232
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Estimation of the generalized process capability index Cpyk based on bias-corrected maximum-likelihood estimators for the generalized inverse Lindley distribution and bootstrap confidence intervals

ORCID Icon
Pages 1960-1979 | Received 29 May 2020, Accepted 18 Jan 2021, Published online: 04 Feb 2021

References

  • Summers DC. Quality management: creating and sustaining organizational effectiveness. Upper Saddle River, NJ: Prentice Hall; 2005.
  • Juran JM. Juran's quality control handbook. 3rd ed. New York (NY): McGraw-Hill; 1974.
  • Kane VE. Process capability indices. J Qual Technol. 1986;18(1):41–52.
  • Hsiang TC, Taguchi G. Tutorial on quality control and assurance – The Taguchi Methods. Joint Meeting of the American Statistical Association. Las Vegas, NV; 2013. p. 188.
  • Choi BC, Owen DB. A study of a new process capability index. Commun. Stat. Theory Methods. 1990;19:1232–1245.
  • Pearn WL, Kotz S, Johnson NL. Distributional and inferential properties of process capability indices. J Qual Technol. 1992;24:216–231.
  • Ryan TP. Statistical methods for quality improvement. New York, USA: John Wiley & Sons, 2011.
  • Gunter BH. The use and abuse of Cpk – Part I. Qual Prog. 1989;22:72–73.
  • Clements JA. Process capability calculations for non-normal distributions. Qual Prog. 1989;22(9):95–97.
  • Constable GK, Hobbs JR. Small samples and non-normal capability. In: ASQC Quality Congress Transactions, New York, NY. 1992. p. 37–43.
  • Chen P, Wan BX, Zhi-Sheng YE. Yield-based process capability indices for nonnormal continuous data. J Qual Technol. 2019;51(2):171–180.
  • Mukherjee SP, Singh NK. Sampling properties of an estimator of a new process capability index for Weibull distributed quality characteristics. Qual Eng. 1997;10(2):291–294.
  • Tang LC, Goh TN, Yam HS, etal. Six sigma: advanced tools for black belts and master black belts. New York, USA: John Wiley & Sons; 2007.
  • Maiti SS, Mahendra S, Asok KN. On generalizing process capability indices. Qual Technol Quant Manag. 2010;7(3):279–300.
  • Chan LK, Cheng SW, Spiring FA. A new measure of process capability: cpm. J Qual Technol. 1988;20(3):162–175.
  • Smithson M. Correct confidence intervals for various regression effect sizes and parameters: the importance of non-central distributions in computing intervals. Educ Psychol Meas. 2001;61(4):605–632.
  • Thompson B. What future quantitative social science research could look like: confidence intervals for effect sizes. Educ Researcher. 2002;31(3):25–32.
  • Steiger JH. Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychol Methods. 2004;9(2):164.
  • Peng C. Parametric lower confidence limits of quantile-based process capability indices. J Qual Technol Quant Manag. 2010a;7(3):199–214.
  • Peng C. Estimating and testing quantile-based process capability indices for processes with skewed distributions. J Data Sci. 2010b;8(2):253–268.
  • Leiva V, Marchant C, Saulo H, et al. Capability indices for Birnbaum Saunders processes applied to electronic and food industries. J Appl Stat. 2014;41(9):1881–1902.
  • Pearn WL, Tai YT, Hsiao IF, Ao YP. Approximately unbiased estimator for non-normal process capability index CNpk. J Test Eval. 2014;42(6):1408–1417.
  • Kashif M, Aslam M, Al-Marshadi AH, et al. Capability indices for non-normal distribution using Ginis mean difference as measure of variability. IEEE Access. 2016;4:7322–7330.
  • Weber S, Ressurreicao T, Duarte C. Yield prediction with a new generalized process capability index applicable to non-normal data. IEEE Trans Comput Aided Design Integrated Circuits Syst. 2016;35(6):931–942.
  • Pina-Monarrez MR, Ortiz-Yaez JF, Rodrguez-Borbn MI. Non-normal capability indices for the Weibull and log-normal distributions. Qual Relaib Eng Int. 2016;32:1321–1329.
  • Rao GS, Aslam M, Kantam RRL. Bootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions. J Stat Comput Simul. 2016;86(5):862–873.
  • Dey S, Saha M, Maiti SS, et al. Bootstrap confidence intervals of generalized process capability index cpyk for Lindley and power Lindley distributions. Commun Stat Simul Comput. 2017;47(1):249–262.
  • Saha M, Dey S, Maiti SS. Parametric and non-parametric bootstrap confidence intervals of CNpk for exponential power distribution. J Ind Prod Eng. 2018;35(3):160–169.
  • Mazucheli J, Dey S. Bias-corrected maximum likelihood estimation of the parameters of the generalized half-normal distribution. J Stat Comput Simul. 2018;88(6):1027–1038.
  • Cox DR, Snell EJ. A general definition of residuals. J R Stat Soc: Ser B (Methodol). 1968;30(2):248–265.
  • Efron B. The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM; 1982.
  • Mazucheli J, Menezes AFB, Nadarajah S. mle. tools: an R package for maximum likelihood bias correction. R J. 2017;9(2):268–290.
  • Cribari-Neto F, Vasconcellos KL. Nearly unbiased maximum likelihood estimation for the beta distribution. J Stat Comput Simul. 2002;72(2):107–118.
  • Saha K, Paul S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics. 2005;61(1):179–185.
  • Lemonte AJ, Cribari-Neto F, Vasconcellos KL. Improved statistical inference for the two-parameter Birnbaum–Saunders distribution. Comput Stat Data Anal. 2007;51(9):4656–4681.
  • Giles DE. Bias reduction for the maximum likelihood estimators of the parameters in the half-logistic distribution. Commun Stat Theory Methods. 2012;41(2):212–222.
  • Schwartz J, Godwin RT, Giles DE. Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution. J Stat Comput Simul. 2013;83(3):434–445.
  • Giles DE, Feng H, Godwin RT. On the bias of the maximum likelihood estimator for the two-parameter Lomax distribution. Commun Stat Theory Methods. 2013;42(11):1934–1950.
  • Ling X, Giles DE. Bias reduction for the maximum likelihood estimator of the parameters of the generalized Rayleigh family of distributions. Commun Stat Theory Methods. 2014;43(8):1778–1792.
  • Schwartz J, Giles DE. Bias-reduced maximum likelihood estimation of the zero-inflated Poisson distribution. Commun Stat Theory Methods. 2016;45(2):465–478.
  • Wang M, Wang W. Bias-corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution. Commun Stat Simul Comput. 2017;46(1):530–545.
  • Mazucheli J, Menezes AFB, Dey S. Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution. Commun Stat Theory Methods. 2018;47(15):3767–3778.
  • Reath J, Dong J, Wang M. Improved parameter estimation of the log-logistic distribution with applications. Comput Stat. 2018;33(1):339–356.
  • Lindley DV. Fiducial distributions and Bayes' theorem. J R Stat Soc Ser B (Methodol). 1958;20:102–107.
  • Nadarajah S, Bakouch HS, Tahmasbi R. A generalized Lindley distribution. Sankhya B. 2014;73(2):331–359.
  • Ghitany ME, Alqallaf F, Al-Mutairi DK, et al. A two-parameter weighted Lindley distribution and its applications to survival data. Math Comput Simul. 2011;81(6):1190–1201.
  • Ghitany ME, Al-Mutairi DK, Balakrishnan N, et al. Power Lindley distribution and associated inference. Comput Stat Data Anal. 2013;64:20–33.
  • Sharma VK, Singh SK, Singh U, et al. The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. J Ind Prod Eng. 2015;32(3):162–173.
  • Asgharzadeh A, Nadarajah S, Sharafi F. Generalized inverse Lindley distribution with application to Danish fire insurance data. Commun. Stat Theory Methods. 2017;46(10):5001–5021.
  • Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. San Diego: Academic Press. Inc.; 1980.
  • Mazucheli J, Menezes AFB, Dey S. Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution. Commun Stat Simul Comput. 2019;48(7):2046–2055.
  • Choi IS, Bai DS. Process capability indices for skewed populations. In: Proceedings of the 20th International Conference on Computer and Industrial Engineering, Kyongju, Korea; 1996. p. 1211–1214.
  • Franklin LA, Wasserman GS. Bootstrap lower confidence limits for capability indices. J Qual Technol. 1992;24(4):196–210.
  • Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci. 1986;1:54–75.
  • Franklin LA, Gary W. Bootstrap confidence interval estimates of Cpk: an introduction. Commun Stat Simul Comput. 1991;20(1):231–242.
  • Von Alven WH. Reliability engineering. Prentice Hall, NJ: Upper Saddle River; 1964.
  • Clark VA, Gross AJ. Survival distributions: reliability applications in the biomedical sciences. New York: John Wiley & Sons; 1975.
  • Mazucheli J. mle.tools: Expected/Observed Fisher information and bias-corrected maximum likelihood estimate(s). R package version 1.0.0; 2017. Available from: https://CRAN.R-project.org/package=mle.tools.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.