142
Views
0
CrossRef citations to date
0
Altmetric
Articles

On the problem of classifying solvable Lie algebras having small codimensional derived algebras

, , , &
Pages 3775-3793 | Received 24 Feb 2021, Accepted 09 Feb 2022, Published online: 12 Mar 2022

References

  • Belitskii, G. R., Dmytryshyn, A. R., Lipyanski, R., Sergeichuk, V. V., Tsurkov, A. (2009). Problems of classifying associative or Lie algebras over a field of characteristic not two and finite metabelian groups are wild. Electron. J. Linear Algebra. 18:516–529.
  • Belitskii, G. R., Lipyanski, R., Sergeichuk, V. V. (2005). Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild. Linear Algebra Appl. 407:249–262. DOI: 10.1016/j.laa.2005.05.007.
  • Bondarenko, V. M., Petravchuk, A. P. (2019). Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables. Linear Algebra Appl. 568:165–172. DOI: 10.1016/j.laa.2018.07.031.
  • Belitskii, G. R., Sergeichuk, V. V. (2003). Complexity of matrix problems. Linear Algebra Appl. 361:203–222. DOI: 10.1016/S0024-3795(02)00391-9.
  • Cicalò, S., de Graaf, W. A., Schneider, C. (2012). Six-dimensional nilpotent Lie algebras. Linear Algebra Appl. 436(1):163–189. DOI: 10.1016/j.laa.2011.06.037.
  • Dixmier, J. (1958). Sur les representations unitaires des groupes de Lie nilpotents III. Can. J. Math. 10:321–348. DOI: 10.4153/CJM-1958-033-5.
  • de Graaf, W. A. (2005). Classification of solvable Lie algebras. Experiment. Math. 14(1):15–25. DOI: 10.1080/10586458.2005.10128911.
  • Donovan, P., Freislich, M. R. (1972). Some evidence for an extension of the Brauer–Thrall conjecture. Sonderforschungsbereich Theor. Math. 40:24–26.
  • Donovan, P., Freislich, M. R. (1973). The Representation Theory of Finite Graphs and Associated Algebras. Carleton Mathematical Lecture Notes, No. 5. Ottawa, ON: Carleton University.
  • Eberlein, P. (2003). The moduli space of 2-step nilpotent Lie algebras of type (p, q). In: Bland, J., Kim, K-T., Krantz, S. G., eds. Explorations in Complex and Riemannian Geometry: A Volume Dedicated to Robert E. Greene. Contemporary Mathematics, Vol. 332. Providence, RI: American Mathematical Society, pp. 37–72.
  • Fisher, D. J., Gray, R. J., Hydon, P. E. (2013). Automorphisms of real Lie algebras of dimension five or less. J. Phys. A: Math. Theor. 46(22):225204–2218pp. DOI: 10.1088/1751-8113/46/22/225204.
  • Futorny, V., Klymchuk, T., Petravchuk, A. V., Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra Appl. 536:201–209. DOI: 10.1016/j.laa.2017.09.019.
  • Gong, M.-P. (1998). Classification of nilpotent Lie algebras of dimension 7 (Over algebraically closed fields and R) Waterloo, Ontario, CA: University of Waterloo. http://hdl.handle.net/10012/1148.
  • Hilton, P. J., Stammbach, U. (1997). A Course in Homological Algebra. New York: Springer-Verlag.
  • Hindeleh, F., Thompson, G. (2008). Seven dimensional Lie algebras with a four-dimensional nilradical. Algebras Groups Geom. 25:243–265.
  • Jacobson, N. (1962). Lie Algebras. New York: Dover.
  • Jacobson, N. (1944). Schur’s Theorem on commutative matrices. Bull. Amer. Math. Soc. 50(6):431–436. DOI: 10.1090/S0002-9904-1944-08169-X.
  • Le, A. V., Nguyen, A. T., Nguyen, T. C. T., Nguyen, T. M. T., Vo, N. T. (2020). Applying matrix theory to classify real solvable Lie algebras having 2-dimensional derived ideals. Linear Algebra Appl. 588:282–303. DOI: 10.1016/j.laa.2019.11.031.
  • Morozov, V. V. (1958). Classification of nilpotent Lie algebras of dimension 6. Izv. Vyssh. Uchebn. Zaved. Mat. 4:161–171.
  • Mubarakzyanov, G. M. (1963). On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 1:114–123.
  • Mubarakzyanov, G. M. (1963). Classification of real structures of Lie algebras of fifth order. Izv. Vyssh. Uchebn. Zaved. Mat. 3:99–106.
  • Mubarakzyanov, G. M. (1963). Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element. Izv. Vyssh. Uchebn. Zaved. Mat. 4:104–116.
  • Ndogmo, J. C. (1994). Sur les fonctions invariantes sous laction coadjointe dune algèbre de Lie résoluble avec nilradical abélien [PhD dissertation]. Montréal, Quebéc, CA: Université of Montréal. https://umontreal.on.worldcat.org/v2/oclc/53598383.
  • Ndogmo, J. C., Winternitz, P. (1994). Solvable Lie algebras with Abelian nilradicals. J. Phys. A: Math. Gen. 27(2):405–423. DOI: 10.1088/0305-4470/27/2/024.
  • Nguyen, A. T., Le, A. V., Vo, N. T. (2021). Testing isomorphism of complex and real Lie algebras. 14pp. https://arxiv.org/abs/2102.10770arXiv:2102.10770.
  • Parry, A. R. (2007). A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals [Master thesis]. Logan, UT: Utah State University. https://digitalcommons.usu.edu/etd/7145.
  • Patera, J., Zassenhaus, H. (1990). Solvable Lie algebras of dimension ≤4 over perfect fields. Linear Algebra Appl. 142:1–17.
  • Schöbel, C. (1993). A classification of real finite-dimensional Lie algebras with a low-dimensional derived algebra. Rep. Math. Phys. 33(1-2):175–186. DOI: 10.1016/0034-4877(93)90053-H.
  • Schur, J. (1905). Zur Theorie vertauschbaren Matrizen. J. Reine Angew. Math. 1905(130):66–76. DOI: 10.1515/crll.1905.130.66.
  • Sergeichuk, V. V. (2000). Canonical matrices for linear matrix problems. Linear Algebra Appl. 317(1–3):53–102. DOI: 10.1016/S0024-3795(00)00150-6.
  • Shabanskaya, A., Thompson, G. (2013). Solvable extensions of a special class of nilpotent Lie algebras. Arch. Math. (Brno). 49(3):141–159. DOI: 10.5817/AM2013-3-141.
  • Shabanskaya, A. (2016). Solvable indecomposable extensions of two nilpotent Lie algebras. Commun. Algebra. 44(8):3626–3667. DOI: 10.1080/00927872.2014.925117.
  • Šnobl, L., Winternitz, P. (2014). Classification and Identification of Lie Algebras, Vol. 33 of CRM Monograph Series. Providence, RI: American Mathematical Society.
  • Turkowski, P. (1990). Solvable Lie algebras of dimension six. J. Math. Phys. 31(6):1344–1350. DOI: 10.1063/1.528721.
  • Turkowski, P. (1992). Structure of real Lie algebras. Linear Algebra Appl. 171:197–212. DOI: 10.1016/0024-3795(92)90259-D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.