555
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

A comparative review of generalizations of the Gumbel extreme value distribution with an application to wind speed data

&
Pages 2241-2261 | Received 25 Jun 2015, Accepted 11 Oct 2015, Published online: 02 Nov 2015

References

  • Bruxer J, Thompson A, Eng P. St. Clair River hydrodynamic modelling using RMA2 phase 1 report. IUGLS SCRTT, Canada; 2008.
  • Castillo E, Hadi AS, Balakrishnan N, Sarabia JM. Extreme value and related models with applications in engineering and science. New Jersey: John Wiley and Sons; 2005.
  • Sanford LP. Turbulent mixing in experimental ecosystem studies. Mar Ecol Prog Ser. 1997;161:265–293. doi: 10.3354/meps161265
  • Gilleland E, Nychka D. Statistical models for monitoring and regulating ground-level ozone. Environmetrics. 2005;16:535–546. doi: 10.1002/env.720
  • Cooley D, Naveau P, Jomelli V, Rabatel A, Grancher D. A Bayesian hierarquical extreme value model for lichenometry. Environmetrics. 2006;17:555–574. doi: 10.1002/env.764
  • Hosking JRM. The four-parameter kappa distribution. IBM J Res Dev. 1994;38:251–258. doi: 10.1147/rd.383.0251
  • Hosking JRM, Wallis JR. Regional frequency analysis: an approach based on L-moments. Cambridge: Cambridge University Press; 1997.
  • Parida BP. Modeling of Indian summer monsoon rainfall using a four-parameter kappa distribution. Int J Climatol. 1999;19:1389–1398. doi: 10.1002/(SICI)1097-0088(199910)19:12<1389::AID-JOC435>3.0.CO;2-T
  • Park JS, Jung HS. Modeling Korean extreme rainfall using a kappa distribution and maximum likelihood estimate. Theor Appl Climat. 2002;72:55–64. doi: 10.1007/s007040200012
  • Singh VP, Deng ZQ. Entropy-based parameter estimation for kappa distribution. J Hydrol Eng. 2003;8:81–92. doi: 10.1061/(ASCE)1084-0699(2003)8:2(81)
  • Reed DW, Robson AJ. Statistical procedures for flood frequency estimation. Flood estimation handbook, Vol. 3. Wallingford: Institute of Hydrology; 1999.
  • Coles S. An introduction to statistical modeling of extremes. London: Springer-Verlag; 2001.
  • Ferrari SLP, Pinheiro EC. Small-sample likelihood inference in extreme-value regression models. J Stat Comput Simul. 2012;84:582–595. doi: 10.1080/00949655.2012.720686
  • Ferrari SLP, Pinheiro EC. Small-sample one-sided testing in extreme value regression models. Adv Statist Anal. 2015. Available from: http://dx.doi.org/10.1007/s10182-015-0251-y
  • Huang G. Model identifiability. Encyclopedia Statist Behav Sci. 2005;3:1249–1251. Available from: http://onlinelibrary.wiley.com/doi/10.1002/0470013192.bsa399/pdf
  • Danielsson J, Jorgensen BN, Sarma M, de Vries CG. Comparing downside risk measures for heavy tailed distributions. Econom Lett. 2006;92:202–208. doi: 10.1016/j.econlet.2006.02.004
  • de Haan L. On regular variation and its application to the weak convergence of sample extremes. Mathematical centre tracts 32. Amsterdam: Mathematics Centre; 1970.
  • Rigby RA, Stasinopoulous DM, Heller G, Voudouris V. The distribution toolbox of GAMLSS; 2014. Available from: www.gamlss.org
  • Gnedenko B. Sur la distribuition limite du terme maximum d'une série aléatoire. Ann Math. 1943;44:423–453. Translated and reprinted in Breakthroughs in statistics, Vol. I, Kotz S, Johnson NL, editors. Springer-Verlag; 1992. p. 195–225. doi: 10.2307/1968974
  • Jenkinson AF. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc. 1955;81(348):158–171. doi: 10.1002/qj.49708134804
  • Kotz S, Nadajarah S. Extreme value distributions: theory and applications. London: Imperial College Press; 2000.
  • Nadarajah S. The exponentiated Gumbel distribution with climate application. Environmetrics. 2006;17:13–23. doi: 10.1002/env.739
  • Shaw WT, Buckley IR. The alchemy of probability distributions: beyond Gram–Charlier and Cornish–Fisher expansions, and skew-normal or kurtotic-normal distributions; 2009. Available from: arXiv:0901.0434v1
  • Aryal GR, Tsokos CP. On transmuted extreme value distribution with application. Nonlinear Anal Theory Methods Appl. 2009;71:1401–1407. doi: 10.1016/j.na.2009.01.168
  • Cordeiro GM, Nadarajah S, Ortega EMM. The Kumaraswamy Gumbel distribution. Stat Methods Appl. 2012;21:139–168. doi: 10.1007/s10260-011-0183-y
  • Catchpole EA, Morgan BJT. Detecting parameter redundancy. Biometrika. 1997;84:187–196. doi: 10.1093/biomet/84.1.187
  • Dubey SD. A new derivation of the logistic distribution. Naval Res Logist. 1969;16:37–40. doi: 10.1002/nav.3800160103
  • Hald A. Statistical theory with engineering applications. 7th ed. Canada: John Wiley and Sons; 1952.
  • Jeong BY, Murshed MS, Am Seo Y, J-S Park. A three-parameter kappa distribution with hydrologic application: a generalized Gumbel distribution. Stoch Environ Res Risk Assess. 2014;28(8):2063–2074. doi: 10.1007/s00477-014-0865-8
  • Ojo MO. Some relationships between the generalized Gumbel and other distributions. Kragujevac J Math. 2001;23:101–106.
  • Cooray K. Generalized Gumbel distribution. J Appl Stat. 2010;37:171–179. doi: 10.1080/02664760802698995
  • Adeyemi S, Ojo MO. A generalization of the Gumbel distribution. Kragujevac J Math. 2003;25:19–29.
  • Gumbel EJ. Les valeurs extrêmes des distributions statistiques. Ann Inst H Poincaré. 1935;5:115–158.
  • Balakrishnan N, Leung MY. Order statistics from the type I generalized logistic distribution. Comm Statist Simulation Comput. 1988;17:25–50. doi: 10.1080/03610918808812648
  • Prentice RL. Discrimination among some parametric models. Biometrika. 1975;62:607–614. doi: 10.1093/biomet/62.3.607
  • Prentice RL. A generalization of the probit and logit methods for dose response curves. Biometrics. 1976;32:761–768. doi: 10.2307/2529262
  • Cordeiro GM, Ortega EMM, da Cunha DCC. The exponentiated generalized class of distributions. J Data Sci. 2013;11:1–27.
  • Nadarajah S, Kotz S. The beta Gumbel distribution. Math Probl Eng. 2004;4:323–332. doi: 10.1155/S1024123X04403068
  • Pescim RR, Cordeiro GM, Ortega EMM, Nadarajah S. The new class of Kummer beta generalized distributions. SORT. 2012;36:153–180.
  • Rossi F, Fiorentino M, Versace P. Two-component extreme value distribution for flood frequency analysis. Water Resour Res. 1984;20:847–856. doi: 10.1029/WR020i007p00847
  • Markovich N. Wiley series in probability and statistics. In: Nonparametric analysis of univariate heavy-tailed data: Research and practice. Chichester, UK: John Wiley & Sons, Ltd; 2007. doi:10.1002/9780470723609.scard
  • Resnick S. Heavy-tail phenomena: probabilistic and statistical modeling. New York: Springer; 2007.
  • Luceño A. Fitting the generalized Pareto distribution to data using maximum goodness of fit estimators. Comput Statist Data Anal. 2005;51:904–917. doi: 10.1016/j.csda.2005.09.011
  • Wright SJ, Nocedal J. Numerical optimization. Vol. 2. New York: Springer; 1999.
  • Doornik JA. Object-oriented matrix language programming using Ox. London: Timberlake Consultants Press; 2013.
  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I. STL: a seasonal-trend decomposition procedure based on loess. J Off Stat. 1990;6:3–73.
  • Hubert M, Vadervieren E. An adjusted boxplot for skewed distributions. Comput Statist Data Anal. 2008;52:5186–5201. doi: 10.1016/j.csda.2007.11.008
  • Aitkin M, Rubin DB. Estimation and hypothesis testing in finite mixture models. J R Stat Soc B. 1985;47:67–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.