180
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Metric and strong metric dimension in commuting graphs of finite groups

, ORCID Icon, &
Pages 1000-1010 | Received 23 Dec 2021, Accepted 23 Aug 2022, Published online: 06 Sep 2022

References

  • Abdollahi, A., Akbari, S., Maimani, H. R. (2006). Noncommuting graph of a group. J. Algebra 298:468–492. DOI: 10.1016/j.jalgebra.2006.02.015.
  • Abdollahi, A., Shahverdi, H. (2012). Characterization of the alternating group by its non-commuting graph. J. Algebra 357:203–207. DOI: 10.1016/j.jalgebra.2012.01.038.
  • Ali, F., Salman, M., Huang, S (2016). On the commuting graph of dihedral group. Commun. Algebra 44:2389–2401. DOI: 10.1080/00927872.2015.1053488.
  • Bailey, R. F., Cameron, P. J. (2011). Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43:209–242.
  • Brauer, R., Fowler, K. A. (1955). On groups of even order. Ann. Math. (2) 62:565–583. DOI: 10.2307/1970080.
  • Bundy, D. (2006). The connectivity of commuting graphs. J. Combin. Theory, Ser. A 113:995–1007.
  • Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., Wood, D. R. (2007). On the metric dimension of Cartesian products of graphs. SIAM J. Discrete Math. 21:423–441. DOI: 10.1137/050641867.
  • Cameron, P. J. (2022). Graphs defined on groups. Int. J. Group Theory 11:53–107.
  • Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105:99–113. DOI: 10.1016/S0166-218X(00)00198-0.
  • Cheng, T., Dehmer, M., Emmert-Streib, F., Li, Y., Liu, W. (2021). Properties of commuting graphs over semidihedral groups. Symmetry 13:103. DOI: 10.3390/sym13010103.
  • Dutta, J., Kanti, R. N. (2017). Spectrum of commuting graphs of some classes of finite groups. Matematika 33:87–95. DOI: 10.11113/matematika.v33.n1.812.
  • Garey, M. R., Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. New York:Freeman.
  • Han, Z., Chen, G., Guo, X. (2008). A characterization theorem for sporadic simple groups. Siberian Math. J. 49:1138–1146. DOI: 10.1007/s11202-008-0111-z.
  • Harary, F., Melter, R. A. (1976). On the metric dimension of a graph. Ars Combin. 2:191–195.
  • Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Wood, D. R. (2010). Extremal graph theory for metric dimension and diameter. Electron. J. Combin. 17:#R30.
  • Johnson, D. L. (1980). Topics in the Theory of Group Presentations. London Mathematical Society Lecture Note Series, Vol. 42. Cambridge: Cambridge University Press.
  • Kelarev, A. V. (2002). Ring Constructions and Applications. Singapore: World Scientific.
  • Kelarev, A. V. (2003). Graph Algebras and Automata. New York:Marcel Dekker.
  • Kelarev, A. V. (2004). Labelled Cayley graphs and minimal automata. Australas. J. Combin. 30:95–101.
  • Kelarev, A. V., Ryan, J., Yearwood, J. (2009). Cayley graphs as classifiers for data mining: The influence of asymmetries. Discrete Math. 309:5360–5369. DOI: 10.1016/j.disc.2008.11.030.
  • Kratica, J., Kovačević-Vujčić, V., Čangalović, M., Mladenović, N. (2014). Strong metric dimension: a survey. Yugosl. J. Oper. Res. 24:187–198. DOI: 10.2298/YJOR130520042K.
  • Kumar, J., Dalal, S., Baghel, V. (2021), On the commuting graph of semidihedral group. Bull. Malays. Math. Sci. Soc. 44:3319–3344. DOI: 10.1007/s40840-021-01111-0.
  • Kuziak, D., Yero, I. G., Rodríguez-Velázquez, J. A. (2013). On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161:1022–1027. DOI: 10.1016/j.dam.2012.10.009.
  • Kuziak, D., Yero, I. G., Rodríguez-Velázquez, J. A. (2016). Strong metric dimension of rooted product graphs. Int. J. Comput. Math. 93:1265–1280. DOI: 10.1080/00207160.2015.1061656.
  • Kuziak, D., Yero, I. G., Rodríguez-Velázquez, J. A. (2015). On the strong metric dimension of the strong products of graphs. Open Math. 13:64–74.
  • Ma, X., Feng, M., Wang, K. (2018). The strong metric dimension of the power graph of a finite group. Discrete Appl. Math. 239:159–164. DOI: 10.1016/j.dam.2017.12.021.
  • Mirzargar, M., Pach, P., Ashrafi, A. R. (2014). Remarks on commuting graph of a finite group. Electron. Notes Discrete Math. 45:103–106. DOI: 10.1016/j.endm.2013.11.020.
  • Sebő, A., Tannier, E. (2004). On metric generators of graphs. Math. Oper. Res. 29:383–393. DOI: 10.1287/moor.1030.0070.
  • Segev, Y. (1999). On finite homomorphic images of the multiplicative group of a division algebra. Ann. Math. (2) 149:219–251. DOI: 10.2307/121024.
  • Segev, Y. (2001). The commuting graph of minimal nonsolvable groups. Geom. Dedic. 88:55–66.
  • Segev, Y., Seitz, G. M. (2002). Anisotropic groups of type An and the commuting graph of finite simple groups. Pac. J. Math. 202:125–225. DOI: 10.2140/pjm.2002.202.125.
  • Slater, P. J. (1975). Leaves of trees. Congr. Numer. 14:549–559.
  • Solomon, R. M., Woldar, A. (2013). Simple groups are characterized by their non-commuting graphs. J. Group Theory 16:793–824. DOI: 10.1515/jgt-2013-0021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.