. Gelatin-Based Electrospun Nanofibers Cross-Linked Using Horseradish Peroxidase for Plasmid DNA Delivery. Biomolecules 2022, 12, 1638. DOI: 10.3390/biom12111638.
  • Humaira, Raza Bukhari, S. A., Shakir, H. A., Khan, M., Saeed, S., Ahmad, I., Muzammil, K., Franco, M., Irfan, M., Li, K. Hyaluronic Acid-Based Nanofibers: Electrospun Synthesis and Their Medical Applications; Recent Developments and Future Perspective. Front. Chem. 2022, 10, 1092123. DOI: 10.3389/fchem.2022.1092123.
  • Mirbagheri, M. S.; Akhavan-Mahdavi, S.; Hasan, A.; Kharazmi, M. S.; Jafari, S. M. Chitosan-Based Electrospun Nanofibers for Diabetic Foot Ulcer Management; Recent Advances. Carbohydr. Polym. 2023, 313, 120512. DOI: 10.1016/j.carbpol.2022.120512.
  • Dongsar, T. T.; Dongsar, T. S.; Gupta, N.; Almalki, W. H.; Sahebkar, A.; Kesharwani, P. Emerging Potential of 5-Fluorouracil-Loaded Chitosan Nanoparticles in Cancer Therapy. J Drug Deliv. Sci. Technol. 2023, 82, 104371. 2023 DOI: 10.1016/j.jddst.2023.104371.
  • van den Boogaard, W. M.; Komninos, D. S.; Vermeij, W. P. Chemotherapy Side-Effects: not All DNA Damage is Equal. Cancers (Basel) 2022, 14, 627. DOI: 10.3390/cancers14030627.
  • Shikhi-Abadi, P. G.; Irani, M. A Review on the Applications of Electrospun Chitosan Nanofibers for the Cancer Treatment. Int. J. Biol. Macromol. 2021, 183, 790–810. DOI: 10.1016/j.ijbiomac.2021.05.009.
  • Kroschinsky, F.; Stölzel, F.; von Bonin, S.; Beutel, G.; Kochanek, M.; Kiehl, M.; Schellongowski, P. New Drugs, New Toxicities: Severe Side Effects of Modern Targeted and Immunotherapy of Cancer and Their Management. Crit. Care 2017, 21, 89. DOI: 10.1186/s13054-017-1678-1.
  • Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct. Target. Ther. 2018, 3, 7. DOI: 10.1038/s41392-017-0004-3.
  • Virmani, T.; Kumar, G.; Sharma, A.; Pathak, K.; Akhtar, M. S.; Afzal, O.; Altamimi, A. S. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023, 15, 2928. DOI: 10.3390/polym15132928.
  • Garg, J.; Pathania, K.; Sah, S. P.; Pawar, S. V. Nanostructured Lipid Carriers: A Promising Drug Carrier for Targeting Brain Tumours. Futur. J. Pharm. Sci. 2022, 8, 25. DOI: 10.1186/s43094-022-00414-8.
  • Manna, S.; Seth, A.; Gupta, P.; Nandi, G.; Dutta, R.; Jana, S.; Jana, S. Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications. ACS Biomater. Sci. Eng. 2023, 9, 2181–2202. DOI: 10.1021/acsbiomaterials.2c01297.
  • Wang, C. H.; Cherng, J. H.; Liu, C. C.; Fang, T. J.; Hong, Z. J.; Chang, S. J.; Fan, G. Y.; Hsu, S. D. Procoagulant and Antimicrobial Effects of Chitosan in Wound Healing. Int. J. Mol. Sci. 2021, 22, 7067. DOI: 10.3390/ijms22137067.
  • Hao, W.; Li, K.; Ma, Y.; Li, R.; Xing, R.; Yu, H.; Li, P. Preparation and Antioxidant Activity of Chitosan Dimers with Different Sequences. Mar. Drugs. 2021, 19, 366. DOI: 10.3390/md19070366.
  • Yu, D.; Feng, J.; You, H.; Zhou, S.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Mar. Drugs 2022, 20, 69. DOI: 10.3390/md20010069.
  • Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver Nanoparticle Impregnated Chitosan-PEG Hydrogel Enhances Wound Healing in Diabetes Induced Rabbits. Int. J. Pharm. 2019, 559, 23–36. DOI: 10.1016/j.ijpharm.2019.01.019.
  • Chen, Y.; Sheng, W.; Lin, J.; Fang, C.; Deng, J.; Zhang, P.; Zhou, M.; Liu, P.; Weng, J.; Yu, F.; et al. Magnesium Oxide Nanoparticle Coordinated Phosphate-Functionalized Chitosan Injectable Hydrogel for Osteogenesis and Angiogenesis in Bone Regeneration. ACS Appl. Mater. Interfaces 2022, 14, 7592–7608. DOI: 10.1021/acsami.1c21260.
  • Ryu, J. H.; Yoon, H. Y.; Sun, I. C.; Kwon, I. C.; Kim, K. Tumor‐Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Adv. Mater. 2020, 32, e2002197. DOI: 10.1002/adma.202002197.
  • Dilmi, A.; Bartil, T.; Yahia, N.; Benneghmouche, Z. Hydrogels Based on 2-Hydroxyethylmethacrylate and Chitosan: Preparation, Swelling Behavior, and Drug Delivery. Int. J. Polym. Mater. 2014, 63, 502–509. DOI: 10.1080/00914037.2013.854221.
  • Kumar, L.; Verma, S.; Joshi, K.; Utreja, P.; Sharma, S. Nanofiber as a Novel Vehicle for Transdermal Delivery of Therapeutic Agents: challenges and Opportunities. Futur. J. Pharm. Sci. 2021, 7, 1–7. DOI: 10.1186/s43094-021-00324-1.
  • Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. DOI: 10.3390/md13031133.
  • Iber, B. T.; Kasan, N. A.; Torsabo, D.; Omuwa, J. W. A Review of Various Sources of Chitin and Chitosan in Nature. J. Renew. Mater. 2022, 10, 1097–1123. DOI: 10.32604/jrm.2022.018142.
  • Santos, V. P.; Marques, N. S.; Maia, P. C.; Lima, M. A.; Franco, L. D.; Campos-Takaki, G. M. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21, 4290. DOI: 10.3390/ijms21124290.
  • Kozma, M.; Acharya, B.; Bissessur, R. Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers (Basel) 2022, 14, 3989. DOI: 10.3390/polym14193989.
  • Kumar, V.; Sharma, N.; Janghu, P.; Pasrija, R.; Umesh, M.; Chakraborty, P.; Sarojini, S.; Thomas, J. Synthesis and Characterization of Chitosan Nanofibers for Wound Healing and Drug Delivery Application. J. Drug Deliv. Sci. Technol. 2023, 87, 104858. DOI: 10.1016/j.jddst.2023.104858.
  • Pellis, A.; Guebitz, G. M.; Nyanhongo, G. S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. DOI: 10.3390/gels8070393.
  • Aranaz, I.; Alcántara, A. R.; Civera, M. C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021, 13, 3256. DOI: 10.3390/polym13193256.
  • Hamed, I.; Özogul, F.; Regenstein, J. M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. 2016, 48, 40–50. DOI: 10.1016/j.tifs.2015.11.007.
  • Amiri, H.; Aghbashlo, M.; Sharma, M.; Gaffey, J.; Manning, L.; Moosavi Basri, S. M.; Kennedy, J. F.; Gupta, V. K.; Tabatabaei, M. Chitin and Chitosan Derived from Crustacean Waste Valorization Streams Can Support Food Systems and the UN Sustainable Development Goals. Nat. Food 2022, 3, 822–828. DOI: 10.1038/s43016-022-00591-y.
  • Mathew, G. M.; Mathew, D. C.; Sukumaran, R. K.; Sindhu, R.; Huang, C.-C.; Binod, P.; Sirohi, R.; Kim, S.-H.; Pandey, A. Sustainable and Eco-Friendly Strategies for Shrimp Shell Valorization. Environ. Pollut. 2020, 267, 115656. DOI: 10.1016/j.envpol.2020.115656.
  • Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; De La Caba, K. Chitosan as a Bioactive Polymer: Processing, Properties and Applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. DOI: 10.1016/j.ijbiomac.2017.07.087.
  • Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, Production and Commercial Applications of Fungal Chitosan: A Review. J. Bioresour. Bioprod. 2022, 7, 85–98. DOI: 10.1016/j.jobab.2022.01.002.
  • Abo Elsoud, M. M.; El Kady, E. M. Current Trends in Fungal Biosynthesis of Chitin and Chitosan. Bull. Natl. Res. Cent. 2019, 43, 1–2. DOI: 10.1186/s42269-019-0105-y.
  • Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current State of Chitin Purification and Chitosan Production from Insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. DOI: 10.1002/jctb.6533.
  • Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent Advances in Application of Chitosan in Fuel Cells. Sustain. Chem. Process. 2013, 1, 1–2. DOI: 10.1186/2043-7129-1-16.
  • Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers (Basel) 2018, 10, 462. DOI: 10.3390/polym10040462.
  • Cheung, R. C.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. DOI: 10.3390/md13085156.
  • Adlhart, C.; Verran, J.; Azevedo, N. F.; Olmez, H.; Keinänen-Toivola, M. M.; Gouveia, I.; Melo, L. F.; Crijns, F. Surface Modifications for Antimicrobial Effects in the Healthcare Setting: A Critical Overview. J. Hosp. Infect. 2018, 99, 239–249. DOI: 10.1016/j.jhin.2018.01.018.
  • Haktaniyan, M.; Bradley, M. Polymers Showing Intrinsic Antimicrobial Activity. Chem. Soc. Rev. 2022, 51, 8584–8611. DOI: 10.1039/D2CS00558A.
  • Abd El-Hack, M. E.; El-Saadony, M. T.; Shafi, M. E.; Zabermawi, N. M.; Arif, M.; Batiha, G. E.; Khafaga, A. F.; Abd El-Hakim, Y. M.; Al-Sagheer, A. A. Antimicrobial and Antioxidant Properties of Chitosan and Its Derivatives and Their Applications: A Review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. DOI: 10.1016/j.ijbiomac.2020.08.153.
  • Omer, A. M.; Dey, R.; Eltaweil, A. S.; Abd El-Monaem, E. M.; Ziora, Z. M. Insights into Recent Advances of Chitosan-Based Adsorbents for Sustainable Removal of Heavy Metals and Anions. Arab. J. Chem. 2022, 15, 103543. DOI: 10.1016/j.arabjc.2021.103543.
  • Gamage, A.; Jayasinghe, N.; Thiviya, P.; Wasana, M. D.; Merah, O.; Madhujith, T.; Koduru, J. R. Recent Application Prospects of Chitosan Based Composites for the Metal Contaminated Wastewater Treatment. Polymers (Basel) 2023, 15, 1453. DOI: 10.3390/polym15061453.
  • da Silva Alves, D. C.; Healy, B.; Pinto, L. A. D. A.; Cadaval, T. R.; Jr.; Breslin, C. B. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021, 26, 594. DOI: 10.3390/molecules26030594.
  • Jana, S.; Maji, N.; Nayak, A. K.; Sen, K. K.; Basu, S. K. Development of Chitosan-Based Nanoparticles through Inter-Polymeric Complexation for Oral Drug Delivery. Carbohydr. Polym. 2013, 98, 870–876. DOI: 10.1016/j.carbpol.2013.06.064.
  • Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers (Basel) 2019, 11, 560. DOI: 10.3390/polym11030560.
  • Lalan, M.; Shah, P.; Barve, K.; Parekh, K.; Mehta, T.; Patel, P. Skin Cancer Therapeutics: Nano-Drug Delivery Vectors—Present and beyond. Futur. J. Pharm. Sci. 2021, 7, 1–25. DOI: 10.1186/s43094-021-00326-z.
  • Tran, T. T.; Tran, P. H. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics 2019, 11, 290. DOI: 10.3390/pharmaceutics11060290.
  • Jana, S.; Sen, K. K. Chitosan—Locust Bean Gum Interpenetrating Polymeric Network Nanocomposites for Delivery of Aceclofenac. Int. J. Biol. Macromol. 2017, 102, 878–884. DOI: 10.1016/j.ijbiomac.2017.04.097.
  • Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A Functional Chitosan-Based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing. RSC Adv. 2018, 8, 7533–7549. DOI: 10.1039/C7RA13510F.
  • Dai, T.; Tanaka, M.; Huang, Y. Y.; Hamblin, M. R. Chitosan Preparations for Wounds and Burns: antimicrobial and Wound-Healing Effects. Expert Rev. Anti. Infect. Ther. 2011, 9, 857–879. DOI: 10.1586/eri.11.59.
  • Yadav, M.; Goswami, P.; Paritosh, K.; Kumar, M.; Pareek, N.; Vivekanand, V. Seafood Waste: A Source for Preparation of Commercially Employable Chitin/Chitosan Materials. Bioresour. Bioprocess. 2019, 6, 1–20. DOI: 10.1186/s40643-019-0243-y.
  • Tabaei, S. J.; Rahimi, M.; Akbaribazm, M.; Ziai, S. A.; Sadri, M.; Shahrokhi, S. R.; Rezaei, M. S. Chitosan-Based Nano-Scaffolds as Antileishmanial Wound Dressing in BALB/c Mice Treatment: Characterization and Design of Tissue Regeneration. Iran. J. Basic Med. Sci. 2020, 23, 788–799. DOI: 10.22038/ijbms.2020.41361.9770.
  • Mohammed, M. A.; Syeda, J. T.; Wasan, K. M.; Wasan, E. K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. DOI: 10.3390/pharmaceutics9040053.
  • Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. DOI: 10.3390/ijms22179652.
  • Hosseinnejad, M.; Jafari, S. M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. DOI: 10.1016/j.ijbiomac.2016.01.022.
  • Li, J.; Tian, X.; Hua, T.; Fu, J.; Koo, M.; Chan, W.; Poon, T. Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles. ACS Appl. Bio Mater. 2021, 4, 4014–4038. DOI: 10.1021/acsabm.1c00078.
  • Stasińska-Jakubas, M.; Hawrylak-Nowak, B. Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022, 27, 2801. DOI: 10.3390/molecules27092801.
  • Kim, I.-Y.; Seo, S.-J.; Moon, H.-S.; Yoo, M.-K.; Park, I.-Y.; Kim, B.-C.; Cho, C.-S. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21. DOI: 10.1016/j.biotechadv.2007.07.009.
  • Malerba, M.; Cerana, R. Recent Applications of Chitin-and Chitosan-Based Polymers in Plants. Polymers (Basel) 2019, 11, 839. DOI: 10.3390/polym11050839.
  • Hafsa, J.; Smach, M. A.; Mrid, R. B.; Sobeh, M.; Majdoub, H.; Yasri, A. Functional Properties of Chitosan Derivatives Obtained through Maillard Reaction: A Novel Promising Food Preservative. Food Chem. 2021, 349, 129072. DOI: 10.1016/j.foodchem.2021.129072.
  • Murase, S. K.; Lv, L. P.; Kaltbeitzel, A.; Landfester, K.; Del Valle, L. J.; Katsarava, R.; Puiggali, J.; Crespy, D. Amino Acid-Based Poly (Ester Amide) Nanofibers for Tailored Enzymatic Degradation Prepared by Miniemulsion-Electrospinning. RSC Adv. 2015, 5, 55006–55014. DOI: 10.1039/C5RA06267E.
  • Ghosal, K.; Augustine, R.; Zaszczynska, A.; Barman, M.; Jain, A.; Hasan, A.; Kalarikkal, N.; Sajkiewicz, P.; Thomas, S. Novel Drug Delivery Systems Based on Triaxial Electrospinning Based Nanofibers. React. Funct. Polym. 2021, 163, 104895. DOI: 10.1016/j.reactfunctpolym.2021.104895.
  • Reddy, V. S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers (Basel) 2021, 13, 3746. DOI: 10.3390/polym13213746.
  • Mohammadalizadeh, Z.; Bahremandi-Toloue, E.; Karbasi, S. Recent Advances in Modification Strategies of Pre-and Post-Electrospinning of Nanofiber Scaffolds in Tissue Engineering. React. Funct. Polym. 2022, 172, 105202. DOI: 10.1016/j.reactfunctpolym.2022.105202.
  • Kailasa, S.; Reddy, M. S.; Maurya, M. R.; Rani, B. G.; Rao, K. V.; Sadasivuni, K. K. Electrospun Nanofibers: materials, Synthesis Parameters, and Their Role in Sensing Applications. Macro. Mater. Eng. 2021, 306, 2100410. DOI: 10.1002/mame.202100410.
  • Lee, S. H.; Jeon, S.; Qu, X.; Kang, M. S.; Lee, J. H.; Han, D. W.; Hong, S. W. Ternary MXene-Loaded PLCL/Collagen Nanofibrous Scaffolds That Promote Spontaneous Osteogenic Differentiation. Nano Converg. 2022, 9, 38. DOI: 10.1186/s40580-022-00329-3.
  • Al-Dhahebi, A. M.; Gopinath, S. C.; Saheed, M. S. Graphene Impregnated Electrospun Nanofiber Sensing Materials: A Comprehensive Overview on Bridging Laboratory Set-up to Industry. Nano Converg. 2020, 7, 27. DOI: 10.1186/s40580-020-00237-4.
  • Nasreen, S. A.; Sundarrajan, S.; Syed Nizar, S. A.; Balamurugan, R.; Ramakrishna, S. In Situ Polymerization of PVDF-HEMA Polymers: electrospun Membranes with Improved Flux and Antifouling Properties for Water Filtration. Polym. J. 2014, 46, 167–174. DOI: 10.1038/pj.2013.79.
  • Chi, H. Y.; Chan, V.; Li, C.; Hsieh, J. H.; Lin, P. H.; Tsai, Y. H.; Chen, Y. Fabrication of Polylactic Acid/Paclitaxel Nanofibers by Electrospinning for Cancer Therapeutics. BMC Chem. 2020, 14, 63. DOI: 10.1186/s13065-020-00711-4.
  • Vigani, B.; Valentino, C.; Sandri, G.; Listro, R.; Fagiani, F.; Collina, S.; Lanni, C.; Bonferoni, M. C.; Caramella, C. M.; Rossi, S.; Ferrari, F. A Composite Nanosystem as a Potential Tool for the Local Treatment of Glioblastoma: Chitosan-Coated Solid Lipid Nanoparticles Embedded in Electrospun Nanofibers. Polymers (Basel) 2021, 13, 1371. DOI: 10.3390/polym13091371.
  • Haik, J.; Ullman, Y.; Gur, E.; Ad-El, D.; Egozi, D.; Kruchevsky, D.; Zissman, S.; Biros, E.; Nir, R.-R.; Kornhaber, R.; et al. Advances in the Use of Electrospun Nanofibrous Polymeric Matrix for Dermal Healing at the Donor Site after the Split-Thickness Skin Graft Excision: A Prospective, Randomized, Controlled, Open-Label, Multicenter Study. J. Burn Care Res. 2022, 43, 889–898. DOI: 10.1093/jbcr/irab216.
  • Iacob, A. T.; Drăgan, M.; Ionescu, O. M.; Profire, L.; Ficai, A.; Andronescu, E.; Confederat, L. G.; Lupașcu, D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020, 12, 983. DOI: 10.3390/pharmaceutics12100983.
  • Rahmati, M.; Mills, D. K.; Urbanska, A. M.; Saeb, M. R.; Venugopal, J. R.; Ramakrishna, S.; Mozafari, M. Electrospinning for Tissue Engineering Applications. Prog. Mater. Sci. 2021, 117, 100721. DOI: 10.1016/j.pmatsci.2020.100721.
  • Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of Polymeric Nanofibers for Drug Delivery Applications. J. Control. Release 2014, 185, 12–21. DOI: 10.1016/j.jconrel.2014.04.018.
  • Chen, S.; Li, R.; Li, X.; Xie, J. Electrospinning: An Enabling Nanotechnology Platform for Drug Delivery and Regenerative Medicine. Adv. Drug Deliv. Rev. 2018, 132, 188–213. DOI: 10.1016/j.addr.2018.05.001.
  • Yan, X.; Yu, M.; Ramakrishna, S.; Russell, S. J.; Long, Y. Z. Advances in Portable Electrospinning Devices for in Situ Delivery of Personalized Wound Care. Nanoscale 2019, 11, 19166–19178. DOI: 10.1039/C9NR02802A.
  • Vass, P.; Szabó, E.; Domokos, A.; Hirsch, E.; Galata, D.; Farkas, B.; Démuth, B.; Andersen, S. K.; Vigh, T.; Verreck, G.; et al. Scale‐up of Electrospinning Technology: Applications in the Pharmaceutical Industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1611. DOI: 10.1002/wnan.1611.
  • Agarwal, S.; Greiner, A.; Wendorff, J. H. Functional Materials by Electrospinning of Polymers. Prog. Polym. Sci. 2013, 38, 963–991. DOI: 10.1016/j.progpolymsci.2013.02.001.
  • Zhang, J.; Zhao, Y. T.; Hu, P. Y.; Liu, J. J.; Liu, X. F.; Hu, M.; Cui, Z.; Wang, N.; Niu, Z.; Xiang, H. F.; Long, Y. Z. Laparoscopic Electrospinning for In Situ Hemostasis in Minimally Invasive Operation. J. Chem. Eng. 2020, 395, 125089. DOI: 10.1016/j.cej.2020.125089.
  • Singh, A. P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted Therapy in Chronic Diseases Using Nanomaterial-Based Drug Delivery Vehicles. Signal Transduct. Target. Ther. 2019, 4, 33. DOI: 10.1038/s41392-019-0068-3.
  • Liao, H. S.; Lin, J.; Liu, Y.; Huang, P.; Jin, A.; Chen, X. Self-Assembly Mechanisms of Nanofibers from Peptide Amphiphiles in Solution and on Substrate Surfaces. Nanoscale 2016, 8, 14814–14820. DOI: 10.1039/C6NR04672J.
  • Wang, W. C.; Cheng, Y. T.; Estroff, B. Electrostatic Self-Assembly of Composite Nanofiber Yarn. Polymers (Basel) 2020, 13, 12. DOI: 10.3390/polym13010012.
  • Kadokawa, J. I. Preparation of Composite Materials from Self-Assembled Chitin Nanofibers. Polymers (Basel) 2021, 13, 3548. DOI: 10.3390/polym13203548.
  • Ifuku, S. Chitin and Chitosan Nanofibers: Preparation and Chemical Modifications. Molecules 2014, 19, 18367–18380. DOI: 10.3390/molecules191118367.
  • Jin, J.; Hassanzadeh, P.; Perotto, G.; Sun, W.; Brenckle, M. A.; Kaplan, D.; Omenetto, F. G.; Rolandi, M. A Biomimetic Composite from Solution Self‐Assembly of Chitin Nanofibers in a Silk Fibroin Matrix. Adv. Mater. 2013, 25, 4482–4487. DOI: 10.1002/adma.201301429.
  • Xu, D.; Samways, D. S.; Dong, H. Fabrication of Self-Assembling Nanofibers with Optimal Cell Uptake and Therapeutic Delivery Efficacy. Bioact. Mater. 2017, 2, 260–268. DOI: 10.1016/j.bioactmat.2017.09.001.
  • Wang, W.; Nie, W.; Zhou, X.; Feng, W.; Chen, L.; Zhang, Q.; You, Z.; Shi, Q.; Peng, C.; He, C. Fabrication of Heterogeneous Porous Bilayered Nanofibrous Vascular Grafts by Two-Step Phase Separation Technique. Acta Biomater. 2018, 79, 168–181. DOI: 10.1016/j.actbio.2018.08.014.
  • Huang, W.; Wang, M. J.; Liu, C. L.; You, J.; Chen, S. C.; Wang, Y. Z.; Liu, Y. Phase Separation in Electrospun Nanofibers Controlled by Crystallization Induced Self-Assembly. J. Mater. Chem. A 2014, 2, 8416–8424. DOI: 10.1039/c4ta00417e.
  • Asano, N.; Sugihara, S.; Suye, S. I.; Fujita, S. Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS Omega. 2022, 7, 19997–20005. DOI: 10.1021/acsomega.2c01798.
  • Ma, G.; Wang, Z.; Chen, J.; Yin, R.; Chen, B.; Nie, J. Freeze-Dried Chitosan–Sodium Hyaluronate Polyelectrolyte Complex Fibers as Tissue Engineering Scaffolds. New J. Chem. 2014, 38, 1211–1217. DOI: 10.1039/c3nj00701d.
  • Liu, S.; He, Z.; Xu, G.; Xiao, X. Fabrication of Polycaprolactone Nanofibrous Scaffolds by Facile Phase Separation Approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 201–208. DOI: 10.1016/j.msec.2014.08.012.
  • Ji, X.; Li, R.; Liu, G.; Jia, W.; Sun, M.; Liu, Y.; Luo, Y.; Cheng, Z. Phase Separation-Based Electrospun Janus Nanofibers Loaded with Rana Chensinensis Skin Peptides/Silver Nanoparticles for Wound Healing. Mater. Des. 2021, 207, 109864. DOI: 10.1016/j.matdes.2021.109864.
  • Ehterami, A.; Masoomikarimi, M.; Bastami, F.; Jafarisani, M.; Alizadeh, M.; Mehrabi, M.; Salehi, M. Fabrication and Characterization of Nanofibrous Poly (L-Lactic Acid)/Chitosan-Based Scaffold by Liquid–Liquid Phase Separation Technique for Nerve Tissue Engineering. Mol. Biotechnol. 2021, 63, 818–827. DOI: 10.1007/s12033-021-00346-3.
  • Qin, W.; Li, J.; Tu, J.; Yang, H.; Chen, Q.; Liu, H. Fabrication of Porous Chitosan Membranes Composed of Nanofibers by Low Temperature Thermally Induced Phase Separation, and Their Adsorption Behavior for Cu2+. Carbohydr. Polym. 2021, 178, 338–346. DOI: 10.1016/j.carbpol.2017.09.051.
  • Zhang, T.; Chen, K.; Wu, X.; Xiao, X. Preparation of Nanofibrous Poly (L-Lactic Acid) Scaffolds Using the Thermally Induced Phase Separation Technique in Dioxane/Polyethylene Glycol Solution. Des. Monomers Polym. 2023, 26, 77–89. DOI: 10.1080/15685551.2023.2194175.
  • Kratochvil, M. J.; Carter, M. C.; Lynn, D. M. Amine-Reactive Azlactone-Containing Nanofibers for the Immobilization and Patterning of New Functionality on Nanofiber-Based Scaffolds. ACS Appl. Mater. Interfaces 2017, 9, 10243–10253. DOI: 10.1021/acsami.7b00219.
  • Zhou, H.; Song, Y. Fabrication of Silver Mesh/Grid and Its Applications in Electronics. ACS Appl. Mater. Interfaces 2021, 13, 3493–3511. DOI: 10.1021/acsami.0c18518.
  • Si, B. M.; Yang, J. C.; Hazarika, D.; Byeon, J. W.; Lee, G. B.; Park, J. Fabrication and Sensing Properties of Fibrous-Like Chlorophenoxy Herbicide-Imprinted Polymeric Matrix via Microcontact Printing. Macromol. Res. 2022, 30, 731–736. DOI: 10.1007/s13233-022-0077-x.
  • Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I. S.; Bechelany, M. Nanofibers as New-Generation Materials: From Spinning and Nano-Spinning Fabrication Techniques to Emerging Applications. Appl. Mater. Today 2019, 17, 1–35. DOI: 10.1016/j.apmt.2019.06.015.
  • Chen, Y.; Fan, H.; Zha, X.; Wang, W.; Wu, Y.; Xiong, Y.; Yan, K.; Wang, Y.; Wang, D. Fabrication of Silica/PVA-co-PE Nanofiber Membrane for Oil/Water Separation. Fash. Text. 2021, 8, 1–2. DOI: 10.1186/s40691-021-00252-x.
  • Zhu, L., Zhu, W., Hu, X., Lin, Y., Machmudah, S., Wahyudiono, Kanda, H., Goto, M. (2022) PVP/Highly Dispersed AgNPs Nanofibers Using Ultrasonic-Assisted Electrospinning. Polymers (Basel) 2022, 14(3), 599. DOI: 10.3390/polym14030599.
  • Ahmed, F.; Arbab, A. A.; Jatoi, A. W.; Khatri, M.; Memon, N.; Khatri, Z.; Kim, I. S. Ultrasonic-Assisted Deacetylation of Cellulose Acetate Nanofibers: A Rapid Method to Produce Cellulose Nanofibers. Ultrason. Sonochem. 2017, 36, 319–325. DOI: 10.1016/j.ultsonch.2016.12.013.
  • Lu, Y.; Sun, Q.; She, X.; Xia, Y.; Liu, Y.; Li, J.; Yang, D. Fabrication and Characterisation of α-Chitin Nanofibers and Highly Transparent Chitin Films by Pulsed Ultrasonication. Carbohydr. Polym. 2013, 98, 1497–1504. DOI: 10.1016/j.carbpol.2013.07.038.
  • Ding, J.; Guo, Y. Recent Advances in Chitosan and Its Derivatives in Cancer Treatment. Front. Pharmacol. 2022, 13, 888740. DOI: 10.3389/fphar.2022.888740.
  • Iacob, A. T.; Lupascu, F. G.; Apotrosoaei, M.; Vasincu, I. M.; Tauser, R. G.; Lupascu, D.; Giusca, S. E.; Caruntu, I. D.; Profire, L. Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics 2021, 13, 587. DOI: 10.3390/pharmaceutics13040587.
  • Alturki, A. M. Rationally Design of Electrospun Polysaccharides Polymeric Nanofiber Webs by Various Tools for Biomedical Applications: A Review. Int. J. Biol. Macromol. 2021, 184, 648–665. DOI: 10.1016/j.ijbiomac.2021.06.021.
  • Barman, M.; Mahmood, S.; Augustine, R.; Hasan, A.; Thomas, S.; Ghosal, K. Natural Halloysite Nanotubes/Chitosan Based Bio-Nanocomposite for Delivering Norfloxacin, an anti-Microbial Agent in Sustained Release Manner. Int. J. Biol. Macromol. 2020, 162, 1849–1861. DOI: 10.1016/j.ijbiomac.2020.08.060.
  • Herdiana, Y.; Wathoni, N.; Gozali, D.; Shamsuddin, S.; Muchtaridi, M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023, 15, 879. 2023DOI: 10.3390/pharmaceutics15030879.
  • Bag, J.; Banerjee, S.; De, A.; Manna, S.; Banerjee, S.; Kumar, S. K. A.; De, S. Nanoengineered Approaches to Improve the Efficacy of Targeted Drug Delivery for the Treatment of Malignancy: A Comprehensive Review. Futur. J. Pharm. Sci. 2023, 9, 88. DOI: 10.1186/s43094-023-00541-w.
  • Chen, S.; Boda, S. K.; Batra, S. K.; Li, X.; Xie, J. Emerging Roles of Electrospun Nanofibers in Cancer Research. Adv. Healthc. Mater. 2018, 7, e1701024. DOI: 10.1002/adhm.201701024.
  • Fu, Y.; Li, X.; Ren, Z.; Mao, C.; Han, G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small 2018, 14, e1801183. DOI: 10.1002/smll.201801183.
  • Li, L.; Hao, R.; Qin, J.; Song, J.; Chen, X.; Rao, F.; Zhai, J.; Zhao, Y.; Zhang, L.; Xue, J. Electrospunfibers Control Drug Delivery for Tissue Regeneration and Cancer Therapy. Adv. Fiber Mater. 2022, 4, 1375–1413. DOI: 10.1007/s42765-022-00198-9.
  • Kevadiya, B. D.; Woldstad, C.; Ottemann, B. M.; Dash, P.; Sajja, B. R.; Lamberty, B.; Morsey, B.; Kocher, T.; Dutta, R.; Bade, A. N.; et al. Multimodal Theranosticnanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 2018, 8, 256–276. DOI: 10.7150/thno.22764.
  • Alves, D.; Araújo, J. C.; Fangueiro, R.; Ferreira, D. P. Localized Therapeutic Approaches Based on Micro/Nanofibers for Cancer Treatment. Molecules 2023, 28, 3053. DOI: 10.3390/molecules28073053.
  • Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023, 15, 1313. DOI: 10.3390/pharmaceutics15041313.
  • Gouda, M.; Khalaf, M. M.; Shaaban, S.; El-Lateef, H. M. Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System. Polymers (Basel) 2022, 14, 2094. DOI: 10.3390/polym14102094.
  • Jiang, Z.; Zheng, Z.; Yu, S.; Gao, Y.; Ma, J.; Huang, L.; Yang, L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023, 15, 1829. DOI: 10.3390/pharmaceutics15071829.
  • Muthukrishnan, L. An Overview on Electrospinning and Its Advancement toward Hard and Soft Tissue Engineering Applications. Colloid Polym. Sci. 2022, 300, 875–901. DOI: 10.1007/s00396-022-04997-9.
  • Zhu, J.; Li, Z.; Zou, Y.; Lu, G.; Ronca, A.; D’Amora, U.; Liang, J.; Fan, Y.; Zhang, X.; Sun, Y. Advanced Application of Collagen-Based Biomaterials in Tissue Repair and Restoration. J. Leather Sci. Eng. 2022, 4, 30. DOI: 10.1186/s42825-022-00102-6.
  • Erickson, A.; Chiarelli, P. A.; Huang, J.; Levengood, S. L.; Zhang, M. Electrospun Nanofibers for 3-D Cancer Models, Diagnostics, and Therapy. Nanoscale Horiz. 2022, 7, 1279–1298. DOI: 10.1039/d2nh00328g.
  • Hasanbegloo, K.; Banihashem, S.; Dizaji, B. F.; Bybordi, S.; Farrokh-Eslamlou, N.; Abadi, P. G.; Jazi, F. S.; Irani, M. Paclitaxel-Loaded Liposome-Incorporated Chitosan (Core)/Poly (ε-Caprolactone)/Chitosan (Shell) Nanofibers for the Treatment of Breast Cancer. Int. J. Biol. Macromol. 2023, 230, 123380. DOI: 10.1016/j.ijbiomac.2023.123380.
  • Sedghi, R.; Gholami, M.; Shaabani, A.; Saber, M.; Niknejad, H. Preparation of Novel Chitosan Derivative Nanofibers for Prevention of Breast Cancer Recurrence. Eur. Polym. J. 2020, 123, 109421. 2020 DOI: 10.1016/j.eurpolymj.2019.109421.
  • Talimi, R.; Shahsavari, Z.; Dadashzadeh, S.; Ten Hagen, T. L.; Haeri, A. Sirolimus-Exuding Core-Shell Nanofibers as an Implantable Carrier for Breast Cancer Therapy: Preparation, Characterization, In Vitro Cell Studies, and In Vivo Anti-Tumor Activity. Drug Dev. Ind. Pharm. 2023, 48, 694–707. DOI: 101080/03639045.2022.2161559
  • Jouybari, M. H.; Hosseini, S.; Mahboobnia, K.; Boloursaz, L. A.; Moradi, M.; Irani, M. Simultaneous Controlled Release of 5-FU, DOX and PTX from Chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX Triaxial Nanofibers for Breast Cancer Treatment In Vitro. Colloids Surf. B Biointerfaces 2019, 179, 495–504. DOI: 10.1016/j.colsurfb.2019.04.026.
  • Ignatova, M.; Yossifova, L.; Gardeva, E.; Manolova, N.; Toshkova, R.; Rashkov, I.; Alexandrov, M. Antiproliferative Activity of Nanofibers Containing Quaternized Chitosan and/or Doxorubicin against MCF-7 Human Breast Carcinoma Cell Line by Apoptosis. Int. J. Pharm. 2011, 436, 10–24. DOI: 10.1177/088391151142465.
  • Farboudi, A.; Nouri, A.; Shirinzad, S.; Sojoudi, P.; Davaran, S.; Akrami, M.; Irani, M. Synthesis of Magnetic Gold Coated Poly (ε-Caprolactonediol) Based Polyurethane/Poly (N-Isopropylacrylamide)-Grafted-Chitosan Core-Shell Nanofibers for Controlled Release of Paclitaxel and 5-FU. Int. J. Biol. Macromol. 2020, 150, 1130–1140. DOI: 10.1016/j.ijbiomac.2019.10.120.
  • Amini, Z.; Rudsary, S. S.; Shahraeini, S. S.; Dizaji, B. F.; Goleij, P.; Bakhtiari, A.; Irani, M.; Sharifianjazi, F. Magnetic Bioactive Glasses/Cisplatin Loaded-Chitosan (CS)-Grafted-Poly (ε-Caprolactone) Nanofibers against Bone Cancer Treatment. Carbohydr. Polym. 2021, 258, 117680. DOI: 10.1016/j.carbpol.2021.117680.
  • Qavamnia, S. S.; Rad, L. R.; Irani, M. Incorporation of Hydroxyapatite/Doxorubicin into the Chitosan/Polyvinyl Alcohol/Polyurethane Nanofibers for Controlled Release of Doxurubicin and Its Anticancer Property. Fibers Polym. 2020, 21, 1634–1642. DOI: 10.1007/s12221-020-9809-8.
  • Patel, G.; Yadav, B. K. Formulation, Characterization and in Vitro Cytotoxicity of 5-Fluorouracil Loaded Polymeric Electrospun Nanofibers for the Treatment of Skin Cancer. Recent Pat. Nanotechnol. 2019, 13, 114–128. DOI: 10.2174/1872210513666190314095643.
  • Zhu, L. F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M. W. A Novel Core-Shell Nanofiber Drug Delivery System Intended for the Synergistic Treatment of Melanoma. Eur. J. Pharm. Sci. 2019, 137, 105002. DOI: 10.1016/j.ejps.2019.105002.
  • Sedghi, R.; Shaabani, A.; Mohammadi, Z.; Samadi, F. Y.; Isaei, E. Biocompatible Electrospinning Chitosan Nanofibers: A Novel Delivery System with Superior Local Cancer Therapy. Carbohydr. Polym. 2017, 159, 1–10. DOI: 10.1016/j.carbpol.2016.12.011.
  • Bazzazzadeh, A.; Dizaji, B. F.; Kianinejad, N.; Nouri, A.; Irani, M. Fabrication of Poly (Acrylic Acid) Grafted-Chitosan/Polyurethane/Magnetic MIL-53 Metal Organic Framework Composite Core-Shell Nanofibers for co-Delivery of Temozolomide and Paclitaxel against Glioblastoma Cancer Cells. Int. J. Pharm. 2020, 587, 119674. DOI: 10.1016/j.ijpharm.2020.119674.
  • Kievit, F. M.; Cooper, A.; Jana, S.; Leung, M. C.; Wang, K.; Edmondson, D.; Wood, D.; Lee, J. S. H.; Ellenbogen, R. G.; Zhang, M. Aligned Chitosan‐Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells. Adv. Healthc. Mater. 2013, 2, 1651–1659. DOI: 10.1002/adhm.201300092.
  • Erickson, A.; Sun, J.; Levengood, S. K.; Zhang, M. Hyaluronic Acid-Coated Aligned Nanofibers for the Promotion of Glioblastoma Migration. ACS Appl. Bio Mater. 2019, 2, 1088–1097. DOI: 10.1021/acsabm.8b00704.
  • Azerbaijan, M. H.; Bahmani, E.; Jouybari, M. H.; Hassaniazardaryani, A.; Goleij, P.; Akrami, M.; Irani, M. Electrospun Gold Nanorods/Graphene Oxide Loaded-Core-Shell Nanofibers for Local Delivery of Paclitaxel against Lung Cancer during Photo-Chemotherapy Method. Eur. J. Pharm. Sci. 2021, 164, 105914. DOI: 10.1016/j.ejps.2021.105914.
  • Wang, M.; Xiao, Y.; Lin, L.; Zhu, X.; Du, L.; Shi, X. A Microfluidic Chip Integrated with Hyaluronic Acid-Functionalized Electrospun Chitosan Nanofibers for Specific Capture and Nondestructive Release of CD44-Overexpressing Circulating Tumor Cells. Bioconjug. Chem. 2018, 29, 1081–1090. DOI: 10.1021/acs.bioconjchem.7b00747.
  • Samadi, S.; Moradkhani, M.; Beheshti, H.; Irani, M.; Aliabadi, M. Fabrication of Chitosan/Poly (Lactic Acid)/Graphene Oxide/TiO2 Composite Nanofibrous Scaffolds for Sustained Delivery of Doxorubicin and Treatment of Lung Cancer. Int. J. Biol. Macromol. 2018, 110, 416–424. DOI: 10.1016/j.ijbiomac.2017.08.048.
  • Ardeshirzadeh, B.; Anaraki, N. A.; Irani, M.; Rad, L. R.; Shamshiri, S. Controlled Release of Doxorubicin from Electrospun PEO/Chitosan/Graphene Oxide Nanocomposite Nanofibrous Scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 384–390. DOI: 10.1016/j.msec.2014.12.039.
  • Yan, E.; Fan, Y.; Sun, Z.; Gao, J.; Hao, X.; Pei, S.; Wang, C.; Sun, L.; Zhang, D. Biocompatible Core–Shell Electrospun Nanofibers as Potential Application for Chemotherapy against Ovary Cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 217–223. DOI: 10.1016/j.msec.2014.04.053.
  • Aggarwal, U.; Goyal, A. K.; Rath, G. Development and Characterization of the Cisplatin Loaded Nanofibers for the Treatment of Cervical Cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 125–132. DOI: 10.1016/j.msec.2017.02.013.
  • Lin, T. C.; Lin, F. H.; Lin, J. C. In Vitro Feasibility Study of the Use of a Magnetic Electrospun Chitosan Nanofiber Composite for Hyperthermia Treatment of Tumor Cells. Acta Biomater. 2012, 8, 2704–2711. DOI: 10.1016/j.actbio.2012.03.045.
  • Farboudi, A.; Mahboobnia, K.; Chogan, F.; Karimi, M.; Askari, A.; Banihashem, S.; Davaran, S.; Irani, M. UiO-66 Metal Organic Framework Nanoparticles Loaded Carboxymethyl Chitosan/Poly Ethylene Oxide/Polyurethane Core-Shell Nanofibers for Controlled Release of Doxorubicin and Folic Acid. Int. J. Biol. Macromol. 2020, 150, 178–188. DOI: 10.1016/j.ijbiomac.2020.02.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.