35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and characterization of an electrospun chitosan-based nanofibrous scaffold coated with hyaluronic acid, resveratrol and adipose derived stem cell for wound healing application

, , , , &
Received 26 Mar 2024, Accepted 26 Jun 2024, Published online: 05 Jul 2024

References

  • Guo, S. A.; DiPietro, L. A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. DOI: 10.1177/0022034509359125.
  • Wallace, H. A.; Basehore, B. M.; Zito, P. M. Wound Healing Phases, 2017.
  • Elbaz, A.; He, Z.; Gao, B.; Chi, J.; Su, E.; Zhang, D.; Liu, S.; Xu, H.; Liu, H.; Gu, Z. Recent Biomedical Applications of Bio-Sourced Materials. Bio-Des. Manuf. 2018, 1, 26–44. DOI: 10.1007/s42242-018-0002-5.
  • Ahmed, S.; Ikram, S. Chitosan Based Scaffolds and Their Applications in Wound Healing. Achiev. Life Sci. 2016, 10, 27–37. DOI: 10.1016/j.als.2016.04.001.
  • Haider, A.; Haider, S.; Rao Kummara, M.; Kamal, T.; Alghyamah, A.-A. A.; Jan Iftikhar, F.; Bano, B.; Khan, N.; Amjid Afridi, M.; Soo Han, S.; et al. Advances in the Scaffolds Fabrication Techniques Using Biocompatible Polymers and Their Biomedical Application: A Technical and Statistical Review. J. Saudi Chem. Soc. 2020, 24, 186–215. DOI: 10.1016/j.jscs.2020.01.002.
  • Rim, N. G.; Shin, C. S.; Shin, H. Current Approaches to Electrospun Nanofibers for Tissue Engineering. Biomed. Mater. 2013, 8, 014102. DOI: 10.1088/1748-6041/8/1/014102.
  • Smith, L.; Ma, P. Nano-Fibrous Scaffolds for Tissue Engineering. Colloids Surf. B Biointerfaces 2004, 39, 125–131. DOI: 10.1016/j.colsurfb.2003.12.004.
  • Bhatia, S. Natural Polymers vs Synthetic Polymer. In Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae, 2016; pp 95–118.
  • Ali, A.; Bano, S.; Poojary, S.; Chaudhary, A.; Kumar, D.; Negi, Y. S. Effect of Cellulose Nanocrystals on Chitosan/PVA/Nano β-TCP Composite Scaffold for Bone Tissue Engineering Application. J. Biomater. Sci. Polym. Ed. 2022, 33, 1–19. DOI: 10.1080/09205063.2021.1973709.
  • Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a Starting Material for Wound Healing Applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. DOI: 10.1016/j.ejpb.2015.08.004.
  • Ali, A.; Hasan, A.; Negi, Y. S. Effect of Cellulose Nanocrystals on Xylan/Chitosan/nanoβ-TCP Composite Matrix for Bone Tissue Engineering. Cellulose 2022, 29, 5689–5709. DOI: 10.1007/s10570-022-04607-5.
  • Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F. S.; Kalalinia, F. Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and in Vivo Studies. ACS Biomater. Sci. Eng. 2021, 7, 3886–3897. DOI: 10.1021/acsbiomaterials.1c00131.
  • Ali, A.; Bano, S.; Poojary, S. S.; Priyadarshi, R.; Choudhary, A.; Kumar, D.; Negi, Y. S. Comparative Analysis of TiO2 and Ag Nanoparticles on Xylan/Chitosan Conjugate Matrix for Wound Healing Application. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 376–385. DOI: 10.1080/00914037.2020.1838519.
  • Bazmandeh, A. Z.; Mirzaei, E.; Ghasemi, Y.; Kouhbanani, M. A. J. Hyaluronic Acid Coated Electrospun Chitosan-Based Nanofibers Prepared by Simultaneous Stabilizing and Coating. Int. J. Biol. Macromol. 2019, 138, 403–411. DOI: 10.1016/j.ijbiomac.2019.07.107.
  • Arancibia, R.; Maturana, C.; Silva, D.; Tobar, N.; Tapia, C.; Salazar, J.; Martínez, J.; Smith, P. Effects of Chitosan Particles in Periodontal Pathogens and Gingival Fibroblasts. J. Dent. Res. 2013, 92, 740–745. DOI: 10.1177/0022034513494816.
  • Budianto, E.; Amalia, A. Swelling Behavior and Mechanical Properties of Chitosan-Poly (N-Vinyl-Pyrrolidone) Hydrogels. J. Polym. Eng. 2020, 40, 551–560. DOI: 10.1515/polyeng-2019-0169.
  • Juncan, A. M.; Moisă, D. G.; Santini, A.; Morgovan, C.; Rus, L. L.; Vonica-Țincu, A. L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. DOI: 10.3390/molecules26154429.
  • Garcia, C. E. G.; Martínez, F. A. S.; Bossard, F.; Rinaudo, M. Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition. Polymers (Basel) 2020, 12, 2004. DOI: 10.3390/polym12092004.
  • Li, Y.; Yang, H. Y.; Lee, D. S. Advances in Biodegradable and Injectable Hydrogels for Biomedical Applications. J. Control Release 2021, 330, 151–160. DOI: 10.1016/j.jconrel.2020.12.008.
  • Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M. C.; Caramella, C. M.; Ferrari, F. Hyaluronic Acid and Chitosan-Based Nanosystems: A New Dressing Generation for Wound Care. Expert Opin. Drug Deliv. 2019, 16, 715–740. DOI: 10.1080/17425247.2019.1634051.
  • Bazmandeh, A. Z.; Mirzaei, E.; Fadaie, M.; Shirian, S.; Ghasemi, Y. Dual Spinneret Electrospun Nanofibrous/Gel Structure of Chitosan-Gelatin/Chitosan-Hyaluronic Acid as a Wound Dressing: In-Vitro and in-Vivo Studies. Int. J. Biol. Macromol. 2020, 162, 359–373. DOI: 10.1016/j.ijbiomac.2020.06.181.
  • Kawano, Y.; Patrulea, V.; Sublet, E.; Borchard, G.; Iyoda, T.; Kageyama, R.; Morita, A.; Seino, S.; Yoshida, H.; Jordan, O.; Hanawa, T. Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure. Pharmaceuticals (Basel) 2021, 14, 301. DOI: 10.3390/ph14040301.
  • Poornima, B.; Korrapati, P. S. Fabrication of Chitosan-Polycaprolactone Composite Nanofibrous Scaffold for Simultaneous Delivery of Ferulic Acid and Resveratrol. Carbohydr. Polym. 2017, 157, 1741–1749. DOI: 10.1016/j.carbpol.2016.11.056.
  • Akter, R.; Rahman, M. H.; Kaushik, D.; Mittal, V.; Uivarosan, D.; Nechifor, A. C.; Behl, T.; Karthika, C.; Stoicescu, M.; Munteanu, M. A.; et al. Chemo-Preventive Action of Resveratrol: Suppression of p53—A Molecular Targeting Approach. Molecules 2021, 26, 5325. DOI: 10.3390/molecules26175325.
  • Wallerath, T.; Deckert, G.; Ternes, T.; Anderson, H.; Li, H.; Witte, K.; Förstermann, U. Resveratrol, a Polyphenolic Phytoalexin Present in Red Wine, Enhances Expression and Activity of Endothelial Nitric Oxide Synthase. Circulation 2002, 106, 1652–1658. DOI: 10.1161/01.cir.0000029925.18593.5c.
  • Pignet, A.-L.; Schellnegger, M.; Hecker, A.; Kohlhauser, M.; Kotzbeck, P.; Kamolz, L.-P. Resveratrol-Induced Signal Transduction in Wound Healing. Int J. Mol Sci. 2021, 22, 12614. DOI: 10.3390/ijms222312614.
  • Szulc-Musioł, B.; Sarecka-Hujar, B. The Use of Micro-and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases—A Literature Review. Pharmaceutics 2021, 13, 451. DOI: 10.3390/pharmaceutics13040451.
  • Lin, Y.-C.; Hu, S. C.-S.; Huang, P.-H.; Lin, T.-C.; Yen, F.-L. Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics 2020, 12, 552. DOI: 10.3390/pharmaceutics12060552.
  • Hecker, A.; Schellnegger, M.; Hofmann, E.; Luze, H.; Nischwitz, S. P.; Kamolz, L. P.; Kotzbeck, P. The Impact of Resveratrol on Skin Wound Healing, Scarring, and Aging. Int. Wound J. 2022, 19, 9–28. DOI: 10.1111/iwj.13601.
  • Sierra-Sánchez, Á.; Kim, K. H.; Blasco-Morente, G.; Arias-Santiago, S. Cellular Human Tissue-Engineered Skin Substitutes Investigated for Deep and Difficult to Heal Injuries. NPJ Regener. Med. 2021, 6, 35. DOI: 10.1038/s41536-021-00144-0.
  • Chawla, R.; Tan, A.; Ahmed, M.; Crowley, C.; Moiemen, N. S.; Cui, Z.; Butler, P. E.; Seifalian, A. M. A Polyhedral Oligomeric Silsesquioxane-Based Bilayered Dermal Scaffold Seeded with Adipose Tissue-Derived Stem Cells: In Vitro Assessment of Biomechanical Properties. J. Surg. Res. 2014, 188, 361–372. DOI: 10.1016/j.jss.2014.01.006.
  • Li, L.; Jiang, J. Regulatory Factors of Mesenchymal Stem Cell Migration into Injured Tissues and Their Signal Transduction Mechanisms. Front. Med. 2011, 5, 33–39. DOI: 10.1007/s11684-011-0114-1.
  • Huang, S.-J.; Fu, R.-H.; Shyu, W.-C.; Liu, S.-P.; Jong, G.-P.; Chiu, Y.-W.; Wu, H.-S.; Tsou, Y.-A.; Cheng, C.-W.; Lin, S.-Z. Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplant 2013, 22, 701–709. DOI: 10.3727/096368912X655127.
  • Lotfi, M.; Naderi-Meshkin, H.; Mahdipour, E.; Mafinezhad, A.; Bagherzadeh, R.; Sadeghnia, H. R.; Esmaily, H.; Maleki, M.; Hasssanzadeh, H.; Ghayaour-Mobarhan, M.; et al. Adipose Tissue-Derived Mesenchymal Stem Cells and Keratinocytes co-Culture on Gelatin/Chitosan/β-Glycerol Phosphate Nanoscaffold in Skin Regeneration. Cell Biol. Int. 2019, 43, 1365–1378. DOI: 10.1002/cbin.11119.
  • Kim, H.; Hyun, M. R.; Kim, S. W. The Effect of Adipose-Derived Stem Cells on Wound Healing: Comparison of Methods of Application. Stem Cells Int. 2019, 2019, 2745640–2745648. DOI: 10.1155/2019/2745640.
  • Klossner, R. R.; Queen, H. A.; Coughlin, A. J.; Krause, W. E. Correlation of Chitosan’s Rheological Properties and Its Ability to Electrospin. Biomacromolecules 2008, 9, 2947–2953. DOI: 10.1021/bm800738u.
  • Torres-Giner, S.; Gimeno-Alcañiz, J. V.; Ocio, M. J.; Lagaron, J. M. Comparative Performance of electrospun collagen nanofibers Cross-Linked by Means of Different Methods. ACS Appl. Mater. Interfaces 2009, 1, 218–223. DOI: 10.1021/am800063x.
  • Wu, J.; Wang, Y.; Yang, H.; Liu, X.; Lu, Z. Preparation and Biological Activity Studies of Resveratrol Loaded Ionically Cross-Linked chitosan-TPP Nanoparticles. Carbohydr. Polym. 2017, 175, 170–177. DOI: 10.1016/j.carbpol.2017.07.058.
  • Horst, M.; Milleret, V.; Nötzli, S.; Madduri, S.; Sulser, T.; Gobet, R.; Eberli, D. Increased Porosity of Electrospun Hybrid Scaffolds Improved Bladder Tissue Regeneration. J. Biomed. Mater. Res. A 2014, 102, 2116–2124. DOI: 10.1002/jbm.a.34889.
  • Kang, Y. O.; Jung, J. Y.; Cho, D.; Kwon, O. H.; Cheon, J. Y.; Park, W. H. Antimicrobial Silver Chloride Nanoparticles Stabilized with Chitosan Oligomer for the Healing of Burns. Materials (Basel) 2016, 9, 215. DOI: 10.3390/ma9040215.
  • Fadaie, M.; Mirzaei, E.; Asvar, Z.; Azarpira, N. Stabilization of Chitosan Based Electrospun Nanofibers through a Simple and Safe Method. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 369–380. DOI: 10.1016/j.msec.2018.12.133.
  • Gomes, S. R.; Rodrigues, G.; Martins, G. G.; Roberto, M. A.; Mafra, M.; Henriques, C.; Silva, J. C. In Vitro and in Vivo Evaluation of Electrospun Nanofibers of PCL, Chitosan and Gelatin: A Comparative Study. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 46, 348–358. DOI: 10.1016/j.msec.2014.10.051.
  • Moghadas, B.; Solouk, A.; Sadeghi, D. Development of Chitosan Membrane Using Non-Toxic Crosslinkers for Potential Wound Dressing Applications. Polym. Bull. 2021, 78, 4919–4929. DOI: 10.1007/s00289-020-03352-8.
  • Nikbakht, M.; Karbasi, S.; Rezayat, S. M.; Tavakol, S.; Sharifi, E. Evaluation of the Effects of Hyaluronic Acid on Poly (3-Hydroxybutyrate)/Chitosan/Carbon Nanotubes Electrospun Scaffold: Structure and Mechanical Properties. Polym.-Plast. Technol. Mater. 2019, 58, 2031–2040. DOI: 10.1080/25740881.2019.1602645.
  • Alkhraisat, M. H.; Rueda, C.; Mariño, F. T.; Torres, J.; Jerez, L. B.; Gbureck, U.; Cabarcos, E. L. The Effect of Hyaluronic Acid on Brushite Cement Cohesion. Acta Biomater. 2009, 5, 3150–3156. DOI: 10.1016/j.actbio.2009.04.001.
  • Gatej, I.; Popa, M.; Rinaudo, M. Role of the pH on Hyaluronan Behavior in Aqueous Solution. Biomacromolecules 2005, 6, 61–67. DOI: 10.1021/bm040050m.
  • Nascimento, V.; França, C.; Hernández-Montelongo, J.; Machado, D.; Lancellotti, M.; Cotta, M.; Landers, R.; Beppu, M. Influence of pH and Ionic Strength on the Antibacterial Effect of Hyaluronic Acid/Chitosan Films Assembled Layer-by-Layer. Eur. Polym. J. 2018, 109, 198–205. DOI: 10.1016/j.eurpolymj.2018.09.038.
  • Mohseni, M.; Shamloo, A.; Aghababaei, Z.; Vossoughi, M.; Moravvej, H. Antimicrobial Wound Dressing Containing Silver Sulfadiazine With High Biocompatibility: In Vitro Study. Artif. Organs 2016, 40, 765–773. DOI: 10.1111/aor.12682.
  • Morilla-Herrera, J. C.; Morales-Asencio, J. M.; Gómez-González, A. J.; Díez-De Los Ríos, A.; Lupiáñez-Pérez, I.; Acosta-Andrade, C.; Aranda-Gallardo, M.; Moya-Suárez, A. B.; Kaknani-Uttumchandani, S.; García-Mayor, S. Effectiveness of a Hydrophobic Dressing for Microorganisms’ Colonization of Vascular Ulcers: Protocol for a Randomized Controlled Trial (CUCO-UV Study). J. Adv. Nurs. 2020, 76, 2191–2197. DOI: 10.1111/jan.14412.
  • Coimbra, P.; Alves, P.; Valente, T. A.; Santos, R.; Correia, I. J.; Ferreira, P. Sodium Hyaluronate/Chitosan Polyelectrolyte Complex Scaffolds for Dental Pulp Regeneration: Synthesis and Characterization. Int. J. Biol. Macromol. 2011, 49, 573–579. DOI: 10.1016/j.ijbiomac.2011.06.011.
  • Pujara, N.; Jambhrunkar, S.; Wong, K. Y.; McGuckin, M.; Popat, A. Enhanced Colloidal Stability, Solubility and Rapid Dissolution of Resveratrol by Nanocomplexation with Soy Protein Isolate. J. Colloid Interface Sci. 2017, 488, 303–308. DOI: 10.1016/j.jcis.2016.11.015.
  • Xu, R.; Xia, H.; He, W.; Li, Z.; Zhao, J.; Liu, B.; Wang, Y.; Lei, Q.; Kong, Y.; Bai, Y.; et al. Controlled Water Vapor Transmission Rate Promotes Wound-Healing via Wound Re-Epithelialization and Contraction Enhancement. Sci. Rep. 2016, 6, 24596. DOI: 10.1038/srep24596.
  • Zivanovic, S.; Li, J.; Davidson, P. M.; Kit, K. Physical, Mechanical, and Antibacterial Properties of Chitosan/PEO Blend Films. Biomacromolecules 2007, 8, 1505–1510. DOI: 10.1021/bm061140p.
  • Jahed, E.; Khaledabad, M. A.; Almasi, H.; Hasanzadeh, R. Physicochemical Properties of Carum Copticum Essential Oil Loaded Chitosan Films Containing Organic Nanoreinforcements. Carbohydr. Polym. 2017, 164, 325–338. DOI: 10.1016/j.carbpol.2017.02.022.
  • Kianfar, P.; Vitale, A.; Dalle Vacche, S.; Bongiovanni, R. Photo-Crosslinking of Chitosan/Poly(Ethylene Oxide) Electrospun Nanofibers. Carbohydr. Polym. 2019, 217, 144–151. DOI: 10.1016/j.carbpol.2019.04.062.
  • Ijaz, U.; Sohail, M.; Usman Minhas, M.; Khan, S.; Hussain, Z.; Kazi, M.; Ahmed Shah, S.; Mahmood, A.; Maniruzzaman, M. Biofunctional Hyaluronic Acid/κ-Carrageenan Injectable Hydrogels for Improved Drug Delivery and Wound Healing. Polymers (Basel) 2022, 14, 14. DOI: 10.3390/polym14030376.
  • Silva, R. C. D.; Teixeira, J. A.; Nunes, W. D. G.; Zangaro, G. A. C.; Pivatto, M.; Caires, F. J.; Ionashiro, M. Resveratrol: A Thermoanalytical Study. Food Chem. 2017, 237, 561–565. DOI: 10.1016/j.foodchem.2017.05.146.
  • Mohammadian, F.; Eatemadi, A. Drug Loading and Delivery Using Nanofibers Scaffolds. Artif. Cells Nanomed. Biotechnol. 2017, 45, 881–888. DOI: 10.1080/21691401.2016.1185726.
  • Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.; Nair, S.; Tamura, H.; Jayakumar, R. Efficient Water Soluble O-Carboxymethyl Chitosan Nanocarrier for the Delivery of Curcumin to Cancer Cells. Carbohydr. Polym. 2011, 83, 452–461. DOI: 10.1016/j.carbpol.2010.08.008.
  • Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug Release Study of the Chitosan-Based Nanoparticles. Heliyon 2021, 8, e08674. DOI: 10.1016/j.heliyon.2021.e08674.
  • Sylvester, P. W. Optimization of the Tetrazolium Dye (MTT) Colorimetric Assay for Cellular Growth and Viability. Methods Mol. Biol. 2011, 716, 157–168. DOI: 10.1007/978-1-61779-012-6.
  • Sanap, A.; Chandravanshi, B.; Shah, T.; Tillu, G.; Dhanushkodi, A.; Bhonde, R.; Joshi, K. Herbal Pre-Conditioning Induces Proliferation and Delays Senescence in Wharton’s Jelly Mesenchymal Stem Cells. Biomed. Pharmacother. 2017, 93, 772–778. DOI: 10.1016/j.biopha.2017.06.107.
  • Entekhabi, E.; Haghbin Nazarpak, M.; Moztarzadeh, F.; Sadeghi, A. Design and Manufacture of Neural Tissue Engineering Scaffolds Using Hyaluronic Acid and Polycaprolactone Nanofibers with Controlled Porosity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 380–387. DOI: 10.1016/j.msec.2016.06.078.
  • Hsu, I.; Parkinson, L. G.; Shen, Y.; Toro, A.; Brown, T.; Zhao, H.; Bleackley, R. C.; Granville, D. J. Serpina3n Accelerates Tissue Repair in a Diabetic Mouse Model of Delayed Wound Healing. Cell Death Dis. 2014, 5, e1458–e1458. DOI: 10.1038/cddis.2014.423.
  • Köwitsch, A.; Yang, Y.; Ma, N.; Kuntsche, J.; Mäder, K.; Groth, T. Bioactivity of Immobilized Hyaluronic Acid Derivatives regarding Protein Adsorption and Cell Adhesion. Biotechnol. Appl. Biochem. 2011, 58, 376–389. DOI: 10.1002/bab.41.
  • Xu, H.; Ma, L.; Shi, H.; Gao, C.; Han, C. Chitosan–Hyaluronic Acid Hybrid Film as a Novel Wound Dressing: In Vitro and in Vivo Studies. Polym. Adv. Technol. 2007, 18, 869–875. DOI: 10.1002/pat.906.
  • Chanda, A.; Adhikari, J.; Ghosh, A.; Chowdhury, S. R.; Thomas, S.; Datta, P.; Saha, P. Electrospun Chitosan/Polycaprolactone-Hyaluronic Acid Bilayered Scaffold for Potential Wound Healing Applications. Int. J. Biol. Macromol. 2018, 116, 774–785. DOI: 10.1016/j.ijbiomac.2018.05.099.
  • Wang, P. H.; Huang, B. S.; Horng, H. C.; Yeh, C. C.; Chen, Y. J. Wound Healing. J. Chin. Med. Assoc. 2018, 81, 94–101. DOI: 10.1016/j.jcma.2017.11.002.
  • Hu, M.; Sabelman, E. E.; Cao, Y.; Chang, J.; Hentz, V. R. Three-Dimensional Hyaluronic Acid Grafts Promote Healing and Reduce Scar Formation in Skin Incision Wounds. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 67, 586–592. DOI: 10.1002/jbm.b.20001.
  • Ozpur, M. A.; Guneren, E.; Canter, H. I.; Karaaltin, M. V.; Ovali, E.; Yogun, F. N.; Baygol, E. G.; Kaplan, S. Generation of Skin Tissue Using Adipose Tissue-Derived Stem Cells. Plast. Reconstr. Surg. 2016, 137, 134–143. DOI: 10.1097/PRS.0000000000001927.
  • Behere, I.; Ingavle, G. In Vitro and in Vivo Advancement of Multifunctional Electrospun Nanofiber Scaffolds in Wound Healing Applications: Innovative Nanofiber Designs, Stem Cell Approaches, and Future Perspectives. J. Biomed. Mater. Res. A 2022, 110, 443–461. DOI: 10.1002/jbm.a.37290.
  • Ishihara, M.; Kishimoto, S.; Nakamura, S.; Fukuda, K.; Sato, Y.; Hattori, H. Biomaterials as Cell Carriers for Augmentation of Adipose Tissue-Derived Stromal Cell Transplantation. Biomed. Mater. Eng. 2018, 29, 567–585. DOI: 10.3233/BME-181009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.