29
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in polymer-based scaffolding for enhanced wound healing: a comprehensive review

, , &
Received 03 Apr 2024, Accepted 09 Jun 2024, Published online: 01 Jul 2024

References

  • Garg, T.; Singh, O.; Arora, S.; Murthy, R. Scaffold: A Novel Carrier for Cell and Drug Delivery. Crit. Rev. 2012, 29, 1–63.
  • Sharma, S.; Rai, V. K.; Narang, R. K.; Markandeywar, T. S. Collagen-Based Formulations for Wound Healing: A Literature Review. Life Sci. 2022, 290, 120096. DOI: 10.1016/j.lfs.2021.120096.
  • Talbott, H. E.; Mascharak, S.; Griffin, M.; Wan, D. C.; Longaker, M. T. Wound Healing, Fibroblast Heterogeneity, and Fibrosis. Cell Stem Cell 2022, 29, 1161–1180. DOI: 10.1016/j.stem.2022.07.006.
  • Atala, A.; Irvine, D. J.; Moses, M.; Shaunak, S. Wound Healing versus Regeneration: role of the Tissue Environment in Regenerative Medicine. MRS Bull. 2010, 35, 597–606. DOI: 10.1557/mrs2010.528.
  • Choudhury, H.; Pandey, M.; Lim, Y. Q.; Low, C. Y.; Lee, C. T.; Marilyn, T. C. L.; Loh, H. S.; Lim, Y. P.; Lee, C. F.; Bhattamishra, S. K.; et al. Silver Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Mater. Sci. Eng. C 2020, 112, 110925. DOI: 10.1016/j.msec.2020.110925.
  • Pastar, I.; Stojadinovic, O.; Yin, N. C.; Ramirez, H.; Nusbaum, A. G.; Sawaya, A.; Patel, S. B.; Khalid, L.; Isseroff, R. R.; Tomic-Canic, M.; et al. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. DOI: 10.1089/wound.2013.0473.
  • de Souza, M. L.; Dos Santos, W. M.; de Sousa, A. L. M. D.; de Albuquerque Wanderley Sales, V.; Nóbrega, F. P.; de Oliveira, M. V. G.; Rolim-Neto, P. J. Lipid Nanoparticles as a Skin Wound Healing Drug Delivery System: Discoveries and Advances. Curr. Pharm. Des. 2020, 26, 4536–4550. DOI: 10.2174/1381612826666200417144530.
  • Ghaly, P.; Iliopoulos, J.; Ahmad, M. The Role of Nutrition in Wound Healing: An Overview. Br. J. Nurs. 2021, 30, S38–S42. DOI: 10.12968/bjon.2021.30.5.S38.
  • Quain, A. M.; Khardori, N. M. Nutrition in Wound Care Management: A Comprehensive Overview. Wounds 2015, 27, 327–335.
  • Johnston, E. The Role of Nutrition in Tissue Viability. Wound Essentials 2007, 2, 10–21.
  • Molnar, J. A.; Underdown, M. J.; Clark, W. A. Nutrition and Chronic Wounds. Adv. Wound Care 2014, 3, 663–681. DOI: 10.1089/wound.2014.0530.
  • Nokoorani, Y. D.; Shamloo, A.; Bahadoran, M.; Moravvej, H. Fabrication and Characterization of Scaffolds Containing Different Amounts of Allantoin for Skin Tissue Engineering. Sci. Rep. 2021, 11, 16164. DOI: 10.1038/s41598-021-95763-4.
  • Yildirimer, L.; Thanh, N. T.; Seifalian, A. M. Skin Regeneration Scaffolds: A Multimodal Bottom-up Approach. Trends Biotechnol. 2012, 30, 638–648. DOI: 10.1016/j.tibtech.2012.08.004.
  • Sethuram, L.; Thomas, J. Therapeutic Applications of Electrospun Nanofibers Impregnated with Various Biological Macromolecules for Effective Wound Healing Strategy–a Review. Biomed. Pharmacother. 2023, 157, 113996. DOI: 10.1016/j.biopha.2022.113996.
  • Wang, Y.; Xiao, D.; Yu, H.; Ke, R.; Shi, S.; Tang, Y.; Zhong, Y.; Zhang, L.; Sui, X.; Wang, B.; et al. Asymmetric Composite Wound Dressing with Hydrophobic Flexible Bandage and Tissue-Adhesive Hydrogel for Joints Skin Wound Healing. Compos. B Eng. 2022, 235, 109762. DOI: 10.1016/j.compositesb.2022.109762.
  • Nanditha, C.; Kumar, G. V. Bioactive Peptides Laden Nano and Micro-Sized Particles Enriched ECM Inspired Dressing for Skin Regeneration in Diabetic Wounds. Mater. Today Bio. 2022, 14, 100235. DOI: 10.1016/j.mtbio.2022.100235.
  • Du, S.; Zeugolis, D. I.; O’Brien, T. Scaffold-Based Delivery of Mesenchymal Stromal Cells to Diabetic Wounds. Stem Cell Res. Ther. 2022, 13, 426. DOI: 10.1186/s13287-022-03115-4.
  • Kumar, A.; Behl, T.; Chadha, S. Synthesis of Physically Crosslinked PVA/Chitosan Loaded Silver Nanoparticles Hydrogels with Tunable Mechanical Properties and Antibacterial Effects. Int. J. Biol. Macromol. 2020, 149, 1262–1274. DOI: 10.1016/j.ijbiomac.2020.02.048.
  • Croll, T. I.; Gentz, S.; Mueller, K.; Davidson, M.; O’Connor, A. J.; Stevens, G. W.; Cooper-White, J. J. Modelling Oxygen Diffusion and Cell Growth in a Porous, Vascularising Scaffold for Soft Tissue Engineering Applications. Chem. Eng. Sci. 2005, 60, 4924–4934. DOI: 10.1016/j.ces.2005.03.051.
  • Lehmann, T.; Vaughn, A. E.; Seal, S.; Liechty, K. W.; Zgheib, C. Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics 2022, 14, 651. DOI: 10.3390/pharmaceutics14030651.
  • Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for Wound Healing Applications. Polymers. 2020, 12, 2010. DOI: 10.3390/polym12092010.
  • Ho, T. T.; Tran, H. A.; Doan, V. K.; Maitz, J.; Li, Z.; Wise, S. G.; Lim, K. S.; Rnjak-Kovacina, J. Natural Polymer-Based Materials for Wound Healing Applications. J. Adv. NanoBiomed. Res. 2024, 4, 2300131. DOI: 10.1002/anbr.202300131.
  • Zhang, J.; Song, C.; Han, Y.; Xi, Z.; Zhao, L.; Cen, L.; Yang, Y. Regulation of Inflammatory Response to Polyglycolic Acid Scaffolds through Incorporation of Sodium Tripolyphosphate. Eur. Polym. J. 2020, 122, 109349. DOI: 10.1016/j.eurpolymj.2019.109349.
  • Oliveira, C.; Sousa, D.; Teixeira, J. A.; Ferreira-Santos, P.; CMJFiB, B. Biotechnology. Polymeric Biomaterials for Wound Healing. Front. Bioeng. Biotechnol. 2023, 11, 1136077. DOI: 10.3389/fbioe.2023.1136077.
  • Jafari, M.; Paknejad, Z.; Rad, M. R.; Motamedian, S. R.; Eghbal, M. J.; Nadjmi, N.; Khojasteh, A. Polymeric Scaffolds in Tissue Engineering: A Literature Review. J. Biomed. Mater. Res. 2017, 105, 431–459. DOI: 10.1002/jbm.b.33547.
  • Fiorica, C.; Palumbo, F. S.; Pitarresi, G.; Allegra, M.; Puleio, R.; Giammona, G. Hyaluronic Acid and α-Elastin Based Hydrogel for Three Dimensional Culture of Vascular Endothelial Cells. J. Drug Delivery Sci. Technol. 2018, 46, 28–33. DOI: 10.1016/j.jddst.2018.04.017.
  • Baroli, B. Penetration of Nanoparticles and Nanomaterials in the Skin: Fiction or Reality? J. Pharm. Sci. 2010, 99, 21–50. DOI: 10.1002/jps.21817.
  • Yi, S.; Ding, F.; Gong, L.; Gu, X. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine. Curr. Stem Cell Res. Ther. 2017, 12, 233–246. DOI: 10.2174/1574888X11666160905092513.
  • Russo, L.; Cipolla, L. Glycomics: New Challenges and Opportunities in Regenerative Medicine. Chemistry 2016, 22, 13380–13388. DOI: 10.1002/chem.201602156.
  • Chaudhari, A. A.; Vig, K.; Baganizi, D. R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S. R.; Pillai, S. R. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016, 17, 1974. DOI: 10.3390/ijms17121974.
  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 1–19. DOI: 10.1155/2011/290602.
  • Langer, R.; Tirrell, D. A. Designing Materials for Biology and Medicine. Nature 2004, 428, 487–492. DOI: 10.1038/nature02388.
  • Cascone, M. G.; Barbani, N.; P.; Giusti, C. C.; Ciardelli, G.; Lazzeri, L. Bioartificial Polymeric Materials Based on Polysaccharides. J. Biomater. Sci. Polym. Ed. 2001, 12, 267–281. DOI: 10.1163/156856201750180807.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Dhiman, S.; Singh, T. G.; Rehni, A. K. Transdermal Patches: A Recent Approach to New Drug Delivery System. Int. J. Pharm. Pharm. Sci. 2011, 3, 26–34.
  • Biglari, N.; Zare, E. N. Conjugated Polymer-Based Composite Scaffolds for Tissue Engineering and Regenerative Medicine. J Alex. Eng. J. 2024, 87, 277–299. DOI: 10.1016/j.aej.2023.12.041.
  • O’brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14, 88–95. DOI: 10.1016/S1369-7021(11)70058-X.
  • Doillon, C. J.; Watsky, M. A.; Hakim, M.; Wang, J.; Munger, R.; Laycock, N.; Osborne, R.; Griffith, M. A Collagen-Based Scaffold for a Tissue Engineered Human Cornea: physical and Physiological Properties. Int. J. Artif. Organs. 2003, 26, 764–773. DOI: 10.1177/039139880302600810.
  • Suamte, L.; Tirkey, A.; Babu, P. J. Design of 3D Smart Scaffolds Using Natural, Synthetic and Hybrid Derived Polymers for Skin Regenerative Applications. Smart Mater. Med. 2023, 4, 243–256. DOI: 10.1016/j.smaim.2022.09.005.
  • Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding Polymeric Biomaterials: Are Naturally Occurring Biological Macromolecules More Appropriate for Tissue Engineering? Int. J. Biol. Macromol. 2019, 134, 673–694. DOI: 10.1016/j.ijbiomac.2019.04.197.
  • Wahab, I. F.; Abd Razak, S. I. Polysaccharides as Composite Biomaterials. In Composites from Renewable and Sustainable Materials; Poletto, M., Ed. IntechOpen: Houston, 2016, pp 65–84.
  • Tiwari, S.; Patil, R.; Bahadur, P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers 2018, 11, 1. DOI: 10.3390/polym11010001.
  • Brown, B. N.; Valentin, J. E.; Stewart-Akers, A. M.; McCabe, G. P.; Badylak, S. F. Macrophage Phenotype and Remodeling Outcomes in Response to Biologic Scaffolds with and without a Cellular Component. Biomaterials 2009, 30, 1482–1491. DOI: 10.1016/j.biomaterials.2008.11.040.
  • Märtson, M.; Viljanto, J.; Hurme, T.; Saukko, P. Biocompatibility of Cellulose Sponge with Bone. Eur. Surg. Res. 1998, 30, 426–432. DOI: 10.1159/000008609.
  • Kucińska-Lipka, J.; Gubanska, I.; Janik, H. Bacterial Cellulose in the Field of Wound Healing and Regenerative Medicine of Skin: recent Trends and Future Prospectives. Polym. Bull. 2015, 72, 2399–2419. DOI: 10.1007/s00289-015-1407-3.
  • Senthil, R.; Kavukcu, S. B.; Vedakumari, W. S. Cellulose Based Biopolymer Nanoscaffold: A Possible Biomedical Applications. Int. J. Biol. Macromol. 2023, 246, 125656. DOI: 10.1016/j.ijbiomac.2023.125656.
  • Kamel, R.; El-Wakil, N. A.; Abdelkhalek, A. A.; Elkasabgy, N. A. Topical Cellulose Nanocrystals-Stabilized Nanoemulgel Loaded with Ciprofloxacin HCl with Enhanced Antibacterial Activity and Tissue Regenerative Properties. J. Drug Deliv. Sci. Technol. 2021, 64, 102553. DOI: 10.1016/j.jddst.2021.102553.
  • Ceccaldi, C.; Bushkalova, R.; Cussac, D.; Duployer, B.; Tenailleau, C.; Bourin, P.; Parini, A.; Sallerin, B.; Girod Fullana, S. Elaboration and Evaluation of Alginate Foam Scaffolds for Soft Tissue Engineering. Int. J. Pharm. 2017, 524, 433–442. DOI: 10.1016/j.ijpharm.2017.02.060.
  • Barnett, S.; Varley, S. The Effects of Calcium Alginate on Wound Healing. Ann. R Coll. Surg. Engl. 1987, 69, 153–155.
  • Chandika, P.; Ko, S.-C.; Oh, G.-W.; Heo, S.-Y.; Nguyen, V.-T.; Jeon, Y.-J.; Lee, B.; Jang, C. H.; Kim, G.; Park, W. S.; et al. Fish Collagen/Alginate/Chitooligosaccharides Integrated Scaffold for Skin Tissue Regeneration Application. Int. J. Biol. Macromol. 2015, 81, 504–513. DOI: 10.1016/j.ijbiomac.2015.08.038.
  • Mobaraki, M.; Bizari, D.; Soltani, M.; Khshmohabat, H.; Raahemifar, K.; Akbarzade Amirdehi, M. The Effects of Curcumin Nanoparticles Incorporated into Collagen-Alginate Scaffold on Wound Healing of Skin Tissue in Trauma Patients. Polymers 2021, 13, 4291. DOI: 10.3390/polym13244291.
  • Boro, R. C.; Kaushal, J.; Nangia, Y.; Wangoo, N.; Bhasin, A.; Suri, C. R. Gold Nanoparticles Catalyzed Chemiluminescence Immunoassay for Detection of Herbicide 2, 4-Dichlorophenoxyacetic Acid. Analyst 2011, 136, 2125–2130. DOI: 10.1039/c0an00810a.
  • Chen, L.-L.; Shi, W.-P.; Zhou, Y.-Q.; Zhang, T.-D.; Lin, W.-J.; Guo, W.-H.; Zhou, R.-B.; Yin, D.-C. High-Efficiency Antibacterial Calcium Alginate/Lysozyme/AgNPs Composite Sponge for Wound Healing. Int. J. Biol. Macromol. 2024, 256, 128370. DOI: 10.1016/j.ijbiomac.2023.128370.
  • Zarrintaj, P.; Manouchehri, S.; Ahmadi, Z.; Saeb, M. R.; Urbanska, A. M.; Kaplan, D. L.; Mozafari, M. Agarose-Based Biomaterials for Tissue Engineering. Carbohydr. Polym. 2018, 187, 66–84. DOI: 10.1016/j.carbpol.2018.01.060.
  • Lewitus, D. Y.; Landers, J.; Branch, J.; Smith, K. L.; Callegari, G.; Kohn, J.; Neimark, A. V. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv. Funct. Mater. 2011, 21, 2624–2632. DOI: 10.1002/adfm.201002429.
  • Nayak, K. K.; Gupta, P. In Vitro Biocompatibility Study of Keratin/Agar Scaffold for Tissue Engineering. Int. J. Biol. Macromol. 2015, 81, 1–10. DOI: 10.1016/j.ijbiomac.2015.07.025.
  • Shanmugarajan, T.; Selvan, N. K.; Uppuluri, V. N. V. A. Development and Characterization of Squalene-Loaded Topical Agar-Based Emulgel Scaffold: wound Healing Potential in Full-Thickness Burn Model. Int. J. Low. Extrem. Wounds 2021, 20, 364–373. DOI: 10.1177/1534734620921629.
  • Li, W.; Wu, Z.; Zhao, J.; Jiang, M.; Yuan, L.; Guo, Y.; Li, S.; Hu, L.; Xie, X.; Zhang, Y.; et al. Fabrication of Dual Physically Cross-Linked Polyvinyl Alcohol/Agar Hydrogels with Mechanical Stability and Antibacterial Activity for Wound Healing. Int. J. Biol. Macromol. 2023, 247, 125652. DOI: 10.1016/j.ijbiomac.2023.125652.
  • Azuma, K.; Ifuku, S.; Osaki, T.; Okamoto, Y.; Minami, S. Preparation and Biomedical Applications of Chitin and Chitosan Nanofibers. J. Biomed. Nanotechnol. 2014, 10, 2891–2920. DOI: 10.1166/jbn.2014.1882.
  • Amado, S.; Simões, M. J.; Armada da Silva, P. A. S.; Luís, A. L.; Shirosaki, Y.; Lopes, M. A.; Santos, J. D.; Fregnan, F.; Gambarotta, G.; Raimondo, S.; et al. Use of Hybrid Chitosan Membranes and N1E-115 Cells for Promoting Nerve Regeneration in an Axonotmesis Rat Model. Biomaterials 2008, 29, 4409–4419. DOI: 10.1016/j.biomaterials.2008.07.043.
  • Kweon, D.-K.; Song, S.-B.; Park, Y.-Y. Preparation of Water-Soluble Chitosan/Heparin Complex and Its Application as Wound Healing Accelerator. Biomaterials 2003, 24, 1595–1601. DOI: 10.1016/s0142-9612(02)00566-5.
  • Shalumon, K.; Anulekha, K.; Chennazhi, K. P.; Tamura, H.; Nair, S.; Jayakumar, R. Fabrication of Chitosan/Poly (Caprolactone) Nanofibrous Scaffold for Bone and Skin Tissue Engineering. Int. J. Biol. Macromol. 2011, 48, 571–576. DOI: 10.1016/j.ijbiomac.2011.01.020.
  • Fujita, M.; Kinoshita, M.; Ishihara, M.; Kanatani, Y.; Morimoto, Y.; Simizu, M.; Ishizuka, T.; Saito, Y.; Yura, H.; Matsui, T.; et al. Inhibition of Vascular Prosthetic Graft Infection Using a Photocrosslinkable Chitosan Hydrogel. J. Surg. Res. 2004, 121, 135–140. DOI: 10.1016/j.jss.2004.04.010.
  • Ti, D.; Hao, H.; Xia, L.; Tong, C.; Liu, J.; Dong, L.; Xu, S.; Zhao, Y.; Liu, H.; Fu, X.; et al. Controlled Release of Thymosin Beta 4 Using a Collagen–Chitosan Sponge Scaffold Augments Cutaneous Wound Healing and Increases Angiogenesis in Diabetic Rats with Hindlimb Ischemia. Tissue Eng. A 2015, 21, 541–549. DOI: 10.1089/ten.tea.2013.0750.
  • Rezaii, M.; Oryan, S.; Javeri, A. Curcumin Nanoparticles Incorporated Collagen-Chitosan Scaffold Promotes Cutaneous Wound Healing through Regulation of TGF-β1/Smad7 Gene Expression. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 347–357. DOI: 10.1016/j.msec.2018.12.143.
  • Maged, A.; Abdelkhalek, A. A.; Mahmoud, A. A.; Salah, S.; Ammar, M. M.; Ghorab, M. M. Mesenchymal Stem Cells Associated with Chitosan Scaffolds Loaded with Rosuvastatin to Improve Wound Healing. Eur. J. Pharm. Sci. 2019, 127, 185–198. DOI: 10.1016/j.ejps.2018.11.002.
  • Haki, M.; Shamloo, A.; Eslami, S.-S.; Mir-Mohammad-Sadeghi, F.; Maleki, S.; Hajizadeh, A. Fabrication and Characterization of an Antibacterial Chitosan-Coated Allantoin-Loaded NaCMC/SA Skin Scaffold for Wound Healing Applications. Int. J. Biol. Macromol. 2023, 253, 127051. DOI: 10.1016/j.ijbiomac.2023.127051.
  • Carbinatto, F. M.; Sábio, R. M.; Meneguin, A. B.; Cestari, S. E.; Cruz, S. A.; da Silva Barud, H. Bacterial Cellulose-Based Hydrogel for Wound Healing: characterization and in Vitro Evaluation. IJAMB 2018, 1, 21–30. DOI: 10.25061/2595-3931/IJAMB/2018.v1i2.21.
  • Khandan-Nasab, N.; Mahdipour, E.; Askarian, S.; Kalantari, M. R.; Ramezanian, N.; Oskuee, R. K. Design and Characterization of Adipose-Derived Mesenchymal Stem Cell Loaded Alginate/Pullulan/Hyaluronic Acid Hydrogel Scaffold for Wound Healing Applications. Int. J. Biol. Macromol. 2023, 241, 124556. DOI: 10.1016/j.ijbiomac.2023.124556.
  • Verma, V.; Verma, P.; Kar, S.; Ray, P.; Ray, A. R. Fabrication of Agar-Gelatin Hybrid Scaffolds Using a Novel Entrapment Method for in Vitro Tissue Engineering Applications. Biotechnol. Bioeng. 2007, 96, 392–400. DOI: 10.1002/bit.21111.
  • Kim, Y. H.; Kim, S.; Ju, H. J.; Han, M. J.; Park, Y.; Kim, E.; Choi, H. S.; Choi, S.; Kim, M. S. In-Situ Wound Healing by SDF-1-Mimic Peptide-Loaded Click Crosslinked Hyaluronic Acid Scaffold. J. Control. Release 2023, 364, 420–434. DOI: 10.1016/j.jconrel.2023.10.047.
  • Hou, J.; Chen, L.; Zhou, M.; Li, J.; Liu, J.; Fang, H.; Zeng, Y.; Sun, J.; Wang, Z. Multi-Layered Polyamide/Collagen Scaffolds with Topical Sustained Release of N-Acetylcysteine for Promoting Wound Healing. Int. J. Nanomed. 2020, 15, 1349–1361. DOI: 10.2147/IJN.S232190.
  • Waghmare, V. S.; Wadke, P. R.; Dyawanapelly, S.; Deshpande, A.; Jain, R.; Dandekar, P. Starch Based Nanofibrous Scaffolds for Wound Healing Applications. Bioact. Mater. 2018, 3, 255–266. DOI: 10.1016/j.bioactmat.2017.11.006.
  • Rajput, M.; Mandal, M.; Anura, A.; Mukhopadhyay, A.; Subramanian, B.; Paul, R. R.; Chatterjee, J. Honey Loaded Silk Fibroin 3D Porous Scaffold Facilitates Homeostatic Full-Thickness Wound Healing. Materialia 2020, 12, 100703. DOI: 10.1016/j.mtla.2020.100703.
  • Guo, B.; Ma, P. X. Synthetic Biodegradable Functional Polymers for Tissue Engineering: A Brief Review. Sci. China Chem. 2014, 57, 490–500. DOI: 10.1007/s11426-014-5086-y.
  • Tate, M. L. K.; Falls, T. D.; McBride, S. H.; Atit, R.; Knothe, U. R. Mechanical Modulation of Osteochondroprogenitor Cell Fate. Int. J. Biochem. Cell Biol. 2008, 40, 2720–2738. DOI: 10.1016/j.biocel.2008.05.011.
  • Magnusson, J. P.; Saeed, A. O.; Fernández-Trillo, F.; Alexander, C. Synthetic Polymers for Biopharmaceutical Delivery. Polym. Chem. 2011, 2, 48–59. DOI: 10.1039/C0PY00210K.
  • Diaz-Gomez, L.; Gonzalez-Prada, I.; Millan, R.; Da Silva-Candal, A.; Bugallo-Casal, A.; Campos, F.; Concheiro, A.; Alvarez-Lorenzo, C. 3D Printed Carboxymethyl Cellulose Scaffolds for Autologous Growth Factors Delivery in Wound Healing. Carbohydr. Polym. 2022, 278, 118924. DOI: 10.1016/j.carbpol.2021.118924.
  • Alavi, M.; Nokhodchi, A. An Overview on Antimicrobial and Wound Healing Properties of ZnO Nanobiofilms, Hydrogels, and Bionanocomposites Based on Cellulose, Chitosan, and Alginate Polymers. Carbohydr. Polym. 2020, 227, 115349. DOI: 10.1016/j.carbpol.2019.115349.
  • Madub, K.; Goonoo, N.; Gimié, F.; Arsa, I. A.; Schönherr, H.; Bhaw-Luximon, A. Green Seaweeds Ulvan-Cellulose Scaffolds Enhance in Vitro Cell Growth and in Vivo Angiogenesis for Skin Tissue Engineering. Carbohydr. Polym. 2021, 251, 117025. DOI: 10.1016/j.carbpol.2020.117025.
  • Ohta, S.; Mitsuhashi, K.; Chandel, A. K. S.; Qi, P.; Nakamura, N.; Nakamichi, A.; Yoshida, H.; Yamaguchi, G.; Hara, Y.; Sasaki, R.; et al. Silver-Loaded Carboxymethyl Cellulose Nonwoven Sheet with Controlled Counterions for Infected Wound Healing. Carbohydr. Polym. 2022, 286, 119289. DOI: 10.1016/j.carbpol.2022.119289.
  • Cameron, D. J.; Shaver, M. P. Aliphatic Polyester Polymer Stars: synthesis, Properties and Applications in Biomedicine and Nanotechnology. Chem. Soc. Rev. 2011, 40, 1761–1776. DOI: 10.1039/C0CS00091D.
  • Hakkarainen, M.; Albertsson, A.-C. Degradation Products of Aliphatic and Aliphatic–Aromatic Polyesters. In Chromatography for Sustainable Polymeric Materials: Renewable, Degradable and Recyclable; Albertsson, A-C., Hakkarainen, M., Eds.; Springer: Berlin, 2008, pp 85–116.
  • Jérôme, C.; Lecomte, P. Recent Advances in the Synthesis of Aliphatic Polyesters by Ring-Opening Polymerization. Adv. Drug Deliv. Rev. 2008, 60, 1056–1076. DOI: 10.1016/j.addr.2008.02.008.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly (Lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32, 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Arora, G.; Malik, K.; Singh, I.; Arora, S.; Rana, V. Formulation and Evaluation of Controlled Release Matrix Mucoadhesive Tablets of Domperidone Using Salvia Plebeian Gum. J. Adv. Pharm. Technol. Res. 2011, 2, 163–169. DOI: 10.4103/2231-4040.85534.
  • Liu, X.; Ma, P. X. The Nanofibrous Architecture of Poly (L-Lactic Acid)-Based Functional Copolymers. Biomaterials 2010, 31, 259–269. DOI: 10.1016/j.biomaterials.2009.09.046.
  • Hajikhani, M.; Emam-Djomeh, Z.; Askari, G. Fabrication and Characterization of Mucoadhesive Bioplastic Patch via Coaxial Polylactic Acid (PLA) Based Electrospun Nanofibers with Antimicrobial and Wound Healing Application. Int. J. Biol. Macromol. 2021, 172, 143–153. DOI: 10.1016/j.ijbiomac.2021.01.051.
  • Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38, 3484–3504. DOI: 10.1039/b820162p.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Chang, L.; Liu, J.; Zhang, J.; Deng, L.; Dong, A. pH-Sensitive Nanoparticles Prepared from Amphiphilic and Biodegradable Methoxy Poly (Ethylene Glycol)-Block-(Polycaprolactone-Graft-Poly (Methacrylic Acid)) for Oral Drug Delivery. Polym. Chem. 2013, 4, 1430–1438. DOI: 10.1039/C2PY20686B.
  • E McNeil, S.; R.; Griffiths, H.; Perrie, Y. Polycaprolactone Fibres as a Potential Delivery System for Collagen to Support Bone Regeneration. Curr. Drug Deliv. 2011, 8, 448–455. DOI: 10.2174/156720111795767951.
  • Jafari, A.; Amirsadeghi, A.; Hassanajili, S.; Azarpira, N. Bioactive Antibacterial Bilayer PCL/Gelatin Nanofibrous Scaffold Promotes Full-Thickness Wound Healing. Int. J. Pharm. 2020, 583, 119413. DOI: 10.1016/j.ijpharm.2020.119413.
  • Torres, M. P.; Vogel, B. M.; Narasimhan, B.; Mallapragada, S. K. Synthesis and Characterization of Novel Polyanhydrides with Tailored Erosion Mechanisms. J. Biomed. Mater. Res. 2006, 76A, 102–110. DOI: 10.1002/jbm.a.30510.
  • Jain, J. P.; Chitkara, D.; Kumar, N. Polyanhydrides as Localized Drug Delivery Carrier: An Update. Expert Opin. Drug Deliv. 2008, 5, 889–907. DOI: 10.1517/17425247.5.8.889.
  • Jain, J. P.; Modi, S.; Domb, A.; Kumar, N. Role of Polyanhydrides as Localized Drug Carriers. J. Control. Release 2005, 103, 541–563. DOI: 10.1016/j.jconrel.2004.12.021.
  • Teasdale, I.; Brüggemann, O. Polyphosphazenes: multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. Polymers 2013, 5, 161–187. DOI: 10.3390/polym5010161.
  • Krogman, N. R.; Weikel, A. L.; Kristhart, K. A.; Nukavarapu, S. P.; Deng, M.; Nair, L. S.; Laurencin, C. T.; Allcock, H. R. The Influence of Side Group Modification in Polyphosphazenes on Hydrolysis and Cell Adhesion of Blends with PLGA. Biomaterials 2009, 30, 3035–3041. DOI: 10.1016/j.biomaterials.2009.02.049.
  • Nichol, J. L.; Morozowich, N. L.; Allcock, H. R. Biodegradable Alanine and Phenylalanine Alkyl Ester Polyphosphazenes as Potential Ligament and Tendon Tissue Scaffolds. Polym. Chem. 2013, 4, 600–606. DOI: 10.1039/C2PY20631E.
  • Kuang, T.; Deng, L.; Shen, S.; Deng, H.; Shen, Z.; Liu, Z.; Zhao, Z.; Chen, F.; Zhong, M. Nano-Silver-Modified Polyphosphazene Nanoparticles with Different Morphologies: Design, Synthesis, and Evaluation of Antibacterial Activity. Chin. Chem. Lett. 2023, 34, 108584. DOI: 10.1016/j.cclet.2023.108584.
  • Guelcher, S. A. Biodegradable Polyurethanes: synthesis and Applications in Regenerative Medicine. Tissue Eng. B Rev. 2008, 14, 3–17. DOI: 10.1089/teb.2007.0133.
  • Krol, P. Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers. Prog. Mater. Sci. 2007, 52, 915–1015. DOI: 10.1016/j.pmatsci.2006.11.001.
  • Santerre, J.; Woodhouse, K.; Laroche, G.; Labow, R. Understanding the Biodegradation of Polyurethanes: From Classical Implants to Tissue Engineering Materials. Biomaterials 2005, 26, 7457–7470. DOI: 10.1016/j.biomaterials.2005.05.079.
  • Zhang, J.-Y.; Doll, B. A.; Beckman, E. J.; Hollinger, J. O. Three-Dimensional Biocompatible Ascorbic Acid-Containing Scaffold for Bone Tissue Engineering. Tissue Eng. 2003, 9, 1143–1157. DOI: 10.1089/10763270360728053.
  • Li, B.; Davidson, J. M.; Guelcher, S. A. The Effect of the Local Delivery of Platelet-Derived Growth Factor from Reactive Two-Component Polyurethane Scaffolds on the Healing in Rat Skin Excisional Wounds. Biomaterials 2009, 30, 3486–3494. DOI: 10.1016/j.biomaterials.2009.03.008.
  • Jaganathan, S. K.; Prasath Mani, M.; Khudzari, A. Z. M.; Fauzi bin Ismail, A. Physicochemical Assessment of Tailor Made Fibrous Polyurethane Scaffolds Incorporated with Turmeric Oil for Wound Healing Applications. Int. J. Polym. Anal. Charact. 2019, 24, 752–762. DOI: 10.1080/1023666X.2019.1676010.
  • Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A. R. Synthesis, Properties and Biomedical Applications of Poly (Glycerol Sebacate)(PGS): A Review. Prog. Polym. Sci. 2012, 37, 1051–1078. DOI: 10.1016/j.progpolymsci.2012.02.001.
  • Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R. A Tough Biodegradable Elastomer. Nat. Biotechnol. 2002, 20, 602–606. DOI: 10.1038/nbt0602-602.
  • Pomerantseva, I.; Krebs, N.; Hart, A.; Neville, C. M.; Huang, A. Y.; Sundback, C. A. Degradation Behavior of Poly (Glycerol Sebacate). J. Biomed. Mater. Res. 2009, 91A, 1038–1047. DOI: 10.1002/jbm.a.32327.
  • Patel, A.; Gaharwar, A. K.; Iviglia, G.; Zhang, H.; Mukundan, S.; Mihaila, S. M.; Demarchi, D.; Khademhosseini, A. Highly Elastomeric Poly (Glycerol Sebacate)-co-Poly (Ethylene Glycol) Amphiphilic Block Copolymers. Biomaterials 2013, 34, 3970–3983. DOI: 10.1016/j.biomaterials.2013.01.045.
  • Masoumi, N.; Johnson, K. L.; Howell, M. C.; Engelmayr, G. C. Valvular Interstitial Cell Seeded Poly (Glycerol Sebacate) Scaffolds: Toward a Biomimetic in Vitro Model for Heart Valve Tissue Engineering. Acta Biomater. 2013, 9, 5974–5988. DOI: 10.1016/j.actbio.2013.01.001.
  • Ravichandran, R.; Venugopal, J. R.; Sundarrajan, S.; Mukherjee, S.; Ramakrishna, S. Poly (Glycerol Sebacate)/Gelatin Core/Shell Fibrous Structure for Regeneration of Myocardial Infarction. Tissue Eng. A 2011, 17, 1363–1373. DOI: 10.1089/ten.tea.2010.0441.
  • Sun, Z.-J.; Chen, C.; Sun, M.-Z.; Ai, C.-H.; Lu, X.-L.; Zheng, Y.-F.; Yang, B.-F.; Dong, D.-L. The Application of Poly (Glycerol–Sebacate) as Biodegradable Drug Carrier. Biomaterials 2009, 30, 5209–5214. DOI: 10.1016/j.biomaterials.2009.06.007.
  • Chen, H. L.; Chung, J. W. Y.; Yan, V. C. M.; Wong, T. K. S. Polylactic Acid-Based Biomaterials in Wound Healing: A Systematic Review. Adv. Skin Wound Care. 2023, 36, 1–8. DOI: 10.1097/ASW.0000000000000011.
  • Wang, Y.; Wang, X.; Zhou, D.; Xia, X.; Zhou, H.; Wang, Y.; Ke, H. Preparation and Characterization of Polycaprolactone (PCL) Antimicrobial Wound Dressing Loaded with Pomegranate Peel Extract. ACS Omega. 2023, 8, 20323–20331. DOI: 10.1021/acsomega.2c08180.
  • Teaima, M. H.; Elasaly, M. K.; Omar, S. A.; El-Nabarawi, M. A.; Shoueir, K. R. Wound Healing Activities of Polyurethane Modified Chitosan Nanofibers Loaded with Different Concentrations of Linezolid in an Experimental Model of Diabetes. J. Drug Deliv. Sci. Technol. 2022, 67, 102982. DOI: 10.1016/j.jddst.2021.102982.
  • Shi, Q.; Zhong, S.; Chen, Y.; Whitaker, A. Photo-Crosslink­ing Copolymers Based Polyanhydride and 1G Polyamidoamine-Methacrylamide as Bone Tissue Engineering: Synthesis, Chara­cterization, and in Vitro Degradation. Polym. Degrad. Stab. 2010, 95, 1961–1968. DOI: 10.1016/j.polymdegradstab.2010.07.022.
  • Shen, S.; Guo, Z.; Wang, J.; Chen, F.; Wu, D.; Zhou, Z.; Zhong, M.; Zhao, Z.; Liu, Z. Efficient Antibacterial Polyphosphazene Material with Potential to Prominent Wound Healing. Mat. Express. 2021, 11, 947–958. DOI: 10.1166/mex.2021.1976.
  • D’souza, O. J.; Gasti, T.; Hiremani, V. D.; Pinto, J. P.; Contractor, S. S.; Shettar, A. K.; Olivia, D.; Arakera, S. B.; Masti, S. P.; Chougale, R. B.; et al. Basella Alba Stem Extract Integrated Poly (Vinyl Alcohol)/Chitosan Composite Films: A Promising Bio-Material for Wound Healing. Int. J. Biol. Macromol. 2023, 225, 673–686. DOI: 10.1016/j.ijbiomac.2022.11.130.
  • Mudgil, M.; Pawar, P. K. Preparation and in Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application. Sci. Pharm. 2013, 81, 591–606. DOI: 10.3797/scipharm.1204-16.
  • Biswal, A.; Purohit, S. S.; Swain, S. K. Chitosan Based Composite Scaffolds in Skin Wound Repair: A Review. J. Drug Deliv. Sci. Technol. 2023, 84, 104549. DOI: 10.1016/j.jddst.2023.104549.
  • Zhou, F.; Sun, S.; Cui, C.; Li, X.; Wu, S.; Ma, J.; Chen, S.; Li, C. M. Zinc Ions and Ciprofloxacin-Encapsulated Chitosan/Poly (ɛ-Caprolactone) Composite Nanofibers Promote Wound Healing via Enhanced Antibacterial and Immunomodulatory. Int. J. Biol. Macromol. 2023, 253, 127086. DOI: 10.1016/j.ijbiomac.2023.127086.
  • Kesavan, S. k.; Selvaraj, D.; Perumal, S.; Arunachalakasi, A.; Ganesan, N.; Chinnaiyan, S. K.; Balaraman, M. Fabrication of Hybrid Povidone-Iodine Impregnated Collagen-Hydroxypropyl Methylcellulose Composite Scaffolds for Wound-Healing Application. J. Drug Deliv. Sci. Technol. 2022, 70, 103247. DOI: 10.1016/j.jddst.2022.103247.
  • Elabbasy, M. T.; Alshammari, M. H.; Zrieq, R.; El Bayomi, R. M.; Tahoun, A. B. M. B.; El-Morsy, M. A.; Abd El-Kader, M. F. H. Physical and Biological Changes of Copper Oxide and Hydroxyapatite Filled in Polycaprolactone Scaffolds: Cellular Growth Behavior and Antibacterial Activity. J. Mech. Behav. Biomed. Mater. 2023, 144, 105927. DOI: 10.1016/j.jmbbm.2023.105927.
  • Guo, C.; Cheng, F.; Liang, G.; Zhang, S.; Jia, Q.; He, L.; Duan, S.; Fu, Y.; Zhang, Z.; Du, M.; et al. Copper-Based Polymer-Metal–Organic Framework Embedded with Ag Nanoparticles: Long-Acting and Intelligent Antibacterial Activity and Accelerated Wound Healing. Chem. Eng. J. 2022, 435, 134915. DOI: 10.1016/j.cej.2022.134915.
  • Nqoro, X.; Taziwa, R. Polymer-Based Functional Materials Loaded with Metal-Based Nanoparticles as Potential Scaffolds for the Management of Infected Wounds. Pharmaceutics 2024, 16, 155. DOI: 10.3390/pharmaceutics16020155.
  • Kamrani, A.; Nasrabadi, M. H.; Halabian, R.; Ghorbani, M. A Biomimetic Multi-Layer Scaffold with Collagen and Zinc Doped Bioglass as a Skin-Regeneration Agent in Full-Thickness Injuries and Its Effects in Vitro and in Vivo. Int. J. Biol. Macromol. 2023, 253, 127163. DOI: 10.1016/j.ijbiomac.2023.127163.
  • Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioact. Mater. 2018, 3, 278–314. DOI: 10.1016/j.bioactmat.2017.10.001.
  • Mahmoudi, M.; Alizadeh, P.; Soltani, M. Wound Healing Performance of Electrospun PVA/70S30C Bioactive Glass/Ag Nanoparticles Mats Decorated with Curcumin: In Vitro and in Vivo Investigations. Biomater. Adv. 2023, 153, 213530. DOI: 10.1016/j.bioadv.2023.213530.
  • Gupta, M.; Sharma, A.; Beniwal, C. S.; Tyagi, P. Curcumin Coated 3D Biocomposite Scaffolds Based on Chitosan and Cellulose for Diabetic Wound Healing. Heliyon 2022, 8, e11442. DOI: 10.1016/j.heliyon.2022.e11442.
  • Kumar Reddy Sanapalli, B.; Tyagi, R.; Shaik, A. B.; Pelluri, R.; Bhandare, R. R.; Annadurai, S.; Venkata Satyanarayana Reddy Karri, V. L-Glutamic Acid Loaded Collagen Chitosan Composite Scaffold as Regenerative Medicine for the Accelerated Healing of Diabetic Wounds. Arab. J. Chem. 2022, 15, 103841. DOI: 10.1016/j.arabjc.2022.103841.
  • Huang, B.; Caetano, G.; Vyas, C.; Blaker, J. J.; Diver, C.; Bártolo, P. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-Tri-Calcium Phosphate. Materials 2018, 11, 129. DOI: 10.3390/ma11010129.
  • Zerankeshi, M. M.; Bakhshi, R.; Alizadeh, R. Polymer/Metal Composite 3D Porous Bone Tissue Engineering Scaffolds Fabricated by Additive Manufacturing Techniques: A Review. Bioprinting 2022, 25, e00191. DOI: 10.1016/j.bprint.2022.e00191.
  • Deliormanli, A. M.; Ensoylu, M.; ALMisned, G.; Tekin, H. Two-Dimensional Molybdenum Disulfide/Polymer-Coated Bioactive Glass Scaffolds for Tissue Engineering: Fabrication, Structural, Mechanical, Bioactivity, and Radiation Interaction Properties. Ceram. Int. 2023, 49, 22861–22874. DOI: 10.1016/j.ceramint.2023.04.110.
  • Morampudi, P.; Namala, K. K.; Gajjela, Y. K.; Barath, M.; Prudhvi, G. Review on Glass Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 43, 314–319. DOI: 10.1016/j.matpr.2020.11.669.
  • Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. DOI: 10.1002/admt.202100410.
  • Bracaglia, L. G.; Smith, B. T.; Watson, E.; Arumugasaamy, N.; Mikos, A. G.; Fisher, J. P. 3D Printing for the Design and Fabrication of Polymer-Based Gradient Scaffolds. Acta Biomater. 2017, 56, 3–13. DOI: 10.1016/j.actbio.2017.03.030.
  • Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. DOI: 10.3390/pr8091138.
  • Pechová, V.; Gajdziok, J.; Muselík, J.; Vetchý, D. Development of Orodispersible Films Containing Benzydamine Hydrochloride Using a Modified Solvent Casting Method. AAPS PharmSciTech 2018, 19, 2509–2518. DOI: 10.1208/s12249-018-1088-y.
  • Kumar, M.; Mahmood, S.; Chopra, S.; Bhatia, A. Biopolymer Based Nanoparticles and Their Therapeutic Potential in Wound Healing–A Review. Int. J. Biol. Macromol. 2024, 267, 131335. DOI: 10.1016/j.ijbiomac.2024.131335.
  • Rosellini, E.; Cascone, M. G. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review. Biomimetics 2023, 8, 74. DOI: 10.3390/biomimetics8010074.
  • Suamte, L.; Tirkey, A.; Barman, J.; Babu, P. J. Various Manufacturing Methods and Ideal Properties of Scaffolds for Tissue Engineering Applications. Smart Mater. Manuf. 2023, 1, 100011. DOI: 10.1016/j.smmf.2022.100011.
  • Kumar, A.; Jacob, A. Techniques in Scaffold Fabrication Process for Tissue Engineering Applications: A Review. J. App. Biol. Biotech. 2022, 10, 163–176. DOI: 10.7324/JABB.2022.100321.
  • Wang, Z.; Wang, Y.; Yan, J.; Zhang, K.; Lin, F.; Xiang, L.; Deng, L.; Guan, Z.; Cui, W.; Zhang, H.; et al. Pharmaceutical Electrospinning and 3D Printing Scaffold Design for Bone Regeneration. Adv. Drug Deliv. Rev. 2021, 174, 504–534. DOI: 10.1016/j.addr.2021.05.007.
  • Joseph, B.; Jose, C.; Kavil, S. V.; Kalarikkal, N.; Thomas, S. Solvent-Casting Approach for Design of Polymer Scaffolds and Their Multifunctional Applications. Functional Biomaterials: Design and Development for Biotechnology. Pharmacol. Biomed. 2023, 2, 371–394.
  • Brougham, C. M.; Levingstone, T. J.; Shen, N.; Cooney, G. M.; Jockenhoevel, S.; Flanagan, T. C.; O’Brien, F. J. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Adv. Healthc. Mater. 2017, 6, 1700598. DOI: 10.1002/adhm.201700598.
  • Koyyada, A.; Orsu, P. Recent Advancements and Associated Challenges of Scaffold Fabrication Techniques in Tissue Engineering Applications. Regen. Eng. Transl. Med. 2021, 7, 147–159. DOI: 10.1007/s40883-020-00166-y.
  • Yang, C.; Blum, N. T.; Lin, J.; Qu, J.; Huang, P. Biomaterial Scaffold-Based Local Drug Delivery Systems for Cancer Immunotherapy. Sci. Bull. 2020, 65, 1489–1504. DOI: 10.1016/j.scib.2020.04.012.
  • Rubio-Elizalde, I.; Bernáldez-Sarabia, J.; Moreno-Ulloa, A.; Vilanova, C.; Juárez, P.; Licea-Navarro, A.; Castro-Ceseña, A. B. Scaffolds Based on alginate-PEG Methyl Ether methacrylate-Moringa oleifera-Aloe Vera for Wound Healing Applications. Carbohydr. Polym. 2019, 206, 455–467. DOI: 10.1016/j.carbpol.2018.11.027.
  • Basu, P.; Kumar, U. N.; Manjubala, I. Wound Healing Materials–A Perspective for Skin Tissue Engineering. Curr. Sci. 2017, 112, 2392–2404. DOI: 10.18520/cs/v112/i12/2392-2404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.